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Generation of Configuration Space Obstacles: The Case 
of a Moving Sphere 

CHANDERJIT BAJAJ, MEMBER, IEEE, AND MYUNG-SO0 KIM, 
STUDENT MEMBER, IEEE 

A bstract-Algebraic algorithms are presented for generating the 
boundary of configuration space obstacles arising from the motion of a 
sphere among obstacles. The boundaries of the obstacles are given by 
patches of algebraic surfaces. 

I .  INTRODUCTION 
Using configuration space (C space) to plan motion for a single 

rigid object among physical obstacles reduces the problem to 
planning motion for a mathematical point among “grown” configu- 
ration space obstacles (the points in C space which correspond to the 
object overlapping one or more obstacles), Udupa [26], Lozano- 
Perez and Wesley [18], Lozano-Perez [17]. The C space for the full 
six degrees of $reedom motion is six-dimensional, Canny [lo], 
Donald [13]; however, in the special case of a moving sphere, the C 
space is three-dimensional. In this correspondence we consider the C- 
space obstacle generation for a moving sphere and nonconvex 
obstacles, where each obstacle is bounded by patches of algebraic 
surfaces. Bajaj and Kim [7] considered the C-space obstacle 
generation for a translatory motion of a convex object among convex 
obstacles with algebraic surface boundaries and for nonconvex planar 
object and obstacles with algebraic curve boundaries, Bajaj and Kim 
[8]. Most of the essential techniques in the present work come from 
the results of these two papers. This correspondence thus treats a 
special case of the extension of Bajaj and Kim [7] to the general case 
of nonconvex moving objects and obstacles. Bajaj and Kim [9] 
describe a curvature-dependent hierarchical polyhedral approxima- 
tion of convex C-space obstacles and its application to compliant 
motion planning. 

The C-space obstacle for a moving sphere is the same as constant 
radius offsetting of the obstacle. Offsetting as one of the more 
important operations in geometric modeling because of immediate 
application in NC machining, has been considered by many authors 
recently. Farouki [ 141 outlines exact offset procedures for convex 
polyhedra, convex solids of revolution, and convex solids of linear 
extrusion. He also describes algorithms for approximating the offsets 
of general piecewise parametric surfaces by networks of bicubic 
patches, where the surfaces are restricted to be smooth on each patch 
and across adjacent pathes [151. Tiller and Hanson [25] present an 
offset capability for planar profiles. Rossignac and Requicha [24] 
describe offsetting operations for solids represented in the CSG/ 
boundary representation dual scheme where objects are constructed 
from primitive solids which are natural quadrics (degree two 
surfaces). This correspondence characterizes the offsetting problem 
for arbitrary algebraic surfaces and provides an algebraic algorithm 
for its computations. This algorithm is based on such operations as 
computing resultants of polynomials, representing surface patches 
unambiguosly , intersecting two algebraic surfaces, and detecting 
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self-intersections of algebraic surfaces. The efficiency of these 
operations, however, is quite limited for very high degree algebraic 
surfaces, a status quo also of geometric modeling. 

The main contributions of this work are as follows. In Section 111 
we state that the boundary of C-space obstacles for a moving sphere 
and nonconvex obstacles is a subset of the convolution of the sphere 
and the obstacle boundary. In Section IV we give algebraic 
algorithms to generate the C-space obstacles boundary for nonconvex 
obstacles. The obstacles are represented by a general algebraic 
boundary representation (B-rep) model discussed in Section 11. 
Crucial too here is the internal representation of curves and surfaces, 
i.e., whether they are parametrically or implicitly defined. I We 
present algorithms for both these internal representations. In Section 
V we consider simple obstacles like solids of revolution, solids of 
extrusion, or polyhedra, and suggest more efficient algorithms than 
the general case. Some analytic methods are also considered because 
of their simplicity in some special cases. Further, we consider 
relations to blending surfaces in Section VI and summarize and 
discuss possible extensions of this work in Section VII. 

11. SOLID MODEL 
In a general boundary representation, an obstacle with algebraic 

boundary surfaces consists of a list of peels. An obstacle may have 
internal holes and peels which correspond to them are termed “hole” 
peels. Each peel in turn consists of the following: 

1 )  A finite set of vertices usually specified by Cartesian coordi- 
nates. 

2 )  A finite set of directed edges, where each edge is incident to 
two vertices. (Typically, an edge is specified by the intersection 
of two faces, one on the left and one on the right. Here left and 
right are defined relative to the edge direction as seen from the 
exterior of the object. Further, an interior point is also provided 
on each edge which helps remove any geometric ambiguity in 
the representation for high degree algebraic curves, Requicha 
1211.) 

3) A finite set of faces, where each face is bounded by a single 
oriented cycle of edges. Each face also has a surface equation, 
represented either in implicit or in parametric form. The 
surface equation has been chosen such that the gradient vector 
points to the exterior of the object. 

In addition, edge and face adjacency information is provided. 
Additional conventional assumptions are also made, e.g., edges and 
faces are nonsingular, two distinct faces intersect only in edges, an 
auxiliary surface is specifed for each edge where adjacent faces meet 
tangentially, etc. The object and obstacles that we consider are solids 
and are assumed to enclose nonzero finite volume. Hence nonregu- 
larities such as dangling edges and dangling faces which depending 
on one’s viewpoint enclose zero or infinite volume, are not permitted. 
The C-space obstacles that we construct are also regularized in this 
fashion and assumed to be solids enclosing nonzero finite volume. 
However, the C-space obstacles are at times allowed to have faces 
with singular points and singular curve boundary edges. 

111. C-SPACE OBSTACLES AND CONVOLUTIONS 

Let A be a moving object whose boundary is a sphere Sg of radius r 
with its center as the reference point and B be a fixed obstacle in the 

’ A unit sphere is implicitly given as x 2  + y’ + z‘ ~ I = 0 and in rational 
parametricformasx = (1 ~ s2  - t 2 ) / ( I  + s’ + t Z ) , y  = 2s/(l  + s2  + t 2 ) ,  
and z = 2t/(l + s2 + t 2 ) .  
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three-dimensional real Euclidean space R3.  B is modeled by the 
above boundary representation. We denote Bdr(B) as the boundary 
of B. Since A does not change its shape by rotations, the 
configuration space is also three-dimensional. We make the following 
definitions. 1) CO(A,  B )  = C-space obstacle due to A and B = { p  
E R31Ap f l  B # @I}, where AP = { p  + 414 E A } .  2) 
Convolution (S,’, Bdr(B)) = convolution of S,’ and Bdr(B) = ( p  + 
r’n, I np is a unit outward normal of B at p E Bdr(B)}.  We now note 
the following. 

Theorem I :  1) Bdr(CO(A, B ) )  C conv (Sf, Bdr(B)).  2 )  For 
convex B,  we have Bdr(CO(A, B ) )  = conv (Sf, Bdr(B)). 

Proof: See Bajaj and Kim [7] 

This may then suggest a natural method for handling nonconvex 
obstacles. One first obtains a convex decomposition consisting of 
union of convex pieces and then generates the C-space obstacle as the 
union of C-space obstacles for convex obstacles. Such convex 
decompositions are possible for polyhedral obstacles, see Chazelle 
[ l l ] .  However, not all obstacles with algebraic curve boundaries 
permit decompositions consisting of the union of convex pieces. For 
example, a complete toroidal surface cannot be decomposed into the 
union of convex pieces. To obtain convex decomposition of general 
curved solid objects (say in terms of union, intersection, and 
difference) is a difficult and as yet unsolved problem (see Requicha 
and Voelcker 1221). Hence alternate methods of computing C-space 
obstacles for nonconvex obstacles become important. The method we 
suggest here deals with nonconvex obstacles directly. 

For nonconvex obstacles with algebraic surface boundaries, the 
differences between Bdr(CO( Sf, B ) )  and conv (Sf, Bdr(B)) are 
various kinds of vertices, curve segments, and surface patches. There 
are primarily five classes of redundancies or singularities that may 
arise: a) dangling faces, b) isolated vertices and edges, c) coincident 
faces, d) intersecting faces, and e) self-intersecting faces and faces 
with singular points or singular curves. We first generate conv (Sf, 
Bdr(B)) complete with redundancies. Then on systematically remov- 
ing redundancies we obtain the C-space obstacle boundary. The 
following theorem helps characterize this procedure. 

Theorem 2: Let 0-envelope = conv (Sf, Bdr(B)) - (p l  A p  and 
B intersect in an interior point } , where the set difference P - Q = 
{ p E R 3 1 p E P a n d p @  Q}forPandQCR3.ThenO-envelope  
- Bdr(CO(Sf, B ) )  is the set of all the isolated edges and vertices, 
and coincident faces of 0-envelope. 

Proof: The proof is similar to Bajaj and Kim [SI. 

Iv. GENERATING THE BOUNDARY OF C-SPACE OBSTACLES 
Let p E Bdr(B) be a vertex, E C Bdr(B) be an edge, and F C 

Bdr(B) be a face. One can show that conv (Sf, Bdr(B)) = (UFEr ,  
conv (S;, F ) )  U ( UEEr2  conv (Sf, E ) )  U ( U,EI-~ conv (Sf, P I ) ,  
where r ,  is the set of all faces of Bdr(B), r2 is the set of all edges of 
Bdr(B), r3 is the set of all vertices of Bdr(B), and conv (ST, K )  = 
conv S,’ and K = { p + r .  np I n, is a unit outward normal of B at p E 
K } ,  where K = F, E,  orp. One can use Section IV-A to compute the 
convolution faces conv (Sf, K ) .  In Section IV-B we consider how to 
represent each edge of the convolution face conv (S,’, K )  as an 
intersection curve of conv (Sf, K )  and a transversally intersecting 
auxiliary surface. In Section IV-C we consider how to compute each 
vertex of the convolution face conv (Sf, K ) .  In Section IV-D we 
consider how to construct the correct topology of conv (Sf, Bdr(B)), 
and in Section IV-E we indicate how to remove redundancies of conv 
(ST, Bdr(B)) to get the C-space obstacle boundary. 

In the following we consider both the implicit and rational 
parametric representation of surface patches. Not all algebraic 
curves and surfaces have rational parametrization, see Walker [28]. 
For the class of rational algebraic curves and surfaces, algebraic 
algorithms also exist for converting between the implicit and 
parametric represenations. However, their efficiency are limited to 
curves and surfaces of low degree, see Abhyankar and Bajaj [3]-[5]  
and Bajaj [6]. 

(a) 

Fig. 1.  (a) Faces, edges, and 
(b) 

vertices. (b) Convolution faces 

A .  Generating Convolution Faces 
In this section. we consider how to generate the convolution faces 

conv (Sf, F ) ,  conv (Sf, E ) ,  and conv (Sf, p ) .  See Fig. 1 for the 
generation of convolution faces, where CF(K) means the convolution 
face generated by K = F,  E,  or p .  

Generating Convolutions (Sf, F ) :  For each point p on a face F, 
there is a unique tangent plane L, at p .  The unit outward normal of 
the plane L, is the unit outward normal of B at p E F. We can use 
Theorem 3, and Corollary 1 to generate conv (Sf, F ) .  Theorem 3 is 
useful for the case of F being an implicitly defined algebraic surface, 
and Corollary 1 is useful when F is parametric 

Theorem 3: Let F C Bdr(B) be a patch of an algebraic surface f 
= 0 with gradient Vf .  Then conv (Sf ,  F )  = { p  = (X, Y, Z )  = p + 
q = (x  + a ,  y + /3, z + y)} such that 

f ( x , y , z ) = O a n d p = ( x , y , z )  E F (1) 

(2) 

V f X ( Q .  P,  y)=O (3) 

V f .  (a ,  P ,  y)>O. (4) 

a 2 + P 2 + y 2 = r 2  and q=(a ,  /3, y) E Sf 

Proof: Since (3), (4) imply V f  and (a ,  0, y) are in the same 
direction, (3), (4) are equivalent to the outward normal direction of B 
at p to be the same as that of Sf at q. 

We use Theorem 3 as follows. First substitute x = X - a ,  y = y 
- B, and z = .Z - y in ( I )  and (3). Then one can obtain the implicit 
algebraic equation of the conv (Ss, F )  in terms of 2, j ,  and Z by 
eliminating a ,  6, and y from (l)-(3). The vector equation V f  x ( a ,  
P, y) = 0 gives three scalar equations. Since one of these equations is 
redundant, we can have two independent scalar equations from (3). 
Hence, from (l)-(3),  we have four equations and we eliminate three 
variables (Y, P,  y to get an implicit equation in terms of X, j ,  f. See 
Macaulay [19] and van der Waerden [27] for general formulas in 
elimination. 

Corolhry I :  Let F C Bdr(B) be a parametric surface patch F( U ,  
U) = ( x ( u ,  U), y ( u ,  U ) ,  z ( u ,  U)) with gradient F, x F,. Then conv 
( S s ,  F )  = { p  = (X,j, t) = p + q = ( x (u ,  U) + ~ , Y ( u ,  U) + P ,  
z (u ,  U )  + y)} such that 

p = ( x ( u ,  U), Y ( U ,  U ) ,  z ( u ,  U)) E F ( 5 )  

a 2 + p 2 + y 2 = r 2  and q=(a ,  0, y )  E Sf (6) 

(FuXFu)X(a, P ,  Y ) = O  (7) 

(F,XFJ . (01 ,  6, y)>O. (8) 

First substitute a = X - x (u ,  U), 0 = y - y ( u ,  U), and y = Z - 
~ ( u ,  U )  in (6)  and (7). Then one can obtain the implicit algebraic 
equation of conv (Ss, F )  in terms of 2, j ,  and 2 by eliminating U and 
U from (5)-(7). Since (7) gives two independent scalar equations, we 
have three equations and eliminate two variables U, U to get a single 
implicit equation. 

Generating Convolution (Sf, E): By subdividing an edge E if 
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necessary, we may assume that the inner angles along E between two 
adjacent faces of E are either a) > a (concave), b) = a (tangential) 
or c) < a (convex). In the case of a) or b), we contend that there is no 
unit outward normal of B on E and conv (Sf, E )  = 0. Because of 
the gap generated by this empty convolution face due to the concave 
edge E ,  the convolution faces generated by the two adjacent faces of 
E may have dangling subfaces. In the case of c), each point p E E 
determines two extreme unit outwards normals n, and fi, whkh are 
unit outward normals of adjacent faces of E at p .  All the unit vectors 
between these two extreme normals are defined as unit outward 
normals of B a t p .  In the following we assume E is of type c). We can 
use Theorem 4 to generate conv (Sf, E )  when E is defined by the 
intersection of two implicit algebraic surfaces. The other combina- 
tions of implicit and parametric surfaces defining E have similar 
results as easy corollaries of Theorem 4.  

Theorem 4: Let E C Bdr(B) be the common edge of two faces F 
and P, where F and F C Bdr(B) are patches of algebraic surfaces f 
= 0 with gradients Vfandf = 0 with gradients Vf. Then conv (S:, 
E)isthesetofpointsP = ( X , J , Z )  = p  + q = (x + a , y  + P,z  + 
y)  such that 

f ( x ,  Y ,  z )  =f(x, Y ,  z )  = 0 and P= (x, Y ,  2) E E (9) 

a 2 + p 2 + y 2 = r Z  and q=(a ,  p, y) E Sf (10) 

(a ,  P ,  Y) . ( V f x  Vf )  = 0. (1 1) 

Proof: Equation (11) is equivalent to an outward normal 
direction of B at p to be the same as one of the outward normal 
directions of Sf at q. 

Generating Convolution (Sf, p):  For a vertex p ,  suppose that 
there are k edges E l ,  E*, . . . , Ek adjacent to p (ordered in a counter- 
clockwise direction). Further, suppose E l l ,  EI2,  . . . , Elk ,  (k '  < k )  
is the subsequence of all the convex edges. Let 2, (1  i j 5 k ' )  be 
the tangent direction of E,, at p when E,, is inte/rpreted as a space 
curve emanating from p .  Further, let 11, be the half line emanating 
from p to the direction e$. Then the point p and the half lines lil ,  * * . , 
I i k ,  determine an infinite pyramid with apex p which is denoted by 
A ( p ) .  This pyramid locally supports the object S at p .  Further, it is 
either a) concave, b) flat, or c) convex at p .  In the case of a) or b), we 
contend that there is no unit outward normal of B at-p and conv (Sf, 
p )  = 0. Because of the gap generated by this empty convolution 
face due to a concave vertex, the convolution faces generated by the 
adjacent faces and edges o f p  may have dangling subfaces. In the case 
of c), the triangular faces of the pyramid A ( p )  determine extreme 
unit outward normals n,,, q 2 ,  . . . , n,k ,  on S2.  Let y,, be the geodesic 
arc on s2 connecting n, and nG+ I ,  where ik + I = i l .  Then the convex 
region on S2 bounded 6y the closed path yII -+ yl2 -+ . . . -+ y , k !  is 
the set of all unit outward normals of B at the vertex p .  Convolution 
(Sf, p )  is a convex patch on the translated sphere (Sf), which is 
bounded by the closed path r,, -+ y,2 + . . . -+ y i k ,  of geodesic arcs 
T,, connecting the points p + r.n,, a n d p  + r .n$+,  on (Sf),. 

B. Generating Con volution Edges 
In this section, we consider how to generate the boundary edges of 

nonempty convolution faces. 
Edges of Convolution (Sf, F ) :  Each edge of the convolution face 

conv ( S 2 ,  F )  is either a) adjacent to an empty convolution face 
conv (Ss, E )  if E is concave or tangential, or b) adjacent to a 
nonempty convolution face conv ( S ; ,  E )  if E is convex, for some 
adjacent edge E of the face F. In all these cases, we have difficulties 
in computing the boundary edges of conv (Sf, F )  since conv (Sf, F )  
is either adjacent to empty convolution faces or tangent to adjacent 
convolution faces. Theorem 5 is applicable when the surface path F is 
an implicitly defined algebraic surface. Further, when F is a 
parametric surface, we may implicitize this surface to use the 
following theorem, see Bajaj [6] for a survey of implicitization 
techniques. 

Theorem 5: Let F be a face and E be an edge of F. Suppose E is 

CF(F,)  Q ( E )  

C F V J  
\ / I  

(a) 
(b) 

2.  (a) Auxiliary surface for convolution edge. (b) Relation with 
surfaces. 

,w 
Fig. level 

the common edge of two surface patches F and E, where F is a patch 
of an algebraic surfzcef = 0 with gradient Vf, and Pis a patch of an 
algebraic surface f = 0 with gradient Vf. Then A) the common 
convolution edge E of the convolution faces conv (Sf, F )  acd conv 
(Sf, E )  is the set (9 = ( . f , Y ,  t) = p + q = (x + a ,  y + P,  t + 
y)}  such that 

(12) 

(13) 

f ( x ,  Y ,  z )  = 0 and p = (x, y ,  z )  E F 

f(x, y ,  z )  = 0 and p = (x, y ,  t) E P 
a 2 + / 3 2 + y 2 = r 2  and q=(a, P ,  y )  E S f  

B) the surface patch defined by (12) and (14)-(16) and the surface 
patch defined by (13)-(16) intersect along the convolution edge E.  

Proof: A) The surface patch defined by (12) and (14)-(16) is the 
face conv (Sf, F )  and all its boundary edges and vertices. Since (12), 
(1 3) restrict the set of points p to the edge E, (1  2)-( 16) define the 
c-onvolution edge E .  B) Since E is the common solution of (12)-(16) 
E is the common edge of the surface patch defined by (12) and (14)- 
(16) and the surface patch defined by (13)-(16). 

For each point p E F' f ( p )  = c for some level c and the point p 
defined by (13)-(16) is the translation of p by r along the outward 
normal direction V f ( p )  of the level surfacef = c. See Fig. 2, where 
this surface is shown as a dotted surface patch. When the variation of 
the vector field Vf / llVfl1 in the neighborhood of E is relatively small 
compared with the differences of normal directions of F and along 
E,  the surface defined by (12) and (14)-(16) and the surface defined 
by (13)-( 16) intersect transversally along E .  

When adjacent convolution faces meet tangentially to each other, 
computation of the intersecting edge is unstable. Auxiliary surfaces 
need to be determined which intersect transversally with the 
convolution surfaces and thereby define boundary curves of the 
convolutio? faces. For two surfaces defined implicitly by h ( x ,  y ,  z )  
= 0 and h ( x ,  y ,  z )  = 0 which meet tangentially along the curve C ,  
an auxiliary surface which intersects h and k transversally may also 
be obtained by considering surfaces k = ah + PI$ = 0 where a and 
P are arbitrary polynominals in three variables x, y ,  and 2. These 
additional surfaces k also intersect both h and kalong the curve C and 
are said to belong to the ideal of the curve C. For suitable a and p 
auxiliary surfaces which meet h and h transversally may be 
constructed. 

For our special case of offset surfaces we may use Theorem 5 to 
generate an auxiliary surface patch which intersects with conv (Sf, 
F )  transversally. 

Edges of Convolution (S ; ,  F ) :  When E is a convex edge, each 
boundary edge of conv (Sf, E )  is either a) a boundary edge of 
conv (Sf, F )  which has been considered above, or b) a geodesic arc y 
on the translated sphere (ST)p  connecting two pointsp + r.np and p 
+ r* f ip ,  where n, and A, are unit gradients of adjacent faces of E at 

P .  



IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4,  NO I ,  FEBRUARY 

(C) 

faces. (c) Weak topology for convolution graph. 
Fig. 3.  (a) Adjacency graph for obstacle. (b) Weak topolgy for convolution 

Edges of Convolution (Ss, p): When p is a convex, each 
boundary edge of conv (Sf, p )  is the geodesic arc on the translated 
sphere ( S : ) p  connecting two points p + r .np and p + r. f ip,  where 
np and A, are unit outward normals of two adjacent trangular faces of 
the pyramid A(p)  at p, see Section IV-A for the definition of A@). 
Suppose a face F has a convex edge E and a concave edge E’ both 
adjacent to a convex vertex p .  Then, note that the convolution faces 
conv (Ss ,  E )  and conv (S:, p )  do not share a common edge. An edge 
of conv (Sf, p )  is properly contained in an edge of conv (S;, E) .  

C. Generating Convolution Vertices 
Each vertex p of the convolution face conv (S: ,  K ), where K = F 

or a convex edge E, is a vertex of conv (Sf, F )  for some face F,  and 
p = p + r . np for some vertex p of F,  where np is the unit gradient of 
F a t  p .  For a convex vertex p ,  each vertex p of the convolution face 
conv (S: ,  p )  is p = p + r .np where np is the unit outward normal 
direction of a triangular face of the pyramid A(p) at p. 

D. Topology of Convolution (Sf., Bdr(B)) 
Having obtained all the faces, edges and vertices of conv ( S ; ,  

Bdr(B)), the next step is to connect these together with the correct 
topology. The topology of faces, edges, and vertices of B essentially 
induces a certain topology (weak topology) between the convolution 
faces conv (Sl, K ) ,  where K = F, E,  or p .  See Fig. 3 for the 
relationship between the adjacency graph for the obstacle and the 
weak topology for the convolution faces, edges, and vertices, where 
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CF(K) means the convolution face generated by K ,  CE(K1, Kz) 
means the convolution edge common to the convolution faces 
CF(K1) and CF(K2),  and CV(Kl,  . . ., K k )  means the convolution 
vertex common to the convolution faces CF(KI) ,  . . . , CF(Kk). 
However, this is not a complete adjacency graph. Some convolution 
faces which are not adjacent according to the weak topology may 
interfere because of the nonconconvexity of an obstacle B .  Hence, to 
construct the convolution topology correctly, we also need to check 
all the intersections and self-intersections of convolution faces. This 
complete convolution topology will be represented in a graph, the 
convolution graph. 

When two faces intersect or a face self-intersects, new edges and 
vertices are created for the intersection curve segments. The faces are 
subdivided into subfaces and these new faces are connected with 
appropriate adjacencies. Intersecting faces f = 0 and g = 0 can be 
detected by either numerically solving f = g = 0 or algebraically via 
resultants, Collins [12]. Self-intersections and singularities on sur- 
faces can be computed algebraically by simultaneously solvingf = fx 
= f, = f, = 0 where f,, f,, andf, are the x, y ,  and z partials. One 
can eliminate two variables from f, = fy = f, = 0 [19], and check 
whether each solution satisfies f = 0. There is also the possibility that 
elimination of variables from f x  = f, = f, = 0 results in an 
expression which is identically 0. This occurs in the presence of a 
curve singularity on the surface. At this stage points on this curve 
singularity can be obtained by solving the equations numerically. 
Coincident faces are special cases of intersecting faces and are 
merged into a single face. Convolution faces which collapse into 
single edges or vertices are special cases of self-intersecting faces. 
The elimination of redundant faces, edges, and vertices is discussed 
in Section IV-E. While generating the convolution graph we tag each 
face, edge, and vertex resulting from the above singularities 
appropriately. 

E. Removing Redundancies 

Removing from the convolution graph the faces, edges, and 
vertices on which Ap and B intersect in an interior point ( A P  collides 
with B ) ,  we obtain 0-envelope (Theorem 2). Further removing 
various isolated edges and vertices, and coincident faces from 0- 
envelope, one obtains the C-space obstacle boundary (Theorem 2 ) .  
The process of obtaining the C-space obstacle boundary from the 
convolution graph is, however, more direct. The Bdr( CO(A, B ) )  
we construct conforms to the boundary representation model of 
Section 11. We note that even if B is an obstacle model without 
“holes,” Bdr(CO(A, B ) )  may consist of more than one peel, 
corresponding to “holes” in the C-space obstacle. 

In generating the C-space obstacle boundary, first the convolution 
graph is constructed as specified in Section IV-D. The intersecting 
and self-intersecting surface patches are broken up into faces with 
additions of new vertices and edges at the intersecting or singular 
curves. These are difficult to handle and at present only an 
approximate solution seems feasible. Next, a cleanup phase is 
initiated where redundancies sclch as isolated edges and vertices, 
coincident faces, and dangling faces are eliminated. These are either 
part of the conv (S:,  Bdr(B)) or the 0-envelope, or are found whilc 
constructing the convolution graph. For example in the convolution 
graph construction phase, coincident faces of the 0-envelope 
redundant to the C-space obstacle boundary may get merged into 
single dangling faces. Coincident faces are detected equationally by 
comparing coefficients, while isolated edges and vertices and 
dangling faces are detected from the condition that each edge of the 
convolution graph needs to be adjacent to exactly (nonzero) even 
number of faces. As a final cleanup step in the Bdr(CO(A, B ) )  
generation one needs to eliminate the redundant faces, edges, and 
vertices which give rise to colliding configurations (Theorem 2 ) .  

From the way the convolution graph is constructed one can see that 
the relative configurations of Ab and B is constant on each face (i.e., 
either collide or contact for each point p of the face). Thus each 
convolution face can be classified as either a collide face or as a 
contact face by checking the relative configurations of Ad and B for a 
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single point in the interior of the face. To eliminate the redundant 
collide faces an edge-by-edge analysis then needs to be done. First 
consider an edge with only two adjacent faces. In this case, one can 
easily see that the adjacent face types in the convolution graph are 
either collide-collide or contact-contact. In the collide-collide case 
the common edge is redundant, and in the contact-contact case the 
common edge is in Bdr(CO(A ,  B ) ) .  Further, one notes that in a 
region of faces and edges on which each edge has only two adjacent 
faces, the whole region is either totally redundant or totally in 
Bdr(CO(A ,  B ) ) .  Thus one can classify the simple regions which 
have no edges with more than two adjacent faces except the boundary 
edges, as redundant or nonredundant. In summary, a search on the 
convolution graph with an edge-by-edge analysis as above allows one 
to delete all the redundant simple regions. 

For edges with more than two adjacent faces the problem of 
deciding redundant regions is slightly more complicated. Such high 
valence edges arise either as a complex intersection of many surface 
patches or because of a self-intersection singularity. One needs a 
distinct point on each of the various faces incident to the edge for then 
a decision can be made as to whether the entire face is either 
redundant or nonredundant. By intersecting the adjacent faces and the 
common edge by a plane orthogonal to the edge in an interior point, 
we can reduce the distinct point generation problem on each face to a 
similar problem on each intersecting planar curve. Generating 
distinct points on various branches of an algebraic curve emanating 
from a singularity can be quite difficult for high order and irregular 
singularities, see Walker [28]. However, a local analysis about such 
high valence vertex points which yields distinct points on separate 
branches is always possible (Abhyankar [ 2 ] ) .  Note that though this 
analysis applies to a singularity of a single algebraic curve with 
multiple branches at the singularity, for our purposes it can also be 
applied to the multiple edges arising from distinct intersecting curve 
segments. In this case one simply considers the product of all the 
distinct curve segments locally about the vertex point. By generating 
distinct points on the various edges incident on a high valence vertex 
and checking for collide configurations of Ay and B ,  the redundant 
faces can be detected and removed. Alternatively, a direct local 
analysis may be performed along the high valence edge which yields 
distinct points on the separate surfaces passing through the edge, 
Abhyankar [ l ] .  However, this is a decisively more complicated 
procedure. 

V.  SIMPLE SOLIDS 

In this section, we consider simple solids for which the convolution 
and the C-space obstacle generations are easy. Since many of the 
solids in practice fall into this category, the results in this section have 
practical importance. In Section V-A we consider the surfaces which 
preserve its type under the convolution operation. In Section V-B, we 
consider the convolution face generation for parametrizable edges. 
In Sections V-C, -D, we consider the C-space obstacle generations 
for the solids of revolution and the solids of linear extrusion. Convex 
solids of these types have also been considered by Farouki [14] 
although from a differential geometric viewpoint. 

A .  Simple Surfaces 

I )  When F is a patch of the plane f ( x ,  y ,  z )  = ax + by + cz + d 
= 0 ,  conv ( S ; ,  F )  is a planar patch f ( X ,  J ,  e )  = a% + by + 
cZ + d - r ( J a 2 + b 2 + c 2 )  = 0. 

2)  When F is a patch of the cylindrical surfacef(x, y ,  z )  = x2 + 
y 2  - R 2  = 0, conv (Sf, F )  is a cylindrical patchf(2, j ,  2)  = (a)2 
+ ( J ) 2  - ( R  + r ) 2  = 0. 

3 )  When F is a patch of the spherical surfacef(x, y ,  z )  = x2 + y 2  
+ z 2  - R 2  = 0, conv (Sl, F )  is a spherical patchf(.f, y, t) = (2)’ 
+ @)2 +(a2 - ( R  + r ) 2  = 0. 

4) When F is a patch of the conic surface f ( x ,  y ,  z )  = x2 + y’ - 

z 2  = 0 without the apex on it, conv ( S ; ,  F ) i s  a patch of the conic 
surfacef(2, j ,  Z )  = ( ~ 1 ~  + o2 - (Z + J2 r)’ = 0. 

5 )  When F is a patch of the toridal surface f(x, y ,  z )  = 
( J x 2  + y 2  - RI) ’  + z2 - R2 = 0 with RI  > R2 + r, conv ( S ; ,  

-- 
F )  is a patch of the toroidal surfacef(.f, y, f) = (JX2 + y 2  - R I ) 2  

6) In general, when F is a Dupin cyclide surface patch, conv (Sf, 
+ Z 2  - (R2 + F)’ = 0. 

F )  is a Dupin cylcide surface patch, see Martin [20]. 

B. Analytically Parametrizable Edges 
We describe an analytic method to generate the convolution face 

for any parametrizable edge where the parametrization is given by 
some analytic fu-nction in one variable. Suppose the common edge E 
of faces F and F is par_ametrizable by r( t )  for a I t I b, the inner 
angles bet_ween F and F along E are > 0 and < .rr, and the gradients 
of F and Falong E are given by n ( t )  and f i ( t )  for a 5 t 5 b, then the 
convolution face conv (ST, E )  is given by some analytic function of 
n( t )  and r i ($  as follows. Let h,(s) = (1  - s ) . n ( t )  + s . f i ( t )  for 0 5 
s I 1, then h,(s) # 0 and conv (Sf, E )  is given by the parametric 
surface H ( s ,  t )  = r(t) + r ~ h l ( s ) / ~ ~ h l ( s ) ~ ~  for 0 I s 5 1 and a 5 t 
I b. 

C. Solids of Revolution 
A solid of revolution is obtained by rotating a planar area about the 

axis of revolution. We may assume this planar area is bounded by a 
Jordan curve and totally contained in a closed half-plane bounded by 
the revolution axis. One can easily show the C-space obstacle is also a 
solid of revolution and the generating planar area is the intersection of 
the half plane and the planar C-space obstacle generated by moving a 
circle of radius r around the original planar generating area. For the  
planar C-space obstacle generation one can use the results from Bajaj 
and Kim [8], where the C-space obstacle generation for nonconvex 
planar moving object and obstacles with algebraic curve boundaries is 
discussed. 

D. Solid of Linear Extrusion 
A solid of linear extrusion is obtained by sweeping a planar area 

from the bottom face to the top face along the normal direction. We 
may assume this planar area is bounded by a Jordan curve. The 
boundary surface generated by sweeping this boundary Jordan curve 
is called the side walls. The convolution faces generated by the top 
and bottom faces are obtained by simply translating these faces along 
the normal direction by a distance r. One can easily show that the 
convolution faces generated by the side walls are obtained by 
sweeping a Jordan curve which is the planar C-space obstacle 
boundary obtained from the original sweeping planar area and the 
circle of radius r. There are also convolution faces generated by the 
top (resp. bottom) edges between the top (resp. bottom) faces and the 
side walls, and the convolution faces generated by the vertices 
between these edges. The convolution faces generated by top (resp. 
bottom) edges have one of its boundary edge on the boundary of the 
top (resp. bottom) face offset and one on the boundary of the side 
walls convolution. The top and bottom face offsets have no 
redundancies, but the side walls convolution may have redundancies 
when the generating planar area is nonconvex. Hence the convolution 
faces generated by top and bottom edges cannot be totally redundant, 
but some subregions of these faces may be redundant. These partial 
redundancies are detected by the redundancies of the corresponding 
side walls offset. The convolution faces generated by vertices are 
either nonredundant or totally redundant depending on whether the 
corresponding vertex on the generating planar area is either convex 
or concave. By removing these redundancies and computing the 
common edges between partially redundant convolution faces one can 
construct the C-space obstacle boundary correctly. 

vi. RELATIONS TO BLENDING 
Nonsmoothness on the C-space obstacle boundary results from the 

intersections and self-intersections of the convolution faces. The 
connected subregions of the C-space obstacle boundary where no 
intersections or self-intersections of the convolution faces lie are 
smooth surface patches. Intersections and self-intersections mean 
there are at least two contact points for a moving sphere when its 
center is placed at these intersections, and these also mean there are 
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global or local concave regions on the obstacle which prohibit a 
moving sphere of radius r to roll over some region. When a sphere 
can roll over all the points of a region r on the obstacle while making 
contacts with no more than one point, conv (S;, r )  itself is a smooth 
surface patch. See Rossignac and Requicha [23] and Hoffman and 
Hopcroft [16] where this is used to derive surface patches smoothing 
out a surface intersection edge or a vertex. 

VII. CONCLUSION 
We have described algorithmic methods to generate the boundary 

of configuration space obstacles arising from the motion of a sphere 
among obstacles. The boundaries of the obstacles are given by 
patches of algebraic surfaces. Algorithms are given for both implicit 
and parametric surface patches. Both convex and nonconvex obsta- 
cles are considered. In the case of convex obstacles, the topology of 
convolution faces is the same as the adjacency graph of faces, edges, 
and vertices of the obstacle. Further, there are no redundancies in the 
convolution faces. Redundancies on the convolution can occur in the 
case of nonconvex obstacles. One may detect these redundancies 
from the intersections and self-intersections of convolution faces. We 
also consider simple solids for which the convolution and the C-space 
obstacle generation is easy. 

One possible extension of this research is for the case of translatory 
motion of arbitrary nonconvex object among nonconvex obstacles. In 
this general case, each face, edge, and vertex of an obstacle can 
interact with many different faces, edges, and vertices of the moving 
object and can generate many convolution faces. The interconnection 
of the convolution faces becomes more complicated. Further, the 
definition of outward normal directions would have to be modified. 
This differs from the case of a moving sphere where a sphere cannot 
touch concave edges or concave vertices. 
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The Dexterous Workspace of Simple Manipulators 

ZONE-CHANG LA1 AND CHIA-HSIANG MENQ 

Abstract-A theoretical study on the dexterous workspace of robotic 
manipulators is presented. For a robot with wrists which can generate a 
full range of orientations, the boundary of the robot’s dexterous 
workspace is governed by the boundary of W,(4), where W,(4) is the 
reachable space of joint 4 when joints 1-3 are free to rotate. Based on this 
concept, a method was developed. Three examples are given to illustrate 
this concept and method. For simple robots, as demonstrated by three 
examples, analytical expressions of the dexterous workspace may be 
obtained using the method presented. 

I. INTRODUCTION 
The determination of extreme positions of the end-effector of a 

manipulator and the evaluation of workspace have been the subject of 
many investigations [ 11-[13]. However, the determination of dexter- 
ous workspace, due to the complicated relationship between hand 
position and orientation, has been investigated for those robots with 
wrists having last three joint axes coincide. Kumar and Waldron [4j 
introduced the concept of dexterous workspace (a space in which the 
manipulator’s hand can rotate fully about all axes through any point) 

Manuscript received May 2, 1985; revised Juiy 28, 1986. 
Z. C. Lai was with GMF Robotics Corporation, Troy, MI 48098. He is 

now with Allen-Braley Co., Highland Heights, OH 44143. 
C.  H .  Menq is with the Department of Mechanical Engineering, Ohio State 

University, Columbus, OH 43210. 
IEEE Log Number 8718079. 

0882-4967/88/02OO-OO99$01 .OO 0 1988 IEEE 


