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For an irreducible algebraic space curve C that is implicitly defined as the intersection of two algebraic 
surfaces, f (x, y, z) = 0 and g(r, y, z) = 0, there always exists a birational correspondence between the 
points of C and the points of an irreducible plane curve P, whose genus is the same as that of C. Thus 
C is rational iff the genus of P is zero. Given an irreducible space curve C = ( f n g), with f and g not 
tangent along C, we present a method of obtaining a projected irreducible plane curve P together 
with birational maps between the points of P and C. Together with [4], this method yields an 
algorithm to compute the genus of C, and if the genus is zero, the rational parametric equations for 
C. As a biproduct, this method also yields the implicit and parametric equations of a rational surface 
S containing the space curve C. 

The birational mappings of implicitly defined space curves find numerous applications in geometric 
modeling and computer graphics since they provide an efficient way of manipulating curves in space 
by processing curves in the plane. Additionally, having rational surfaces containing C yields a simple 
way of generating related families of rational space curves. 

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: 
Numerical Algorithms and Problems-computation on po2ynomiak; 1.1.2 [Algebric Manipula- 
tion]: Algorithms-algebraic algorithms; I.35 [Computer Graphics]: Computational Geometry and 
Object Modeling-geometric algorithms 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Computer-aided design, parametric curves 

1. INTRODUCTION 

Consider an irreducible algebraic space curve C that is implicitly defined as the 
intersection of two algebraic surfaces f (x, y, z) = 0 and g(x, y, z) = 0. We concern 
ourselves with space curves defined by two surfaces since they are of direct 
interest to applications in geometric modeling and computer graphics (e.g., [7]). 
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Irreducible space curves in general, defined by more than two surfaces, are 
difficult to handle equationally, and one needs to resort to computationally 
intensive ideal-theoretic methods [9]. However general space curves is a topic 
with various unresolved issues of mathematical and computational interest and 
an area of important future research (e.g., [l]). 

Now for an irreducible algebraic space curve C as above, there always exists a 
birational correspondence between the points of C and the points of an irreducible 
plane curve P whose genus is the same as that of C (see [19] and 1201). Birational 
correspondence between C and P means that the points of C can be given by 
rational functions of points of P and vice versa (i.e., a l-to-l mapping, except for 
a finite number of exceptional points of C and P). 

In this paper we show how, given an irreducible space curve C, defined implicitly 
as the transversal intersection of two algebraic surfaces f and g (i.e., f and g are 
not tangent along C), one is able to construct the equation of a plane curve P 
and birational maps between the points of P and C. These birational maps, 
together with the method of computing the genus and rational parameterization 
of algebraic plane curves [4], then gives an algorithm to compute the genus of 
the space curve C, and if genus = 0, the rational parametric equations of C. 

As a first attempt in constructing P, we may consider the projection of the 
space curve C along any of the coordinate axes yielding a plane curve whose 
points are in correspondence with the points of C. Projecting C along, say, the 
z axis, can be achieved by computing the Sylvester resultant of f and g, treating 
them as polynomials in z, y.ielding a single polynomial in x and y, the coefficients 
of f and g. The Sylvester resultant eliminates one affine variable, in this case z, 
from two polynomial equations (e.g., [15]). Efficient methods are known for 
computing this resultant for polynomials in any number of variables (e.g., [ll]). 
The Sylvester resultant off and g thus defines a plane algebraic curve P. However, 
this projected plane curve P in general is not in birational correspondence with 
the space curve C. For a chosen projection direction it is quite possible that most 
points of P may correspond to more than one point of C (i.e., a multiple covering 
of P by C), and hence the two curves are then not birationally related. See 
Figures 1, 2, and 4. This approach may be rectified, as explained in Section 2, by 
choosing a valid projection direction that yields a birationally related, projected 
plane curve P. See Figures 1 and 3. Further, the inverse rational map from the 
projected plane curve P to the original space curve C can also be efficiently 
constructed. Let the proper projected plane curve P be defined by the polynomial 
h (i, j;). The map from C to P is linear and is given trivially by 3 = x and jl = y 
(or related by a linear transformation as shown in Section 2). To construct the 
reverse rational map one only needs to compute z = 1(5, 5) where I is a rational 
function. We show in Section 3 how it is always possible to construct this rational 
function by use of a polynomial remainder sequence along a chosen valid 
projection direction. In fact the resultant is no more than the end result of a 
polynomial remainder sequence (see [6] and [14]). 

The reverse rational map, z = 1(11, $) where I is a rational function, is also the 
rational parametric equation of a rational surface containing the space curve C. 
Hence, constructing a birational mapping between space and plane curves that 
always exist, also yields an explicit rational surface containing the space curve. 
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989. 
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Fig.l. SpacecurveC:(f=z2+x2-l~g=%2+Y2-1). 

Fig. 2. 
x+ =o. 

Y axis projection P: (x2 + Z’ - l)* 

By an explicit rational surface we mean one with a known or trivially derivable 
rational parameterization. For irreducible space curves C, a method of obtaining 
an .explicit rational surface containing C is given (without proof) in [la]. Garrity 
and Warren [12] have also recently presented a general method of constructing 
birational maps between space curves and projected plane curves using differen- 
tiation arguments. The techniques presented in this paper differ in their choice 
of birational projections, as well as in their use of subresultant polynomial 
remainder sequences, to efficiently construct both a reverse rational map as well 
as an explicit rational surface containing C. 
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Fig. 3. Birationally projected P: (8~: - 4rlyI + 5x: - 
9)(8yf + 12n,y, + 52: - 1) = 0. 

Note additionally, that knowing the rational parametric equations of a rational 
surface containing a space curve also yields a birational mapping between points 
on the space curve and a plane curve. Namely, if one of the two surfaces f or g 
defining the space curve C, or actually any known surface in I(C) = I( f, g), the 
Ideal’ of the curve C generated by f and g, is rational and with a known rational 
parameterization, then po:ints on C are easily mapped to a single polynomial 
equation h(s, t) = 0 describing a plane curve P in the parametric plane s - t 
of the rational surface. This mapping between the (x, y, z) points of C and the 
(s, t) points of P is birational with the reverse rational map from points on P to 
points on C being given by the parametric equations of the rational surface. For 
space curves C that have a quadric or a rational cubic surface in its Ideal, the 
plane curve P and the rational mapping from points on P to C are then easily 
constructed by using known techniques for parameterizing these rational surfaces 
bee M, [31, and 1171). 

The rest of this paper is structured as follows. Section 2 describes a method of 
choosing a valid direction of projection for the space curve C. This yields a 
projected plane curve P in birational correspondence to C. Using these results, 
Section 3 describes a method of constructing the reverse rational map between 
points on the plane curve F’ and points on C. 

2. VALID PROJECTION DIRECTION 

To find an appropriate axis of projection, the following general procedure may 
be adopted. Consider the general linear transformation x = alxl + b,y, + clzl, 
Y = u2x1 + b2y1 + czzl, and z = u33c1 + b3y1 + c3z1. On substituting into the 
equations of the two surfaces defining the space curve, we obtain the transformed 

’ Z( f, g) = (h(r, y, z) I h = af + Bg for any polynomials (u(x, y, z) and fl(r, y. z)]. 
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Fig. 4. 2 axis projection P: (y* - x2)* = 0. 

equations fi(xl, yl, zl) = 0 and g,&, yl, zl) = 0. Next compute the Res,,( fi, gl), 
which is a polynomial h(xl, yl) describing the projection along the 2 axis of the 
space curve C onto the z = 0 plane. 

Since C is irreducible and f and g are not tangent along C, the order of 
h(xl, yl) is exactly equal to the projection degree (see [l] and [20]). By order 
of h(xl, yl) we mean k if h(xl, yJ = (g(3cl, Y~)>~; see Figures 1 and 4. For a 
birational mapping we desire a projection degree equal to one; see Figures 1 and 
3. Hence, we choose the coefficients of the linear transformation, ci, bi, and ci 
such that 

(1) the determinant of ei, bi, and ci is nonzero 
(2) the equation of the projected plane curve h(xl, yl) is not a power of an 

irreducible polynomial. This can be achieved by ensuring that the discrimi- 
nant ResX,(hI, h,,) is nonzero. 

Note, a random choice of coefficients, or coefficients with sufficient bit length, 
would also work with probability 1 since the set of coefficients that make the 
determinant and Res,,(hl, h,,) equal to zero are restricted to the points of a lower 
dimensional hypersurface. See [ 161 where the notion of randomized computations 
with algebraic varieties is made precise. A suitable random choice of coefficients 
thus ensures that the projected irreducible plane curve given by h(xl, yJ is in 
birational correspondence with the irreducible space curve and thus of the same 
genus. The parameterization methods of Abhyankar and Bajaj [4] for algebraic 
plane curves are now applicable and thereby yield a genus computation as well 
as an algorithm for rationally parameterizing the space curve. 

Example 2.1 Let the given irreducible space curve C be defined as the 
transversal intersection of two equal radius circular cylinders f = z2 + x2 - 1 
and g = z2 + y2 - 1. The curve is irreducible and consists of two intersecting 
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ellipses in the planes y = x and y = -x; see Figure 1. The resultant Res& g) = 
(y2 - x2)’ = 0 is the equation of the projected plane curve P and consists of two 
lines y - x = 0 and y + x = 0 both repeated twice; see Figure 3. The projection 
map between C and P here is thus two to one and not a valid projection. This 
occurs since the z axis, our axis of projection, is contained in the planes containing 
the curve C. Similarly, projecting along the y axis yields the plane curve P given 
by Res,(f, g) = (x2 + z2 - 1)’ = 0, which is again not a valid projection. Here, 
two ellipses of the space curve C overlap in the projected plane curve P to again 
yield a two-to-one mapping between C and P. See Figure 2. A suitable linear 
transformation, 

yields 

x = x1 - 2 * zl, y = y1 + zl, and z = 2 * z1 

fl = 8 * 2:: - 4 * x1 * 21 -t x:: - 1 and gl = 5 * z? + 2 * y1 * z1 + y:’ - 1, 

whose resultant 

-104*xl*yI+25*x: -50*x:+9 

=@*yf - 4 * Xl *yl + 5 * x:: -9)(8*y:: +12*xl*y,-t5*xf-l), 

defines two distinct ellipses in the plane, that is, a projection map which is one 
to one. Note, the projected plane curves are ellipses of different shape since we 
are not restricted to using only orthogonal linear transformations. 

3. CONSTRUCTING THE BIRATIONAL MAP 

We choose a valid projection direction by using the method described in the 
earlier section. Without loss of generality let this direction be the 2 axis. Let the 
surfaces f (x, y, z) = 0 and g(x, y, z) = 0 be of degrees ml and mz in z, respectively. 
Again, without loss of generality, assume ml z m2. Let Fl = f (x, y, z) and 
F2 = g(x, y, z) be given by 

Fl = f,,zflz’ + fi~~1-l + . . . + f,,+z + f,,,, 
(1) 

Fp = gcd’+ + glzm2--l + . . . + g,,-1.z + g,, 

where fi, (j = 0 ... ml) andgk, (k = 0 ... m2) are polynomials in X, y. Then 
there exist polynomials F~+:?(x, y, Z) for i = 1 . *. r such that BiFi+i+z = AiFi - 
QiFi+l, where mi+z, the degree of z in Fi+z, is less than mi+l, the degree of z in 
Fi+l, for certain polynomials Ai(x, y), Bi(x, y), and Qi(r, y, z). The sequence of 
polynomials Fi, i = 1, 2, . . . , k is naturally known as a generalized polynomial 
remainder sequence (PRS) and can be computed in different ways, as we now 
describe. 

Let lc (F) denote the leading coefficient of a polynomial F(x, y, z), viewed as a 
polynomial in z, (i.e., a coefficient of term with highest z degree). Further let ci 
ACM Transactions on Graphics, Vol. 8, .No. 4, October 1989. 
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denote lc(Fi). TO compute FL+.2 from Fi and Fi+l we first begin with RP = Fi and 
then, 

for k = 1, . . . , mi - mi+l + 1 

if lc(Rf-') = 0 

then Rf = Rf-' 

else Rf = c~+~R~-' - zm~-m~+~+l-klc(R~-l)Fi+l 

(2) 

The polynomial RPdmi+l+l is known as the sparse pseudoremainder of Fi and 
Fi+l. Using Collin’s reduced PRS method [lo], one constructs the polynomial 
Fi+z = R?-mi+l+l/di-l where do = 1 and di = c~~“Q+l+‘. Using Brown’s subresultant 
PRS scheme [B], one constructs the polynomial 

J”i+z = (-l)“‘-“‘+l+‘(R?-“‘+‘+l/~iE~~-m~+l), 

where E,, = 1 and E,,,< = c?-~-“~/E~~;-“‘~-~. As shown by Loos [14], both the 
above methods, as well as others, follow naturally from the subresultant theorem 
of Habicht [ 131. 

Thus starting with polynomials FI and F2, one constructs the polynomial 
remainder sequence, F,, Fz, F3, . . . Fi, . . . F, such that m, = the z degree of 
F = 0 (i.e., F, being independent of z). We choose the subresultant PRS scheme 
for its computational superiority and also because each Fi = Smi-,--l, 1 5 i 5 r, 
where Sk is the kth subresultant of FI and F2 (see [B], [lo], and [13]). 

Now for any i = 1, . . . , r - 2, if Fi and Fi+l are of degree greater than two and 
Fi+z is independent of z, then the 2 axis is not a valid projection direction. This 
may be seen as follows. Since the Z axis was chosen as a valid projection direction, 
the ResJf(x, y, z), g(3c, y, z)] = Res=[F,, Fz] = So is nonzero and not a multiple 
of some irreducible polynomial. This holds for any two surfaces Fi and Fi+1 in 
the PRS, all elements in the Ideal of C, generated by f and g. If any of the 
elements Fi of the PRS are multiples of some irreducible polynomial then so 
would the resultant, which is impossible. To complete the argument, it remains 
to see that by induction, if Fi-1 and Fi are of say degree three and two respectively 
and Fi+, is independent of z, then the Res,(Fi-1, Fi) is equal to some h2(x, y), 
which is impossible. 

Hence in the PRS, for a valid projection axis, there exists an element that 
is linear in z, that is, Fi-1 = z@,(x, y) - +2(~, y) = 0. Thus on computing the 
PRS and obtaining Frwl, one is able to construct the required inverse map, z = 
3p2(x, y)/$(x, y), which is also a rational surface containing the space curve. 
The rational parameterization of this rational surface is trivially given by x = s, 
y = t, and z = a2(s, t)/!&(x, t). Note that the two coefficients 9, and G2 of 
Fr-l cannot have a common factor divisible by the resultant F,, for then F,, 
which is the pseudoremainder of F,-, and Frwl, would again contain a factor 
raised to a certain power. 

Example 3.1 Let the given irreducible space curve C be defined as the 
transversal intersection off = F, = z3 + 4 * z + y2 and g = Fz = z2 + 2 * z + x2; 
see Figure 5. Computing the subresultant PRS yields F3 = (8 - x2) * z + 
(2 * x2 + y2) and F4 = y4 + 6 * x2 * y2 - 16 * y2 + x6 - 8 * x4 + 32 * x2. The 
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2 @- 

x Y 
A 

Fig. 5. Space curve C: (f = z3 + 42 + y2 fI g = zz + 22 + x2). 

YA 

+E>C-D 

X 

Fig. 6. Birationally projected P: y4 + 6x*yz - 16~’ + x6 - 8x4 + 32x2 
= 0. 

resultant Res,( f, g) = F4 = 0 is the equation of the projected plane curve P and 
is square free; see Figure 6. The rational surface containing the curve C is 
F3 = 0 or alternatively given by (x = s, y = t, and z = (2 * s2 + t2)/(8 - t2)). 

Example 3.2 Let the given irreducible space curve C be defined as in Example 
2.1. For the given f = FL =: z2 + x2 - 1 and g = F2 = ,z2 + y2 - 1 computing 
the subresultant PRS yields F3 = 0 * z -t (-x2 + y2), and hence the z axis is 
not a valid projection direction. For the transformed space, under the linear 
transformation 

and 

x = x1 - 2 * 21, Y = Yl + 21, 2 = 2 * 21, 

fi = Fl := 8 * ,z; - 4 * x1 * z1 + 3~:: - 1, 

g, = Fz := 5 * .z: -I- 2 + y1 * z1 + y:’ - 1. 
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The subresultant PRS yields 

F3 = (20 * x + 16 * y) * z + (-5 * x2 + 8 * y2 - 3) 

and 

Fc, = 64 * y’: + 64 * x1 * y; + 32 * XT * y:’ - 80 * y: + 40 * x: * y1 

- 104 * x1 * y1 + 25 * Lx’: - 50 * XT + 9 

= (8 * y: - 4 * xl * yl + 5 * xf - 9)(8 * y: + 12 * x1 * y1 + 5 * x: - 1) 

as the resultant of fi and gl as before. The rational surface containing the curve 
C is F3 = 0, or alternatively given by (X = s, y = t, and z = (-5 * s2 + 3 * t2 - 
3)/(20 * s + 16 * t)). 

4. CONCLUSION 

The assumption that the above space curve C is irreducible stemmed from our 
primary motivation of parameterizing implicitly defined space curves. However, 
the irreducibility assumption is not necessary for the methods of Sections 2 and 
3, and the algorithms presented there for constructing birational maps apply 
directly for reducible space curves as well. One chooses a valid projection direction 
as before by making the discriminant of the projected plane curve P to be 
nonzero, which also ensures that two or more space curve components do not get 
projected over the same plane curve component. (See again Example 2.1 of 
Section 2). 

One limitation of our method, however, is the assumption of nontangency of 
the surfaces f and g meeting along the space curve C. This has recently been 
removed by the method of Garrity and Warren [12] using bivariate polynomial 
GCD and division computations to achieve squarefree polynomials for the pro- 
jected plane curve P. However, the problem of finding computationally efficient 
algorithms to construct birational maps for space curves, defined implicitly as 
the intersection of two parametric surfaces, remains open. 
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