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Abstract 

We give NC algorithms for determining the num- 
ber and degrees of the absolute factors (factors ir- 
reducible over the complex numbers C) of a multi- 
variate polynomial with rational coefficients. NC is 
the class of functions computable by logspace-uniform 
boolean circuits of polynomial size and polylogarith- 
mic depth. The measures of size of the input polyne 
mial are its degree d, coefficient length c, number of 
variables ra, and for sparse polynomials, the number 
of non-zero coefficients s. For the general case, we 
give a random (Monte-Carlo) NC algorithm in these 
input measures. If n is fixed, or if the polynomial 
is dense, we give a deterministic NC algorithm. The 
algorithm also works in random NC for polynomi- 
als represented by straight-line programs, provided 
the polynomial can be evaluated at integer points in 
NC. Finally, we discuss a method for obtaining an ap- 
proximation to the coefficients of each factor whose 
running time is polynomial in the size of the original 
(dense) polynomial. These methods rely on the fact 
that the connected components of a complex hyper- 
surface P(zl, . . . , zn) = 0 minus its singular points 
correspond to the absolute factors of P. 
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1 Introduction 

Factoring polynomials is an important problem 
in symbolic computation with applications as di- 
verse as theorem proving and computer-aided de- 
sign. Methods for factoring polynomials with ratio- 
nal coefficients over the rational numbers are well- 
known. [Lenstra 82,Kaltofen 85b] establish that fac- 
toring polynomials in a fixed number of indetermi- 
nates over the field of rational numbers Q is in poly- 
nomial time. 

However, factoring polynomials over C differs from 
factoring over Q. For example, x2 + 2y2 is irreducible 
over Q. However, x2 + 2y2 = (x + fiiy)(z - v%y) 
when factored over C. This example illustrates one 
difficulty in factoring over C. The coefficients in an 
exact factorization over C must be represented sym- 
bolically (possibly by polynomials of high degree). 

Work on factoring rational polynomials over C has 
not been as extensive as that of factorization over Q. 
[Noether 22,Davenport 81,Heintz 811 each give meth- 
ods that require time exponential in the degree of the 
input polynomial. [DiCrescenzo 84,Duval 871 give ge- 
ometric methods of factorization based on algebraic 
geometry. [Kaltofen SSa] describes an NC method for 
testing whether a rational polynomial is irreducible 
over C, The method involves computing approximate 
roots and their corresponding minimum polynomials. 
The first polynomial time algorithm for factoring over 
C seems to have been [Chistov 831. However, it has 
remained an open problem whether computing the 
number of factors, irreducible over C, of a rational 
polynomial is in NC. 

Given a polynomial P with rational coefficients, the 
input size is measured by number of variables n, de- 
gree d, coefficient size c, and number of non-zero co- 
efficients 8. We show that the general problem of 
computing number and degrees of the factors is in 
random NC in these measures, in the Monte-Carlo 
sense (definitely fast, probably correct). If the num- 
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ber of variables is fixed, or if the polynomial P is 
dense, we give a deterministic NC solution. Finally, 
if the polynomial is represented as a straight-line pro- 
gram of length p our algorithm runs in random NC 
plus the time to evaluate the polynomial at an integer 
point. By the parallelization result of Valiant et al. 
[Valiant 831, any straight-line program of size p and 
degree d can be converted into an equivalent program 
of polynomial size, and polylogarithmic depth in d 
and p, which can therefore be evaluated in NC. How- 
ever, the conversion itself is not in NC, and seems in- 
trinsically sequentiai, because of constant evaluation 
which is P-complete. So we cannot run our algorithm 
in random NC for straight-line program polynomials 
unless we are given a program of low depth. 

Finally, we discuss a method for obtaining an ap- 
proximation to the coefficients of each factor whose 
running time is polynomial if the polynomial P ia 
dense. Previous methods of factoring have typically 
relied on an algebraic approach. We take a geo- 
metric approach, relying on the fact, described in 
section two, that the number of connected compo- 
nents of a complet hypersurface P(z1,. . . , zn) = 0 
minus its singular points is precisely the number of 
factors, irreducible over C, of P(zl, . . . ,z,). In sec- 
tion three, we describe a fast parallel method for re- 
ducing the factorization problem for P(aI, . . . , zn) to 
the bivariate case. In section four, we describe a 
fast parallel method for determining the number of 
connected components of P(z1, zz) minus its singular 
points. This computation can be done using the sign 
sequences associated with various Sturm sequences. 

2 Connectivity and Factoriza- 
tion 

2.1 Preliminaries 

For the rest of the paper, we assume that P is 
square-free (irreducible factors have multiplicity one). 
Note that if the original P is not square-free, we may 
compute the square-free part of P by computing 

where P is manic in ~1. This computation may be 
performed in NC using greatest common divisor al- 
gorithm of [Borodin 821. 

The key observation of this section is that there is a 
fundamental relationship between the singular points 
of a complex set and its irreducible components. 

Definition Let P be a square-free polynomial, 
S = V(P) a hypersurface, the set of singular points 
of S, denoted Sing(S) is defined by 

Sing(S) = s f-l V( $$>. . . ) El. (1) 

For example, an algebraic plane curve has a finite 
number of singular points. More generally, the sin- 
gular set can be defined for any algebraic set, but we 
will not give a definition here. Intuitively, the singu- 
lar points of an algebraic set are the points where the 
set is not smooth (smooth points have neighborhoods 
diffeomorphic to some C”). 

2.2 Topology of Zero Sets of Re- 
ducible Polynomials 

Removing the singular set from an algebraic set may 
split it into several connected components. Here con- 
nectivity means connectivity in the usual (metric) 
topology. As the following theorems show, these com- 
ponents correspond exactly to the irreducible compo- 
nents of the curve. 

Theorem 1 The set S is irreducible if and only if 
S - Sing(S) is connected. 

Let Pi(%l,. . .,zn) E C[tl,. . ., z,,] i = 1,. . . , Ic be 
polynomials with complex coefficients in n variables. 
Let V(Pl,... , 9) denote the set of common zeros of 
these polynomials in C” 

tq-L.-., P~)={ZEC”IPi(Z)=O, i=l,...,k} 

A proof appears in [Griffiths 78, pp. 211. 

Theorem 2 The irreducible components of set S are 
exactly the closures of the connected components of 

S - Sing(S). 

This is a consequence of the next two lemmas, 

the zeros set of a polynomial P(.zl, . . . , zn) which is 

This is an example of an algebraic set. For a single 
polynomial P, the set S = V(P) is called a hypersur- 
face. A hypersurface S is said to be irreducible if it is 

Lemma 1 Let the set S have distinct irreducible 

A proof also appears in [Griffiths 78, pp. 211. 

components Sl,Sz, . . . , Sk. Then for any i and j, 
Si n Sj E Sing(S). 

irreducible over C. More generally, an algebraic set is 
irreducible if it cannot be expressed as a finite union 
of proper algebraic subsets. An irreducible algebraic 

Lemma 2 If S is irreducible, and Y is any proper 
algebraic subset of S, then S - Y is connected. 

set is called a variety. This follows from Corollary (4.16) of [Mumford 19701. 
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3 Reduction to Bivariate Fac- 
torization 

The previous theorems held for polynomials in any 
number of variables. However, we wish to focus our 
attention on the problem of factoring bivariate poly- 
nomials. This section describes a fast parallel method 
for reducing the problem of factoring a multivariate 
polynomial to the problem of factoring a bivariate 
polynomial. 

There have been a number of papers giving re- 
ductions from multivariate to bivariate factoriza- 
tion. The first appeared in Heintz and Sievking 
[Heintz 811, and made use of Bertini’s theorem. This 
was a randomized irreducibility test that worked for 
sparse multivariate polynomials. The idea was ex- 
tended to factorization in [von zur Gathen 831. In 
[Kaltofen 85b] a reduction was given which is in de- 
terministic polynomial time if the number of vari- 
ables is fixed, or if the polynomials are dense. 
[Kaltofen 85~1 1 t g a er ave a different randomized re- 
duction for the sparse case. These randomized reduc- 
tions work for polynomials represented as straight- 
line programs as well as sparse polynomials. An 
NC reduction for the dense case was given in 
[Kaltofen 85a]. 

For the complex case, we give a new randomized 
reduction which requires fewer bits per random coef- 
ficient O(logd) than the previous methods O(d) for 
[Kaltofen 85~1 and O(d2) for [von zur Gathen 831. A 
consequence of this is that our reduction also runs in 
deterministic NC if the number of variables is fixed, 
or if the polynomials are dense. For sparse polynomi- 
als, the reduction is in random NC in the degree d, 
number of variables n, coefficient size c and number 
of non-zero terms s. For straight-line program poly- 
nomials, the parallel running time is the sum of a 
polylogarithmic function of measures d, n, c, plus the 
time to evaluate the polynomial at an integer point. 

The irreducibility theorem is an adaption of a well- 
known result in algebraic geometry. It is stated as 
Corollary (4.18) in [Mumford 19701: 

Theorem 3 Given an algebraic variety X c P” 
(complex projective n-space) of dimension r, there is 
a linear subspace L”-‘+l c P” svch thal x f-l L is an 
irreducible curve, and X and L meet transversely. 

Since affine varieties have unique closure in projec- 
tive space, the above theorem also applies to the affine 
case. The proof of corollary (4.18) in [Mumford 19701 
gives a constructive method for finding the space 
LnTr+l. In our case, P = n - 1, and the steps in 
finding the space L2 are: 

(a) Pick any linear projection ~1 : C” -+ C”-l such 
that ?rl restricted to X is almost everywhere a 
d to 1 covering. Since ?rl is determined by its 
kernel v E C”, this is equivalent to choosing a 
vector (0,~) E P” not in the projective closure 
Yof x. 

(b) Let B be the set of branch points of x1 restricted 
to X. Now choose any linear projection 12 : 
(y-1 --+ cn-2. This is equivalent to choosing 
the kernel u E C”-’ of 1~2. 

(c) Let B. be the set of branch points of 7r2 restricted 
to B. Pick any point a in C”-’ - Bo. Then the 
line I= AZ’(a) is transversal to B, and let L2 be 
the plane =,‘(I). 

Then by proposition (4.17) of [Mumford 19701, L2nX 
is an irreducible curve, and L2 and X meet trans- 
versely, hence the curve has degree d. 

The space L2 is determined by choosing v, u, and 
a. This is equivalent to picking three vectors b, v and 
u’ in C” with a = AS(?T~(~)), u = ?rl(u’), and letting 
L2 be the plane b + zv + yu’. Since the map 7r2 is 
arbitrary, we can assume without loss of generality 
that u’ is (l,O, . . . , 0), and then that VI = al = 0. 
Determining bounds on the number of values of b and 
u for which this procedure fails gives us our reduction 
theorem: 

Theorem 4 Let P(xl, . . . , xn) be an irreducible poly- 
nomial of degree d. Let bz, . . . , b,, 3,. . . , v, be el- 
ements chosen randomly from a finite set E c C. 
Then the probability that the bivariate polynomial 

Q(x, Y> = P(y, b2 + 2~2,. . . , bn + xvn) is reducible 
is less than d4/IEI, where IEI is the cardinality of E. 

Proof We make use of Schwartz’s lemma 
[Schwartz 801 that the number of points in the set 
E” (E a finite subset of C) that lie in an algebraic 
set 2 c C” of degree d is at most dIEI”-‘. 

First of all, given X = V(P) irreducible, the bad 
choices for (0,~) are those that are contained in the 
projective closure Xof X. This is a projective variety 
of degree d. By the Schwartz lemma, the probability 
of such a bad choice is d/lEl. 

The 1 El” possible values of b give us at least lElnW2 
possible values for a (since at most [El2 lattice points 
can lie in ker(r2 o ~1)). These values of a must not lie 
in the set Bo. To find the degree of Bo, we note that 
B can be expressed as rl(V(P, g)) where g is the 
partial derivative of P in the direction of the vector 
v. By Bezout’s theorem, B has degree at most d(d - 
1). Similarly, the degree of Bo is deg(B)(deg(B) - 1) 
which is less than d2(d - 1)2. 
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The probability of one of the a’s lying in this set 
is at most (d2(d - 1)2)/1El. The probability of a bad 
choice of either b or u is at most (d+ dz(d - l)‘)/IEI 
which is less than d*/lEi. 0 

Corollary 1 Let P(zl, . . . ,2,) be a polynomial of 
degree d with k factors. Let b2,. . . , b,, ~2, . . . ,u,, be 
chosen randomly from E. Then the probability that 
the polynomial &(z, y) = P(y, b2 + 2~2,. . . , b, + IV,) 
does not have k factors with corresponding degrees is 
less than d4/IEI. 

This follows because b and u can be chosen exactly 
as in Theorem (4). 

So to achieve a probability of failure less than E, 
we make sure IEI > d*/e. Choosing integer values 
for elements of E therefore requires (410gd + log 1) 
bits. For a deterministic algorithm, we take IEI = 8*. 
Then one of the IEl 2n-2 choices for b and u will work. 

Once values for b and v have been chosen, we con- 
struct the polynomial Q(z, y) by evaluating P(y, ba + 
XVZ,.. . , b, + 2~~) at integer values of x and y and 
interpolating. 

4 Computing Connected Com- 
ponents 

Having reduced multivariate factorization to bivari- 
ate factorization, we now focus on factoring the poly- 
nomial P(zi, 22). As seen in the previous sections, if 
S = V(P), this involves determining the connected 
components of S - Sing(S). For now, we will de- 
scribe the mathematical structure of our method for 
computing the connected components of S-Sing(S). 
We shall delay the details of how to perform this con- 
struction in parallel until later in this section. 

4.1 Topology of the Realifkation of S 

Recall that any complex numbers ~1 and 22 may be 
written as 

~1 = 21 + yli, 

22 = 22 + y2k 
(2) 

where x1, z2, yl, and y2 are real numbers. Thus the 
complex plane C2 can be interpreted as the real four- 
space R4. Any set S in C? is then a set in R4, with 
dimR(S) = 2 dimC(S). In particular, S can be writ- 
ten as the intersection of two real hypersurfaces 

s= V(Pl,h), 

where f3(~1,~2,~1,~2) and E43a,~,~l,y2) are the 
real and imaginary parts of P. 

The complex curve S can be thought of as a surface 
in R* which is the kernel of the map (PI, Pz) : R* -+ 
R2. We would like to know where this surface is 
singular, and where the realified projection map faib 
to have a local inverse. First we need a couple of 
definitions. 

Definition If F : R” + R”’ is a differentiable 
map, p E R” is a critical point of F if the Jacobian 
dF of F is not surjective at p. The image of a critical 
point is a critical value. 

In complex algebraic geometry, the critical points 
are called ramification points and the critical values 
branch points. A point which is not a critical point is 
called a regular point, and the preimage of a regular 
value consists of regular points only. 

If 2 = F-‘(O) for F as above, the set of regular 
points of F in 2 form a manifold of dimension n - m. 
For this reason, they are called smooth points of 2. 
Singular points of 2 will be critical points of F. 

At singular points of S = V(Pl, Ps), the Jacobian 

has rank one. For this to happen, both the determi- 
nants of 

(4 

must be zero. But the partial derivatives, since they 
arise from an analytic function, are not independent 
but must satisfy the Cauchy-Riemann equations. For 
the variable z1 we have: 

ap1 ap, ap, 8P2 -=- 
8x1 dY1 

-=--9 
%Jl 8x1 

(5) 

so that the determinant of the first matrix of (4) is 

just (2)” + ($$+I’ and will be zero only when both 
izi and a (and therefore x and 2) are zero. 
82,; this i?brecisely the cond%fon that the complex 
derivative E = 0. 

Similarly, the second determinant in (4) vanishes 
only when all its elements vanish, which is true if and 
only if the complex derivative z = 0. 

At singular points of S, both the minors in (4) must 
vanish, which as we have just seen, implies that all 
the elements in the matrices must vanish. This in 
turn implies that E and $$ are both zero, which is 
precisely the condition for a complex singular point. 
So the realified curve S is a smooth 2-dimensional 
surface, except at a finite number of singular points, 
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which are precisely the realification of the singular 
points of the complex curve S. 

Finally, we would like to find out where the realified 
projection map ?r : R4 -+ R2 taking (21, yl, 22, yz) I-+ 
(22, yz), fails to be locally invertible. By a change of 
variables, we can assume that P(q, ~2) has a .$ term, 
implying that P does not have any factors univariate 
in 12. Thus, ?r must be finite-to-one everywhere. m 
cannot be invertible at singular points of S. At a 
smooth point p, it will fail to be locally invertible if 
there is a tangent vector to S at p whose image under 
a is zero. Since the tangent space to S is the set of 
vectors orthogonal to the rows of (3), this condition 
is equivalent to the matrix 

(6) 

being singular. It, is singular if and only if there is a 
vector orthogonal to all its rows, and such a vector is 
a tangent vector whose image under r is zero. 

The matrix will be singular if and only if its up- 
per left 2x2 submatrix is singular. By recourse to the 
Cauchy-Riemann equations, we see that this is equiv- 
alent to the complex condition E = 0. Again, this 
can occur at only a finite number of points, including 
the singular points of S. 

4.2 Reduction to Curve Skeleton 

Computing the connected components of S-Sing(S) 
of a two-dimensional set is difficult. In this section, 
we will reduce this problem to that of computing the 
connected components of a one-dimensional subset of 
S - Sing(S). Central to this reduction is the struc- 
ture of S around its critical points. As shown in the 
previous section, the projection of the critical points 
of S onto the ~2 plane are the zeroes of the polynomial 

R(Q) = Reszl(P, az ?I, 

where Res,, (P, Q) is the resultant of the polynomials 
of P and Q treated as one variable polynomials in zl. 

As an aid in generating our curve skeleton, we first 
generate a grid of lines G in the ~2 plane. The inter- 
section of the inverse image of this grid and S will be 
a one-dimensional set. The edges of G will be paral- 
lel to the 22 and y2 axes. The vertical edges are the 
lines ~2 = vi with the (vc < vr < . . .) real constants. 
The horizontal edges are the lines 512 = hi with the 
(ho < hl < . . .) real constants. Specifically, we choose 
the vi’s such that the open interval (vi, vi+i) contains 
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Figure 1: A grid plane whose cells contain at most 
one critical point. 

at most one of the distinct real components of the 
complex zeroes of R(t2). Likewise, we choose the the 
hi’s such that the open interval (hi, hi+l) contains 
at most one of the distinct imaginary components of 
the complex zeroes of R(zg). Figure 1 illustrates this 
situation where R(z(L) = (22 - 1)(22 + i)(zz - i). 

The lines of G form rectangular cells in the ~2 
plane, intersecting in vertices. The key property of 
this grid is that each cell in the grid contains at most 
one critical value. 

G may now be used to construct a curve skele- 
ton directly on S. The inverse image of G under 
the projection n onto the zz plane is a collection 
of three-dimensional hyperplanes. Let K be the set 
S n T-~(G), th is is_a curve skeleton that we can rep- 
resent as a graph, I<. The vertices of 1? represent the 
points on S lying over each vertex (vJ~, h,) in G. These 
points are the complex roots of the univariate poly- 
nomial P(zl, vk + ihl). The edges of 1? correspond to 
algebraic curve segments of K. Figure 2 illustrates 
three curves segments over two vertices s and i of the 
grid G, adjacent on a vertical grid line. The curve 
segments have been projected onto the 21312 plane. 

The following two theorems state the relationship 
between K and the connected components of S - 
Sing(S). 

Theorem 5 Each connected component of S - 
Sing(S) contains at least one vertex of the curve 
skeleton K = Sfl r-l(G) over every vertex of G. 
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Figure 2: Curve segments on S joining vertices of K 

Which follows from the fundamental theorem of alge- 
bra. 

Theorem 6 Any path in S-Sing(S) connecting two 
points in K is homotopic (i.e. can be continuously 
deformed) to a path in K. 

This follows from the slightly stronger fact that K 
is a deformation retract of a subset of S - Sing(S). 
Let B be the set of critical values of ?r : S -+ R2, 
B is a finite set. Augment B to B’ with a finite set 
of extra points so that every cell in the grid contains 
exactly one point of B’. Then K is a deformation 
retract of S - r-l(B’). 

We sketch the proof for a single grid cell. The cell, 
minus the point p of B’ inside it, can be retracted 
onto its boundary. This can be done by creating a 
smooth field of unit vectors radiating from p. The 
flow defined by this field can be integrated, and de- 
fines the retraction. Since there are no critical values 
of r in this region, this vector field can be continu- 
ously lifted onto S - R-r (B’). This gives us a defor- 
mation retraction of this cell of S - ?r-‘(B’) onto its 
boundary. 

These two theorems assure us that the number of 
connected components of S-Sing(S) equals the num- 
ber of connected components in the curve skeleton K. 
Since K is one-dimensional, its topology may be re- 
alized as a graph. To determine the connectivity of 
K, we need only the adjacency information between 
points of K, not the actual curve segments. In the 
next section, we describe a fast parallel method for 
computing this adjacency information. 

4.3 Construction of Curve Skeleton 

As defined in the last section, over each vertex (v), hl) 
in G, there are d vertices in K . These vertices are 
the roots of the univariate polynomial P(ar, it + ihl). 
Unfortunately approximating the roots of a univari- 
ate polynomial in parallel is a major open problem. 
The adjacency information for K, though, does not 
rest on locating the zeroes but only on the relative 

position of one root to another. This information can 
be computed using the sign sequences associated with 
various S turm sequences. 

4.3.1 Sturm Sequences 

Sturm sequences are classical. However, their impor- 
tance in t,he symbolic manipulation of roots of poly- 
nomials is so great that we will review the key ideas. 
Let p(z) be a one variable polynomial. Consider the 
following sequence pc (z), . . . , pn (z) of polynomials: 

PO = P 

PI = dp(z)ldc 

. . * . 
(8) 

Pk = qk-lpk-1 - pk-2 

Pn 

where pk is simply the negative of the remainder ob- 
tained by dividing pk-2 by pk-1. Since p(x) is a poly- 
nomial, the last term pn must be a constant. If p(x) 
is square-free, p, must be nonzero. Sturm sequences 
can be computed in NC [Borodin 821. 

The importance of Sturm sequences lies in that 
they provide an easy way of determining how many 
real roots a polynomial has between two points. 

Theorem 7 Let p(x) be a univatiate real polynomial 
with Sturm sequence (PO(X), , . . ,p,,(x)). Let a and 
b be real numbers that are not roots of p(x). ‘Then 
the number of real roots of p(x) between a and b is 
equal to the number of sign changes in the sequence 

(PO(U) 9 - . . , p,,(a)) minus the number of sign changes 
in the sequence (pa(b), . . . ,p,(b)). 

The proof can be found in many places, such as 
[Henrici 88, Chapter 61. 

4.3.2 Computing Sign Sequences 

Let C be a collection of rational polynomials 
(Pl, *.*, p,) in n variables. Given a specified point x 
in R”, the sign sequence of the collection C is simply 

(+m(m(x)), . . . . sign(h(x)). 

Theorem 8 
Let pl(zl,. . .,z,) = 0, . . ., ~~(21, . . . ,z,) = 0 be 
a system of rational coeficient polynomial equations 
having a finite number of solution points. Denote the 
1 real solution points not at infinity as oj E R”, j = 
1 ,...,I. Let ql(tl,...,2n),.,.,qk(~~,...,~~) be a 
set of polynomials. Then the set of sign sequences 
ofql(aj),...,qk(cXj),j= l,...,l can be computedin 
NC if m is jked. 
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This theorem is a corollary of Lemma 2.4 in 
[Canny 881. 

4.3.3 Parallel Adjacency Calculation 

We now discuss how to compute the grid G and the 
adjacency information for I? in NC with respect to 
the input size measures. Let R(Q) be defined by 
equation (7). Without loss of generality, we assume 
that R(Q) is squarefree (if not, make it so). We write 
R(z~) in terms of its real and imaginary parts: 

R(z2, ~2) = R1(22,~2) +iR2(z2,y2/2)- 

The complex zeroes of R are at the simultaneous ze- 
roes of RI and Ra. Let 

G2> = Rq,g (RI, R2), 

H(Yz) = Res,,(Rl, Rd. 
(9) 

The real zeroes of U contain the zz-coordinates of 
the critical points and the zeroes of H contain the 
yz-coordinates. Again, we ensure that U and H are 
squarefree. 

The solutions vi to the equation 

dW4 = (J 
da 

(10) 

generate vertical lines that separate the critical 
points. Likewise the solutions hi to the equation 

generate horizontal lines that separate the critical 
points. Finally, if A is a constant so that all roots 
of both U and H are greater than -A and less than 
A, then the grid G consists of the lines from equations 
(10) and (11) and 

x2=&A 

512 = &A. 

We now have a symbolic description of G. We next 
use this description with Sturm sequences to com- 
pute the adjacency information for R. We describe a 
method for computing adjacency information in the 
22 direction in G. Let ( vi,hi) and (vi,hj+r) be two 
adjacent vertices in G. These vertices lie on the grid 
line 22 = vi. Over these two vertices lie 2d points 
in S. These points form the vertices of k. The in- 
tersection of 22 = vi and S define d algebraic curve 
segments in K. These curve segments form the edges 
in K, joining pairs of vertices in K, each lying over a 
distinct grid vertex. 

We do not attempt to explicitly construct and fol- 
low the curve segments. Instead, we symbolically 
compute the adjacency information. We will project 
V(z2 - vi) n S onto the zlya-plane via resultants. AS 
shown in the next section, this projection will intro- 
duce only nodal singularities into the curve. TO de- 
termine adjacency information, we need only locate 
and detect the relative position of these nodes with 
respect to the vertices of K. For example, see figure 
3 

Specifically, consider the three polynomials. 

T(21,22,~2) = ResY,(9,P2). 

dU(o2) 
dm 

N(D, YZ) = Res,, (Z %I. 

(12) 

V(T) is the projection of S to tl, 22, y2 space. The 
second polynomial restricts S to planes parallel to the 
zry2 plane and through the vertical grid lines, form- 
ing an algebraic space curve. V(N, dU/dxz) consists 
of lines in the x1y2 plane, parallel to the 21 axis, con- 
taining nodes of the projected plane curve (the dotted 
horizontal lines in figure 3). 

Compute the sign sequences of the following poly- 
nomials: 

l The Sturm sequence of dU/dxz. 

l The Sturm sequence of dHldy2. 

l The Sturm sequence with respect to y/2 of 
N(Z2,Yz). 

l The Sturm sequence with respect to 21 of E. 

at the common zeros of the system (12). By theorem 
8, these sign assignments can be computed in NC 
with respect to the size of the input polynomials . 

To compute adjacencies for i we proceed as fol- 
lows: As y2 increases, the number of sign alternations 
of the Sturm sequence for dH/dy;! increases monoton- 
ically. We first sort all the sign assignments according 
to the number of sign alternations in this Sturm se- 
quence within each sign assignment. This partitions 
all the zeros of (12) into classes according to Y/Z coor- 
dinate. 

Each of these classes provides adjacency informa- 
tion for a particular slice y2 = hi. Next we sort within 
each class according to number of sign alternations of 
the Sturm sequence of dU/dxz. This gives us a collec- 
tion of classes which lie on the same horizontal grid 
segment between two adjacent vertical grid lines. Let 
this segment have endpoints s and t as in figure 3. 
Over s, there are four vertices sl, ~2, s3, and s4 in 
K. Likewise over t there are four vertices . The 
projected curve segments link the si to t.he tj. 
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Then sort within classes according to number of 
sign alternations of the Sturm sequence of N(z2, yz). 
This partitions the sign assignments into classes hav- 
ing the same (z2, yz) coordinates, which are the coor- 
dinates of the node points (the dotted lines in figure 

3). 
Finally, we sort the sign assignments according 

to number of alternations of the Sturm sequence of 
dT/&rl. This orders the points with the same 32- 
coordinates along the dotted line by 21 coordinate. 
One of these sign assignments will have a zero assign- 
ment to the polynomial &!‘/a~~, and this is the sign 
assignment of the node point itself. From the position 
of this sign assignment in the ordering, we infer the 
relative position of the node point along the dotted 
line and therefore among the branches of the curve in 
K. 

To generate the graph k, we label the d vertices 
of I? over a given grid point with 1,. . . , d. These la- 
bels come from the 21 ordering of the corresponding 
points in K. Each node can be represented as a per- 
mutation (an exchange of two adjacent elements) of 
the indices of the curve branches that cross at the 

node. To determine the permutation as we move in 
yz past Ic nodes, we compose the permutations of the 
nodes. The composition can be done in NC by com- 
posing adjacent (in yz ordering) permutations, then 
composing adjacent pairs of these etc. The final per- 
mutation gives the change in ordering from one grid 
point to the next, and provides the d edges joining 
corresponding vertices of K. 

One may perform similar calculations to compute 
adjacency information in the horizontal direction. 

4.3.4 Projections Introducing only Nodal 
Singularities 

Note from the construction that the space curve 
V(x2 - vi) n S has no singularities. However, in pro- 
jecting this space curve to a plane, we may neces- 
sarily introduce singularities. We now show that we 
may deterministically project the space curve onto 
the 21~2 plane introducing only nodes as singularities. 
The proof of [Hartshorne 77, Theorem IV.3.101, over 
the reals, shows that for a generic projection, a space 
curve is mapped to a plane curve with only nodes 
for singularities. To deterministically choose a cor- 
rect projection, we must first characterize those pro- 
jections that introduce non-nodal singularities. This 
characterization will take the form of a polynomial 
condition on the points of the projection that yield 
such a projection. 

By [Hartshorne 77, Theorem IV.3.71 ( which, while 
stated only for algebraically closed fields, can be 

I t1 t2 

<mm-- L -m--B --- -------------------) 
I 
I 

6 

xl 

Figure 3: Effect of nodes on adjacency calculations 

checked to still apply to the reals), such a point of 
projection must lie on a multisecant of the curve 

( i.e. a secant intersecting the curve in more than 
two places), a tangent of the curve, or a secant with 
coplanar tangent lines. The space of all lines in three 
space, adding the lines at infinity, form an algebraic 
set, called the Grassmanian G(2,4). The set of all 
multisecants, tangents and secants with coplanar tan- 
gent lines form an algebraic subset B of G(2,4). 

This fact can be seen as follows. A line in space is 
given by the intersection of two planes, which pro- 
vides the local coordinates for G(2,4). Given the 
line, we can explicitly give coordinates of points on 
it as functions of a parameter t. If Pl(zl, yi, yz) and 
Pz(xi, ~1, ~2) are the two surfaces defining our space 
curve, then substituting for points on the line, the 
intersection of the line with the curve can be deter- 
mined by examining the order of the roots of the 
one-variable polynomials PI(~) and Pz(t). In par- 
ticular, the set B of multisecants, tangents and se- 
cants with coplanar tangent lines can be described 
by polynomials involving the degrees of Pi(t) and 
Pz(t). In the space G(2,4) x R3, define the subset 
BL = ((I, p) E G(2,4) x R3 : 1 E B, p E I). BL maps, 
under the projection of G(2,4) x R3 + R3, to the set 
of bad points of projection, which is thus described by 
a polynomial whose degree depends polynomially on 
the degree of the space curve. Choosing a point not 
on this set using [Schwartz 801 will guarantee that the 
projected plane curve has only nodes for singularities. 
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5 Factorization Information [Canny 881 

Once we have computed the adjacency information 
for the curve skeleton K it is a simple task to recover 
the number of irreducible factors. By theorem 2, the 
number of irreducible factors of P equals the number 
of connected components of S - Sing(S). By the- 
orems 5 and 6, this must also equal the number of 
connected components of K, and hence k. 

If the polynomial P of degree d has the absolute 
factorization 

[Chistov 831 

[Davenport 811 

PqIPj i= l,...,k: 

where Pi has degree di, each vertex in the grid G 
must have exactly d vertices of K over it. By Bezout’s 
theorem, each factor Pi must generate exactly di of 
these vertices in K. Having identified the connected 
components in K, we need only count the number of 
vertices of K over any vertex of G that lie in the same 
connected component of R. All of these calculations 
can be performed in NC with respect to the input size 
measures. 

To construct an approximation to the Pi’s, we must 
construct approximations to the points in K. This 
task entails approximating the roots of univariate 
polynomial. The best algorithms require time that 
is polynomial in d ([P an 851). We can compute ap- 
proximations for roughly d2/2 vertices of K lying in 
the same connected component, and interpolate to 
recover the factor itself. 

Note the only step in computing this approximate 
factorization that does not run in NC is the univari- 
ate factorization step (root approximation). An NC 
algorithm for univariate factorization would lead di- 
rectly to an NC algorithm for bivariate factorization, 
as observed in [Kaltofen 85a]. 
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