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Abstract 

We  present  algebraic algorithms to generate the  boundary of planar 
configuration space obstacles  arisingfrom the translatory motion of objects 
amongst obstacles. Both the bounrfaries of the objects and obstacles are 
given by segments of algebraic  curves. 

1. Introduction 

Using  configuration  space, (C-Space), to  plan  motion  for  a  single 
rigid  object  amongst  physical  obstacles,  reduces  the  problem  to  planning 
motion for  a  mathematical  point  amongst  "grown"  configuration  space  obs- 
tacles,  (the  points  in C-Space which  correspond to the  object  overlapping 
one or more  obstacles).  For  example,  a  rigid  polygonal  object  translating 
and rotating  in  the  plane  can  be  represented as a p i n t  moving in 3- 
Dimension C-Space, Lozano-Perez  and  Wesley  (1979).  The  technique 
thus  relies  in  efficiently  generating  the  boundary of C-Space  obstacles. 
Numerous  applications  such as part  machining,  mold  design,  and  part 
assembly etc., also  exist  where  the C-space approach  proves  useful, 
Adamowicz  and  Albano  (1976),  Freeman(l975),  Lozano-Perez  (1983), 
Tiller  and  Hanson  (1984),  Bajaj  and Kim (1986).  Nevertheless  the  only 
efficient  algorithms lrnown for  generating C-Space  obstacles have been 
for polygonal  objects  and  obstacles;  using  methods  for  efficiently  comput- 
ing  convex  hulls for convex  polygonal  objects  and  obstacles,  Lozano-Perez 
(1983),  and  recently  efficient  convolution  algorithms  for  simple  polygonal 
shapes,  Guibas, Ramshaw and  Stolfi  (1983),  Guibas  and  Seidel  (1985).  In 
this paper we characterize and generate  the  algebraic  curve boundary of the 
C-Space  obstacles, arising from  the  translatory  motion of objects  amongst 
obstacles  whose  boundaries  are  defined by  segments of algebraic  curves. 

The  main  contributions of  this  paper are as  follows. In 5 3 we 
characterize  the  boundary of C-Space  obstacles for  general  planar  curved 
objects  moving with  only  translation.  They are related  to  the  convolution  of 
the  boundaries  of  object  and  obstacle (Convolution) as well as a  certain 
outer  envelope of curves of  the  moving  object (0-Envelope), generated by 
reversing  the  object with respect  to  a  reference  point  and then  allowing  the 
reference  point  to move on the  physical  obstacle.  Only  for  convex  shaped 
objects and obstacles  are  the  boundaries of the C-space  obstacle, the 
O-Envelope and the Convolution exactly  the  same. The objects and 
obstacles  that we consider  have  arbitrary  shape with  boundaries  consisting 
of segments  of  algebraic  curves  and  are  represented by a  boundary 
representation  model  discussed in 8 2.  In 8 4 we give  algebraic  algorithms 
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to  generate  the  curve  segments and vertices of  the Convolution of  the  boun- 
dary of object  and  obstacle.  Crucial too here is the  internal  representation 
of  algebraic  curves,  i.e.,  whether  they  are  parametrically or implicitly 
defined8.  We  present  algorithms  for  both  these  internal  representations.  In 
$5  we deal  with  curve  singularities  that arise in the Convolution and  give 
methods by  which to remove  these  singularities  and  thereby  obtain  the 
boundary of the C-space obstacles. 

2. Algebraic  Boundary  Model 

In a  general  boundary  representation, an object with algebraic  boun- 
dary curves  consists of a  list of peels. An object may have  internal  holes 
and  peels  which  correspond to them are  termed  "hole" peels. Each peel in 
turn  consists of the  following: 

(1) A face  bounded  by  a  single  oriented  cycle of edges.  (The  area 
bounded by the  cycle  of  edges  is  infmite for a  "hole" peel and finite 
otherwise.) 

(2) A finite set  of  directed  edges,  where  each  edge  is  incident to  two  ver- 
tices.  Each  edge  also  has  a  curve  equation,  represented  either in 
implicit  or in  parametric  form. 

(3) A finite  set of vertices  usually  specified by Cartesian  coordinates. 

The  curve  equation for each  edge is chosen  such  that  the  direction of the 
normal at each  point of  the  edge is towards  the  exterior  of  the  object.  For  a 
simple  point  on  the  curve  the  normal is defined as the  vector  of  partials to 
the curve  evaluated at that pint .  For  a  singular  point  on  the  curve  we asso- 
ciate  a  range of normal  directions  determined by normals  to  the  tangents at 
the  singular  point.  Further  the  edges are oriented  such  that  the  interior  of 
the object is to the left when  the  cycle  of  edges is traversed.  Straightfor- 
ward  assumptions  are  also  made,  e.g.,  edges  are  non-singular  except at ver- 
tices,  and  edges  are  strictly  convex  (slopes  of  tangents  are  strictly  increas- 
ing  along  the  edge),  strictly  concave  (slopes  of  tangents  are  strictly  decreas- 
ing) or line  segments.  Such  conditions  are  easily  met by adding  extra  ver- 
tices to the  boundary. 

3. C-space  Obstacles,  Convolution and Envelopes 

Let A be a  moving  object  with its reference  point at the origin  and B 
be a fixed obstacle in  the  2-dimensional  real  Euclidean  plane R2.  Both A 
and B are  modeled by the  above  boundary  representations  and  assumed to 
be without  'holes'.  Further  non-regularities  such as dangling  edges  and  iso- 
lated  vertices are also  not  permitted.  The C-space obstacles that we 
Construct are also  regularized  in  this  fashion  and are modeled by  the above 

* A unit circle is implicitly given as X2+y2-1 = 0 and in prameteric f m n  as 

x = (1-t2)/(l+t2) and y = 2t/ ( l+t2)  
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boundary  representation.  For  the  sake of notation  and  preciseness  in our 
usage  we  make  the  following  distinctions. We denote Int ( A )  as  the  interior 
ofA andBdr(A)astheboundaryofA. NotethatA = I n t ( A ) y B d r ( A ) =  
Cl (A) = closure of A by regularity.  Further,  the  exterior of A is  denoted by 
Ext(A) = A‘ (the  complement  of A )  = RZ-A, where  the  set  difference 
P - Q  = ( ~ E R ’ I ~ E P  a n d p e  Q}. NotethatInt(A)andExt(A)are 
open sets. 

Throughout  we  consider  object A to be free  to move  with  fixed  orien- 
tation.  In this case  configuration  space  is  also  2-dimensional.  We fix a 
reference  point  on A and  denote A, to  be A located  in R with  its  reference 
point at the  point p E RZ. We also  have d (p , q )  as the  Euclidean  distance 
between p and q ;  N E , @ )  = ( q  ER’  I d ( p , q ) < E }  = &-neighborhood 
around  a  point p ;  -A = ( - p  I p E A ) = Minkowski  inverse, A f B  = 
[ p q I p E A and q E B ] = Minkowski  sum  and  difference. 

One  also  needs  the  following  distinctions 

A,- isfree fromB m A,- n B  = 0 

A,- collides with B CJ Int(A,-) n Int ( E )  # 0 

A,- contacts withB A,- n B  # 0 and Int(A,-) n Int(B) = 0 
(Note  that  these  conditions  imply Bdr  (A,-) n Bdr (E ) # 0.) 

CO(A,B)=C-space  obstacleduetoA  andB = ( ~ E R ~ I A , - ~ B  
# 0  1. 
0 -Envelope (-A , E )  = Outer  envelope  due  to -A and E = [ p E R 2  I 
ji E Bdr((-A),) for somep E Bdr(B),  andp 4 Int((-A),) for any 
q E B ) (Having q E B as opposed to q E Bdr(B ) implies  that  only 
the  outer  envelope is considered.) 

Convolurion(Bdr(-A).Edr(B)) = Convolution of Bdr(-A) and 
B d r ( B ) = ( p ~ R ~ l P = p  - q  wherep EBdr(B)andq   EBdr (A)  
and B has  an  outward  normal  direction  at p exactly  opposite to an 
outward  normal A has at q ) 

We  now note  the  following. 

Theorem3.1: C O ( A , B ) = B - A  

Proof: Lozano-Perez  and  Wesley  (1979). 0 

From  the  above  Theorem  and OUT prior  definitions  we  obtain, 

Corollary 3.2 : (1) CO(Int(A),Int(B)) = Int(B)-Int(A) = 
B -Int(A) Qhis  is  an  open  set) 
(2) A,- is free from B Q p E Ext (CO (Int (A) ,Int(B)))  = 

Ext (Int ( E )  -Int ( A ) )  
(3) A,- collides with B * E Int(CO(Inr(A),Int(B))) = 

Int (B ) - Int (A ) 
(4) A,- conracts with B Q p E Bdr (CO (Inf (A) , ln t (B) ) )  = 

Bdr (Int (E ) - Int (A )) 

We next  obtain  the  following  important  characterizations, 

Theorem 3.3 : Bdr(C0 (Int (A) ,Int(B)))  = 0-Envelope ( -A$)  

Proof : (G) : Let p E Bdr(CO  (Int(A),Int(B))), then A,- contacts 
with E ,  (Corallary 3.2 (4)),  and 3 p E Bdr(AF) n Bdr ( B ) .  Since 
p-jJ E Bdr(A),  we havep-p E Bdr(-A) andp E Bdr((-A),) forp 
E Bdr ( E ) .  Further p G Int ( ( -A)q)  for  any q E B . Assuming  the 
contrary, if ji E Inf ( ( -A)q)  for  some q E B , then p E B -Int ( A )  = 

Int(B)-Inf(A) =Int(CO(Int(A),Int(B))),(conuadiction). 
(2) : Letp E 0-Envelope(-A,B), thenp E Bdr((-A),) for somep 
E Bdr(B),  and p 4 Int((-A),) for  any 4 E B . Equivalently, p E 

Bdr  (A,-) n Bdr (E ) and q Int (AF) for any q E B . This  implies 
A,- n B # 0 and Int (A,) n Int ( B )  = 0. Hence, A,- contacts  with 
B .  0 

Theorem 3.4 : Bdr(CO(A,B))  c O-Envelope(-A,B) c 
Convolution(Bdr(-A),Bdr(B)) 

Proof : (1) Using  Theorem  3.3  we  show Bdr (CO(A , E ) )  c 
Bdr(CO(Int(A),Int(B))):  Foranyp E CO(A,B) ,A , -  nB $0,  
equivalently p E Cl (C0 (Int (A),Inz (E)) ) ,  (Corollary 3.2  (2)). 
Hence, CO(Int(A),Inf(B))  c C O ( A , B )  c Cl(CO(Int(A),Int(B))) 
and Cl(CO(A,B) )  = Cl(CO(lnt(A),Int(B))). Since 
Int (CO (Int (A ), Int (B 1)) c Int (CO (A , E ) ) ,  we  have 
Bdr(CO(A,B) )  cBdr(CO(lnt(A) , Int(B))) .  
(2) 0-Envelope(-A,B) c Convolution(Bdr(-A),Bdr(B)) : For 
anyp E O-Envelope(-A,B)=Bdr(CO(Inf(A),Int(B))),sinceA,- 
contacts  with B at some p E Bdr(B),  A,- has  an  outward  normal 
direction  at p which is opposite  to  an  outward  normal  direction B has 
a tp .  F o r q = p - p E B d r ( A ) , w e h a v e p = p - q a n d B  hasanout- 
ward  normal  direction  at p exactly  opposite to an  outward  normal A 
has at q .  Thus jJ E Convolution(Bdr(-A),Bdr(B)). Also see Gui- 
bas,  Ramshaw,  and  Stolfi  (1983). 0 

The  differences  between  the  above  entities  are  various  kinds of redundant 
vertices  and  curve  segments.  There are primarily  five  classes  of  redundan- 
cies or singularities  that may arise,  (a)  dangling  edges  (b)  isolated  vertices 
(c)  coincident  edges  (d)  intersecting  edges  and  (e)  self-intersecting  edges, 
(see  Figure  1  (a)-(e)). In Figure 1-(a) therc  are  four  dangling  edges  (dotted 
lines).  These  dangling  edges  are in  the Convolution, but  not  in  the 
0 -Envelope or in the C-space obstacle boundary  (bold  lines).  The  mov- 
ing  object  is  a  small  square. In Figure  1 (b-(e) the  moving  object is a  cir- 
cle.  In  Figure 1-(b)  there is an isolated  vertex  which  is  in  the Convolution 
and  in  the 0 -Envelope, but not in  the C-space obstacle  boundary. In Fig- 
ure  I-(c)  there is a  coincident  edge which  is  in  the Convolution and  in  the 
0 -Envelope, but  not  in  the C -space obstacle  boundary. In Figure 1-(d) 
there is an  intersection  point of two  edges. At this  intersection  point  the 
configurations of A,- and B change  from contact to collide or from collide 

to contact. Parts of both  these  intersecting  edges  (dotted)  are in  the Convo- 
lution but  in  the C-space obstacle boundary. In  Figure  1-(e)  there is  a 
self-intersecting  edge.  The  triangular loop resulting  from  this  self- 
intersection is in the Convolution, but  not  in  the 0 -Envelope. The  redun- 
dancies (%)-(d) are closely  related  with  the  intersections  and  self- 
intersections  of  edges. An isolated  vertex may  result  from  a  degenerate 
self-intersecting edge and a  coincident  edge may result when  two  edges 
intersect  over  a  curve  segment not just at  a common  point.  The  boundary 
representation of the C-space obstacle we  construct  has  no  singularities 
except  at  its  vertices.  The  differences  between  the Convolution, the 
0-Envelope , and  the C-space  obstacle boundary  of  Theorem  3.4  are 
made  more  precise  in  Theorem  3.6  below.  But  before  that we consider  an 
important  special  case. 

In the  special  case when  both A and B are  convex,  both  the  set  con- 
tainments  of  Theorem  3.4  become equalities.  This  follows from  the  proper- 
ties of  convexity.  In  particular  we use the  following  simple fact. For  con- 
vex A and E ,  if A,- and B have  opposite  outward normal directions  at p E 

Bdr(AF) n Bdr(B),  then  there is a common  supporting  line Lp such  that 
A,- and B are on opposite  sides of  the  line L,, Kelly  and  Weiss  (1979). 

Theorem 3.5 : For  convex A and B , we  have Bdr (CO(A , B ) )  = 

0-Envelope ( -A ,B)  = Convolution(Bdr(-A),Bdr(B)) 
Proof : Using  Theorem 3.4, all we  need to show is 
Convolution(Bdr(-A),Bdr(B)) cBdr(CO(A,B))for convexA and 
B .  Suppose E Convolution(Bdr(-A),Bdr(B)). We  first  show p 

Ext (C0 (A , E ) ) .  If j7 E Ext (CO (A , B ) ) ,  then 3 E > 0 such  that 
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(AF+NB,(0)) n B = 0 and Cl (A,) n Cl ( B )  = 0. Hence, jf e 
Bdr((-A),) for any p E Edr(B), (contradiction), and so j j  a 
Ext (CO (A ,E 1). Now,  we  show p 4. Int (CO (A ,E)). Since 3 p E 

Bdr (A,-) n Bdr (B ) such  that A,- and E have  opposite  outward  nor- 
mal  directions  at p, a common  supporting  line Lp separates A,- and 
B . For  any E > 0, let e be  an  outward  normal  vector  to E at  p such 
that I I e I I = E and e is orthogonal to Lp, then A@,) and B are 
separated by the  banded  region  bounded by L@*) and Lp , and so 
A@,) n B = 0. Hence, f i  6 Int(CO(A,B)). Thus p a 
I n t ( C O ( A , B ) ) y E x t ( C O ( A , B ) ) i m p l i e s p E B d r ( C O ( A , E ) ) .  0 

This then  leads to the  following  observations.  For  convex A and B there 
exist no singularities in  the  boundary  of  the Convolution, 0 -Envelope or 
6-space obstacles  (except  possibly at the  vertices). It also suggests a 
natural  method  for  handling  non-convex  object  and  obstacle  shapes.  One 
first obtains a convex  decomposition  consisting of union  of  convex  pieces 
and  then generates  the  C-space  obstacle as the  union  of C-space  obsta- 
cles  for  convex  object and obstacle  pairs. Such  convex  decompositions  are 
possibly  for  planar  polygonal  objects, see Chazelle (1980). However  not all 
objects with algebraic  curve  boundaries  permit  decompositions  consisting 
of the  union of convex  pieces - for example  an  object with an inward 
circular  (concave)  arc on its  boundary.  Hence  alternate  methods of dealing 
with  non-convex  objects  become  important.  The  method we suggest  here 
deals  with  non-convex  objects  directly. 

For  general  objects  and  obstacles with algebraic  curve  boundaries we 
first generate the Convolulion (Bdr (-A),Bdr (8)) complete  with  redundan- 
cies.  Then on systematically  removing  redundancies  one  obtains  the 'boun- 
dary of the C-space  obstacle Bdr(CO(A,B)). The  next  Theorem  helps 
characterize  this  procedure. 

Theorem 3.6 : (1) (Convolution(Bdr(-A),Bdr(B))) - 
(0 -Envelope (-A , B ) )  is the set of all the  vertices  and  edge  segments 
of Convolution(Bdr(-A),Bdr(B)) such  that  for  points j f  on  these 
vertices and edge  segments A,- collides with B . 
(2) (0-Envelope(-A,B)) - (Bdr(CO(A,B))) is  the  set of all the 
isolated  vertices  and  coincident  curve  segments of 
0 -Envelope (-A, B ). 
Proof : (1) We first  prove  Convolurion(Bdr  (-A),Bdr(B )) c 
CI (CO (In? (A).Int (E))).  For  any P E 

Convolution(Bdr(-A),Bdr(B)),jT = p  + q  for somep E Bdr(B) and 
q E Bdr(-A). Then p = p - q  E Bdr(AF) andBdr(AF) n Bdr(B) 
# 0. This implies AT n B # 0, (A and B are regular sets). 
Equivalently AF is not free from B and ji E 

Cl(CO(Int(A),Int(B))) ,  (Corollary 3.2). Thus 
Convolution(Bdr(-A),Bdr(B)) c Cl(CO(Int(A),Int(E))). Next 
the  equality of  Theorem 3.3 implies  that 
[Convolution (Bdr (-A),Bdr(B)) - 0-Envelope (-A ,B  j] c 
[Cl(CO(Int(A),Int(B))) - Bdr(CO(Int(A),Int(B)))] = 
Int (CO (Int(A),Int  (B))). Thus  the  assertion follows from Corollary 
3.2(3). 
(2) Having no intersections,  self-intersections or  collide  edges  and 
vertices,  0-Envelope(-A , B )  = Bdr(CO(Int(A),lnt(E))) can only 
have (a)  isolated  vertices (b) coincident  edges and (c)  edges  and  ver- 
tices  separating Int(CO(Int(A),Int(B))) from 
Ext (CO (Int(A),Int(B ))). Types  (a)  and (b) arise from  the absence 
of  the  boundaries  of A and B in CO (Int (A),Znt (B)) .  Isolated ver- 
tices  arise from point  "holes" of Int(CO (Int(A),Int(B))). Coin- 
cident edges arise from  two  overlapping  outer-envelope  curves  grown 
from  two  different  edges  of Bdr(B) and  lie  between  two  regions of 

- 

Znt(CO(Int(A),lnt(B))). Types (a) and @) are all in  CO(A . E )  and 
also  these are surrounded by Inr (CO (A ,E )). This implies that the 
vertices  and  edges of types (a)  and (b) are in Int(CO (A ,B)), but not 
in Bdr(CO(A,B)). Since Ext(CO(Znt(A),Int(E))) = 
Exf (CO (A , B ) ) ,  Types (c)  are  adjacent to Ext (CO (A , B ) )  and  hence 
these are in Edr(CO(A,B)). Thus 0-Envelope(-A,B) - 
Bdr(CO (A , B ) )  consists of all the  isolated  vertices  and  coincident 
curve  segments of 0-Envelope(-A ,B),  and  nothing  more. 0 

4. Generating  Convolution of Object and Obstacles 

Let S c R2 be a set, p E Bdr(S) be a boundary  point,  and C c 
Bdr (S) be a boundary  curve segment Then  denote N (S , p  ) to  be  the  set  of 
all unit  outward  normal  direction  vectors of S at p ,  and N ( S  ,C) = 
up E ,N(S , p ) .  Note, for  a singular  vertex on  the boundary  we  associate a 
range of outward normal directions  determined by outward  normals to the 
tangents at the  singular  vertex.  For a given  point p E Bdr (B) ,  let the set of 
points Ch(p) = the characteristic set of p = (p=p +q I q E Bdr (-A) 
and N(B , p )  (7 N(-A ,q) # 0 ). For a boundary  curve  segment C c 
Bdr(E),  the set of points Ch(C) = up, ,Ch (p) is  called the 
characteristic set of C.  One  can easily show that 
Convolution (Bdr (-A M d r  (B 1) = (UC E r, Ch (CN u (up E r, Ch (p I), 
where rl is the set  of  all  boundary  edges of Bdr (B j and r2 is  the  set of all 
boundary  vertices of Bdr (B ). 

Fortunately  not  all  edge-edge,  edge-vertex and  vertex-vertex  pairs 
between A and B contribute to the Convolution(Bdr(-A),Bdr(B)). Let 
CB c Bdr ( B )  and CA c Bdr (-A)  be boundary  edge  segments, (p ,Np) be a 
pair such thatp E Bdr(B) and  Np c N(B , p ) .  Further  let (q ,Nq)  be a pair 
such  that q E Bdr(-A) and  Nq c N(-A ,q). Then  we  define  compatible 
vertex  and edge segment pairs between A and B which contribute  to the 
Convolution as follows. 

(1) CB andCA arecompatible e N(B,CB)=N(-A,CA) 

(2) CB and (q ~ N, ) are  compatible w N (B , C, ) = Nq 

(3) (p ,Np) and C,  are compatible a N, = N ( - A  ,CA j 

(4) (p , Np) and (q , N 4 )  are  compatible e Np = N4 

Straightforwardly  from  definitions we  then  note  the  following  for  the Con- 
volution of the  above  compatible  vertex  and edge segment pairs, 

Remark: 

Convolution(C, ,CB) = [ F = p  +q I p E C, and q E CA, and 
N(B,p)nN(-A,q)+C?I  

Convolut ion((q,Nq),CB)=(P=p+q I p s C B  a n d N ( B , p ) n N ,  
# 0  1 =cB + ( 4 )  
Convo2ution(CA ,(p ,Np)) = [ p = p  +q I q E CA and  Np 
N ( - A , q ) # O I = ( p  I+CA 
Convolution((q,N,),@,N,)) = [ p = p + q  I Np n Nq # 0 ) ' =  

I P + 4  I 
We  now  show  how to generate Ch (C) in 5 4.1 and to  generate Ch (p) in 8 
4.2 for  compatible  vertex and edge  segment  pairs  between A and B . The 
computation  of  compatible  pairs  is  discussed  in 8 4.3 . Note  that  in  the  fol- 
lowing  subsections  we  assume that each  of  the  boundary  edges  of A and E 
are  strictly  convex,  strictly  concave,  or line segments as specified in I 2. 

4.1. Growing edges - Generating  segments of Ch ( C )  

For a given  boundary  edge C cBdr(E) ,  suppose  that Cj c Bdr(-A) 
(i = 1, ..., m) are all the  boundary  edges  such  that Ni = N(B ,C) n 
N(-A,Ci) # 0. Also let qj E Bdr(-A) (j = 1, ..., n )  be all the boundary 
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verticeswithNq,=N(B,C)(7N(-A,qj)#0. FurtherletC’i c C  andci  
c C; be the compatible edge  segments  of  type ( 1 )  with N ( B  , C’;) = 
N(-A ,G)  = N ; .  Also let C’; c C be the compatible edge  segments  of 
type (2) such  that N ( B  ,C;) = Nq,. One  can  easily  show  that C h ( C )  = 

(vi Convolution (G,  ~ ’ i  )) u (uj Convolution ((qj ,PI,,), c”,)). One  can 
use. Theorems 4.1-4.4 to compute Convolution (Ei,C’;) while  directly 
computing Convolution ( (4j  ,Nql),  C’S) = C”j  + ( qj ] as simply  translated 
edge  segments. 

Theorem 4.1 : Let CB c B d r  ( B )  be a  segment  of  an  algebraic  boun- 
dary curve  segment f =O with  outward  normal  directions Vf . 
Further  let C, c Bdr(-A) be a  segment  of an algebraic  boundary 
curve  segment g =O with  outward  normal  directions Vg , and  suppose 
that CB and C, are compatible.  Then Convolution (C, , C, ) is  the  set 
ofpointsp=(.T,y)=p+q=(x+a,y+p)suchthat 

f ( x , y ) = 0  and p = ( x , y ) ~ C ,  ( 1 )  I g(a,p)=o and 4 = ( a , p ) ~ C ~  (2) 

f ;gp-fy.g,=O (3) 
f x . g a + f y . g g >  0 (4) 

Proof : Suppose p = ( x ,  y ) and q =(a, p) satisfy (1)-(4). (1) and (2) 
implies thatp E Bdr(B) and q E Bdr(-A),  and (3) and (4) implies 
that  the  outward  normal  direction  of 5 at p is the  same as that  of -A 
at4.  Hence,p=p+q E C h ( p ) c C h ( C , )  0 

We  use  Theorem 4.1 as follows.  First  substitute X = X - a and y = 7 - p 
in the above  equations (1) and (3). Then  one  can  obtain  the  implicit  aige- 
braic  equation of the Convolution (C, , C, ) in  terms  of F, 7 by  eliminating 
Q and p from  the  equations (I), (2) and (3). Elimination of variables  can  be 
performed  by  computing resultants on  pairs of equations, see Collins 
(1971). For certain  special  forms  of  polynomials  the  generalized  method of 
Sylvester as proposed  by  Dixon  (1908)  may be used  for  simultaneous  elimi- 
nation  of  two  variables  from  three  equations. 

The  proofs for the  Theorems 4.2-4.4 below are essentially  the  same 
as that of Theorem 4.1. 

Theorem 4.2 : Let C, c Bdr(B)  be  a  segment  of an algebraic b u n -  
day curve  segment f =O with  outward  normal  directions V j .  
Further  let CA c Bdr(-A) be a  segment  of  a  parametric  boundary 
curve  segment C(r)=(c  l(t),c2(t)) with  outward  normal  directions 
(~’~(t),-c’~(t)), and  suppose  that C, and C, are compatible.  Then 
Convolution (C, ,GB)  is the set of  points j? = (X, 7) = p +q = 
(x +cl(t),y  +c2(t)) such  that 

- 1  f ( x , y ) = 0  and P = ( x , Y ) E c B  (1) 

4 =(Cl(t).C2(f))E cA (2) 
fx.c’,(t) +f, .c’,(t) = 0 (3) 

f, .c‘2(t)  -f, .c’1(0 > 0 (4) 

First  substitute X = X - cl(t) and y = 7 - c 2 ( t )  in the  above  equations (1) 
and (3). Then  one can obtain  the  implicit  algebraic  equation Of the 
Convolution(CA ,C,) in  terms  of X, 7 by  eliminating t from  the  equations 
(1) and (3) by  computing  resultants. 

Theorem 4.3 : Let C, c Bdr (B ) be a  segment of a  parametric boun- 
dary curve  segment C ( t ) =  (cl(t),  c2(t)) with  outward  normal  direc- 
tions (c’2(t),-c’l(t)). Further let C, c Bdr(-A) be a  segment  of an 
algebraic boundary curve  segment g =O with  outward  normal  direc- 
tions Vg,  and  suppose  that C, and C, are compatible.  Then 
Convolution (c, ,cB) is  the set of points jj = (X, Y) = p +4 = 

(cl(t)+a,c2(t)+P)such that 

~ 

P=(cl(t),c2(t))E cA (1) 
g(a,P)=O and ~ = ( ~ , P ) E C A  (2) 

c’,(t).g,+c’,(t).gp=O (3) 

C’~(~).&’CZ-  c‘l(t).gp > 0 (4) 

First  substitute a = X - c and p = 7 - c2(t) in  the  above  equations (2) 
and (3). Then  one  can  obtain  the  implicit  algebraic  equation of the 
Convolution (C, , C B )  in  terms  of X, 7 by  eliminating t from  the  equations 
(2) and (3) by computing  resultants. 

Theorem 4.4 : Let C, c Bdr (E ) be  a  segment of a parametric boun- 
dary curve  segment C(s)=(cl(s),c2(s)) with  outward  normal  direc- 
tions (~’~(x),-c’~(s)). Further  let C, c Bdr(A) be a  segment  of  a 
paramebic boundary curve  segment C(t)= ~ ~ ( t ) )  with  out- 
ward  normal  directions ( Z 2 ( t ) , - Z 1 ( t ) ) ,  and  suppose  that C, and CA 
are compatible.  Then Convolution(C, ,C,) is the  set of points j? = 
( ~ , ~ = p + q = ( ~ ~ ( s ) + C ~ ( t ) , ~ ~ ( ~ ) + ~ ~ ( t ) ) s u c h t h a t  

I c’l(s)‘c’2(t) - c’2(s).c11(t)  = 0 (1) 

c’l(s).F’l(t) + c’2(s).C’2(t) > 0 (2) 

Qne  can  obtain  the  implicit  algebraic  equation  of  the Convolution (C, , C,) 
by eliminating s and t from the equations X = cl(s) + F l ( t ) ,  
7 = c2(s) + F 2 ( ; )  and  the  above  equation (I). Elimination of both  variables 
can be performed  by  computing  resultants on pairs of equations,  or at times 
simultaneous  elimination of two  variables  from  three  equations. 

In  the  above  Theorems  we  considered  both  the  implicit  and  rational 
paramemc  internal  representation of curves  segments  since  not  all  algebraic 
curves  have  bo&  representations, see Walker  (1978).  For  the  class  of 
rational algebraic  curves  which  have a rational  parametric  form,  algebraic 
algorithms also exist  for  converting  between  the  two  representations.  How- 
ever  their  efficiency are limited to curves of low  degree,  see  Abhyankar  and 
Eiajaj (1986a, b). 

4.2. Growing vertices - Generating segments and vertices of Ch (p) 

For a  given  boundary  vertex p E Bdr(B) ,  suppose  that C, c 
5Qr (-A ) (i = 1, ..., m) are all the  boundary  edges  such  that N, = N ( B  , p )  

N(-A,Ci) # 0, and qj E Bdr(-A) (j = 1, ..., n )  are all the boundary 
vertices of type (4) with Nq, = N ( B  . p )  n N(-A ,qi) # 0. Further  let c 
Ci be the compatible edge  segments of type (3) with N(-A , G) = N;  . One 
can  easily  show  that Ch@)  = (uiConvolution(c7.,@,N,))) u 
(yjConvolution((q,,N41),@,N*l))). Since one has 
Convo~u6ion (c , (p , Ni )) = { p ) + and Convolution ((4j,  NqI) ,  (p , NqJ)  = 
( p + qj 1, computing Ch (p ) is  easy. 

43. Qbtaining Convolution (Elk  (-A),Bdr ( E ) )  

We first show  how to obtain compatibze vertex  and  edge  segment 
pairs for which  to  generate  the Convolution. Let C; c Bdr(B)  and p i  E 

Bdr(B) (i = 1, ..., m) be all  the  boundary  edges  and  vertices ofB. Also let 
C’j c B d r ( - A )  and 4i E Bdr(-A) (j = 1,  ..., P I )  be all  the boundary edges 
and  vertices  of -A. By  adding  more  vertices  if  necessary,  we  can  make 
each  extreme  angle  of N ( B ,  Ci), N ( B  , p i ) ,  N(-A ,C;). and N(-A ,q,). not 
to be an  interior  angle  of  any of these  intervals,  see  Figure 2 (a)-(c).  Let I k  

(k = 1, _.., 1 )  be a  sorted  sequence of all disjoint  angle  intervals.  Note  that 
4 is a single  point  interval  for  a  linear  edge.  Take Ci c Bdr(B)  ( i  = 1, ..., 
ml),pi ,EBdr(B)(i’=l ,..., m & C ’ j c B d r ( - A ) ( j = l  ,..., nl),andqj,E 

982 



Bdr(-A) u'= 1, ..., n2). to be all the  boundary  edges  and  vertices  such  that 
I1 = N ( B , C i )  = N(B,p i , )  = N(-A ,C; )  = N(-A,qj.). Then,  there are 
m . n edge-edge convolutions Convolution (Ci , C > ), m . n edge-vertex 
convolutions Ci + [4,.), m 2 ' n 1  vertex-edge  convolutions ( p i , )  + C',, and 
m2'n2 vertex-vertex  convolutions (pi ,+4, , ) .  After  generating  all  these 
convolutions for I , ,  we  continue the same  procedure  for I,, and so on. In 
Figure  2-(c), I ,  has  9  edge-edge  convolutions, I2 has  6  edge-edge  and  3 
vertex-edge  convolutions, I ,  has  one  edge-vertex and 2  edge-edge  convolu- 
tions, I 5  has  only  one linevertex convolution, I, has  3  vertex-line  convolu- 
tions,  and so on. I ,  and[, are single  point  intervals. 

Having  obtained  all  the  vertices  and  curve  segments of the 
Convolution(Bdr(-A),Bdr(B)), the  next step is to  connect  these  together 
with  the correct  topology.  The  topology of Edr(E) essentially  induces  a 
similar  relationship  between  edges  and  vertices of 
Convolution (Bdr (-A),Bdr(E)). However  to  build  the Convolution graph 
correctly,  we  also  need to check  for  intersections and self-intersections of 
convolution  edges.  If  two  edges  intersect or an  edge  has  a  self-intersection, 
a new  vertex is created  for  the  intersection  point,  and  the  new  edges are 
connected  with  appropriate  adjacencies.  Intersecting  edges f = 0 and g = 0 
can be detected by either  numerically  solving f = g = 0 or algebraically  via 
resultants.  Alternatively  for  low  degree  curves  one of f or g may be 
parameterized  and  the  intersection  computed by solving  for  the  real parm- 
eter roots of the  intersection,  Abhyankar  and  Bajaj  (1986  a,  b). Self inter- 
sections  and  singularities  on  curves cim  be computed  algebraically  by 
simultaneously  solving f = f, = fy = 0 where fx and f y  are  the x and y 
partials.  Alternatively,  singular  points  can be obtained by numerically 
traversing the edges of the Convolution graph  and  computing  points  where 
both f, and fy disappears.  Coincident  edges are special  cases of intersect- 
ing  edges  and are merged  into  a  single  edge.  Convolution  edges  which  col- 
lapse into  single  vertices  are  special  cases of self-intersecting  edges.  The 
elimination of redundant  and  singular  edges  and  vertices is discussed  in I 5. 
While  generating  the Convolution graph  we  tag  each  edge  and  vertex 
resulting  from  the  above  singularities  appropriately. 

5. Generation of C-space  obstacles 

Removing  from  the Convolution graph  the  vertices  and  edges  on 
which the  configurations  of A,- and B are colliding, we obtain  the 
0-Envelope , (Theorem 3.6 (I)). Further  removing  various  isolated  ver- 
tices  and  coincident  edges  from  the 0 -Envelope one  obtains  the  boundary 
of the C-space obstacleEdr(CO(A , B ) ) ,  (Theorem 3.6  (2)).  The  process 
of obtaining  the  boundary of the C-space obstacle is however  more direct 
The Bdr (CO (A , E ) )  we construct  conforms  to  the  boundary  representation 
model  of 2. We  note  that  even  if A and B are  object  models with  single 
peels, Bdr (CO (A , E ) )  may consist of  more  than  one peel, corresponding 
to  "holes"  in  the C-space obstacle. 

In generating  the  boundary of  the C-space obstacle, l i n t  the Convo- 
lution graph is constructed as specified in $4 above.  The  intersecting  and 
self-intersecting  curve  segments  are  broken up into  edges  with  additions of 
new vertices at the  intersecting or singular  points.  Next,  a  cleanup  phase is 
initiated  where  redundancies such as isolated  vertices,  coincident  edges and 
dangling  edges are eliminated.  These  are  either  part  of  the Convolution or 
the 0 -Envelope or are formed  while  constructing  the Convolution graph. 
For  example  in  the Convolution graph  construction  phase,  coincident  edges 
of  the 0-Envelope redundant to the C-space obstacle  boundary  may  get 
merged into single  dangling  edges.  The  final  cleanup  step in the 
Bdr (C0 (A ,E )) generation  is  then to eliminate the redundant  edges and ver- 
tices  which  give  rise to colliding  configurations. 

From  the  way  the Convolution graph  is  constructed  one  can  see  that 

the relative  configurations of A,- and B is constant  on  each  edge (i.e., either 
collide or contact for  each  point of the edge).  Thus  each  convolution 
edge  can be classiiied  as  either a collide edge or as a contuct edge. To 
eliminate  the  redundant collide edges a vertex-by-vertex  analysis  needs to 
be done.  First  consider a vertex  with  only  two  adjacent  edges.  In  this  case, 
one  can  easily see that  the  edge types in the Convolution graph are either 
collide-collide or contact-contact. In  the collide-collide case the com- 
mon  vertex  is  redundant,  and in the contact-contact case  the common  ver- 
tex is in Bdr(CO(A , B ) ) .  Further  one  notes  that  as you follow  a path of 
edges and  vertices  on  which  each  vertex  has  only  two  adjacent  edges,  the 
whole  path is either  totally  redundant or totally in Bdr (CO (A , E ) ) .  Thus 
one  can  classify  the simple paths which have  no  more than two branches 
except at both  end  points, as redundant or non-redundant. In summary,  a 
depth-&st  search  on  the Convolution graph  with  a  vertex-by-vertex 
analysis as above  allows  one to delete all the  redundant  simple  paths. 

For vertices with  more  than  two  adjacent  edges  the  problem  of  decid- 
ing  redundant  paths  is  slightly  more  complicated.  Such high  valence ver- 
tices arise either  as  a  complex  intersection of  many curve  segments or 
because of a  self  intersection  singularity.  One  needs  a  distinct  point  on 
each  of  the  various  edges  incident to the  vertex far then  a  decision can be 
made as to whether  the  entire  edge is either  redundant or non-redundant. 
Generating  distinct  points on various  branches  of  an  algebraic  curve 
emanating from a singularity  can be quite  difficult  for high order and irreg- 
ular singularities, see Walker  (1978).  However  a  local  analysis  about such 
high valence  vertex  points  which  yields  distinct  points  on  separate  branches 
is always  possible,  Abhyankar  (1983).  Note  that though  this  analysis  applies 
to a  singularity of a  single  algebraic  curve with multiple  branches at the 
singularity,  for  our  purposes it can  also be applied  to  the  multiple  edges 
arising from distinct  intersecting  curve  segments. In this  case  one  simply 
considers the product of all  the  distinct  curve  segments  locally  about the 
vertex  point. By generating  distinct  points on  the  various  edges  incident on 
a  high  valence  vertex,  and  checking  for collide configurations of A,- and B , 
the redundant  edges  can be detected and  removed. 
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Figure 24c) compatible  edges and  vertices 
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