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Abstract 

We present a simple characterization of the lowest de- 
gree, implicitly defined, real algebraic surfaces, which 
smoothly contain any given number of points and alge- 
braic space curves, of arbitrary degree. The character- 
ization is constructive, yielding efficient algorithms for 
generating families of such algebraic surfaces. Smooth 
containment of space curves yields Cl-continuous sur- 
face fitting, and is a generalization of standard Hermite 
interpolation applied to fitting curves through point 
data, equating derivatives at those points. We deal 
with the containment and matching of “normals” (vec- 
tors orthogonal to tangents), possibly varying along the 
entire span of the space curves. Such Hermite interpo- 
lated surfaces prove useful as “blending” or “joining” 
surfaces for solid models as well as “fleshing” surfaces 
for curved wireframe models. 

1 Introduction 

Importance: While developing a geometric modeling 
system for the construction of accurate computer mod- 
els of solid physical objects [l], we have designed 
a technique of automatically generating real interpo- 
lation surfaces of low degree, which yields a piece- 
wise, tangent-plane-continuous mesh of algebraic sur- 
face patches. Modeled physical objects with algebraic 
surface patches of the lowest degree, lends itself to faster 
computations in geometric design operations as well as 
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in tasks such as computer graphics display, animation, 
and various physical simulations. 
Geometric Coverage: We focus on the use of low de- 
gree, implicitly defined, algebraic surfaces in three di- 
mensional space R 3. A real algebraic surface S in R? 
is implicitly defined by a single polynomial equation 
f(z, y, Z) = 0, where coefficients of f are over the real 
numbers IR. A real algebraic space curve can be de- 
fined by the intersection of two real algebraic surfaces 
and implicitly represented as a pair of polynomial equa- 
tions (f~(z, Y, 2) = 0 and fz(z, y, t) = 0) with co- 
efficients again over the real numbers R. In modeling 
the boundary of physical objects it suffices to consider 
only space curves defined by the intersection of two al- 
gebraic surfaces. Space curves in general are defined 
by the intersection of several surfaces. A rational alge- 
braic space curve can also be represented by the triple 

(2 = G&),Y = Gz(s),z = Go), where GI, Gz and 
GJ are rational functions in s. Whenever we consider 
the special case of a rational space curve, we assume 
that the curve is smooth and only singly defined under 
the parameterization map, i.e., each triple of values for 
(2, y, z), corresponds to a single value of s. 

Why algebraic surfaces ? Manipulating polynomials, 
as opposed to arbitrary analytic functions, is computa- 
tionally more efficient. Furthermore algebraic surfaces 
provide enough generatity to accurately model almost 
all complicated rigid objects. Also as we show here, 
algebraic curves and surfaces lend themselves very nat- 
urally to the difficult problem of Hermite interpolation. 

Why implicit representations ? Most prior ap- 
proaches to interpolation and surface fitting, have fo- 
cused on the parametric representation of surfaces 
[3,12,16].. Contrary to major opinion and as we exhibit 
here, implicitly defined surfaces are also very appropri- 
ate for interpolation. Additionally, while all algebraic 
surfaces can be represented implicitly, only a subset 
of them have the alternate parametric representation, 
with Z, y and z given explicitly as rational functions of 
two parameters. Furthermore, implicit algebraic curves 
and surfaces have compact stora.ge representat,ions and 
form a class which is closed under most common oper- 



ations required by a geometric modeling system. 

The Problem: Construct a real algebraic surface S, 
which smoothly interpolates a collection of L points pi 
in EL3 with associated fixed “normal” unit vectors mi, 
and 1 given space curves Cj in R3 also with associated 
“normal” unit vectors nj, varying along the entire span 
of the curves, (i = 1.. .Ic, j = 1.. .I). Both points and 
space curves have an infinity of potential “normal” vec- 
tor directions. While for points the m; may be chosen 
arbitrarily, for space curves Cj, the varying unit vectors 
nj are chosen to be always orthogonal to the tangent 
vector tj, that is, tj.nj = 0, along the entire curve. Our 
emphasis being algebraic space curves, the variance of 
the curves.“normals” are restricted to univariate poly- 
nomials of some degree. Also, we assume that any of 
the vectors rni and nj are never identically zero, a phe- 
nomenon that occurs at point and curve singularities. 
By smoothly interpolates we shall mean that S contains 
each of the points and curves and furthermore has its 
gradient in the same direction as the “normal” vectors 
mi and nj. This is a natural generalization of Hermite 
interpolation, applied to fitting curves through point 
data, and equating derivatives at those points. As we 
shall see later, the choice of the associated “normal” 
direction, in each case is dictated by the use of the Her- 
mite interpolated surface, (eg, in “blending” or “join- 
ing” or “fleshing”). 

Related Work: Sarraga in [12] presents techniques for 
constructing a G-continuous surface of rectangular 
BCzier (parametric) surface patches, interpolating a net 
of cubic Bdzier curves. Other approaches to paramet- 
ric surface fitting and transfinite interpolation are also 
mentioned in that paper, as well as in [16]. An excellent 
exposition of exact and least squares fitting of algebraic 
surfaces through given data points, is presented in [lo]. 
Meshing of given algebraic surface patches using con- 
trol techniques of joining Bdzier polyhedrons is shown 
in [13]. Surface blending consisting of “rounding” and 
“filleting” surfaces (smoothing the intersection of two 
primary surfaces), a special case of Hermite interpola- 
tion, has been considered for polyhedral models in [4] 
and for algebraic surfaces in [5,6,8,9,I1,14,15,16]. 

Results: We show in Sections 3, 4 and 5 that the prob- 
lem of generalized Hermite interpolation of points and 
curves with algebraic surfaces, reduces to solving sys 
terns of linear equations, albeit at times with symbolic 
coefficients. In particular for an algebraic surface of de- 
gree n, to smoothly contain k points and 1 space curves 
of degree d with assigned “normal” directions, varying 
as a polynomial of degree rn, the number of linear equa- 
tions to be satisfied is 31c + (27~ + m - 1)dl + 21. This 
number reduces to 3k + (2n - 1)dl + ml + 21 when all 
the space curves and “normals” are represented para- 
metrically. Since the number of independent coefficients 
(unknowns) of a general algebraic surface of degree n is 
(“z3) - 1, the number of linear equations stated above, 
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yields both necessary and sufficiency conditions on Her- 
mite interpolated algebraic surfaces, for a variety of 
point and curve data configurations. As applications 
of this simple vector space characterization of Hermite 
interpolated algebraic surfaces, we show, in section 5, 
for example, that: 

l Two space lines with constant-direction normals 
can be Hermite interpolated with a real quadric if 
and only if the lines are parallel or intersect at 
a point, and the normals are not orthogonal to 
the plane containing them. The real quadric is a 
“cylinder” when the lines are parallel and a “cone” 
when the lines intersect. 

l Two skewed lines with constant-direction normals 
cannot be Hermite interpolated with real quadrics. 
The only real quadratic surface which satisfies both 
containment and tangency conditions reduces into 
two planes. 

l The minimum degree of a real algebraic surface, 
which Hermite interpolates two lines in space, one 
with a constant direction normal, the other with a 
linearly varying normal is three. 

l Two lines with linearly varying normals can be 
Hermite interplated by a quadric in only some spe- 
cial cases. In general, a surface of at least degree 
three is needed. When real quadric surface interpo- 
lation is possible, the real quadric is either a hyper- 
boloid of one sheet (the two lines may be parallel, 
intersecting, or skewed) or a hyperbolic paraboloid 
(the two lines can only be intersecting or skewed). 

Lines in space with constant-direction normals, occur 
naturally as edges of polyhedra, with the Hermite inter- 
polating surfaces being used to “smooth” planar faces 
containing those edges. Lines with linearly-varying nor- 
mals occur on real quadric and cubic surfaces. Similar 
results to the ones above, are also derived in sections5. 
and 6, for Hermite interpolation of tonics and cubits 
in space. Since these rational curves lie on quadrics, 
cubic surfaces and higher degree algebraic surfaces, our 
method gives a powerful way of automatically, generat- 
ing low degree “blending” and “joining” and “fleshing” 
surfaces with tangent continuity at intersections. 

2 Preliminaries 

For any multivariate polynomial f, partial derivatives 
are written by subscripting, for example, fi = af/ax, 

fq = a2f/(axaY), and so on. Since we consider al- 
gebraic curves and surfaces, we have fly = fYl etc. 
Vectors and vector functions are denoted by bold let- 
ters. The inner product of vectors a and b is denoted 
a. b. The length of the vector a is ]]a]] = 6. 



The gradient of f(z, y, z) is the vector Of = 
(fz,fY,fi)- A point p = (Z~,YO,ZO) is a simple point 
of f if the gradient of f at p is not null; otherwise the 
point is singular. An algebraic surface is non-singular 
or smooth if all its points are simple. 

Definition 2.1 Lei p = (a, b, c) be (I point with an as- 
sociated %ormal” m = (mz, my, m,) in ZL3. An al- 
gebraic surface S : f(z, y,z) = 0 is said 20 smoothly 
contain p if 

‘,‘,‘df (p) = f (a, b, cl = 0, ( containment condition) 

(2) Vf(p) is not zero and Vf(p) = am, for some 
nonzero (Y. (tangency condition) 

Definition 2.2 Lel C be an algebraic space curue with 
an associated varying %ormaln 
42, Y, 2) = (n=(z, y, 21, ny(z, Y, ~1, n=(z, Y, z)), defined 
for all points on C. An algebraic surface S : f(z, y, z) = 
0 is said lo smoothly contain C if 

(1) f(P) = 0 for all points p of C. (containment 
condition) 
and 
(2) Vf(p) is nol identically zero and Vf(p) = an(p), 
for some nonzero a and for all poiF2s p of C. (tan- 
gency condition) 

Definition 2.3 An algebraic surface S : f(z) y, z) E 0 
is said lo Hennile interpolate a given colleclion of data 
points with associated “normals”, and dais curves with 
associated “normals”, if S smoothly contains all ihe 
data points and curves. 

The following is one form of Bezout’s theorem (the 
oldest theorem of algebraic geometry). 

Theorem 2.1 An algebraic curve C of degree d inier- 
sects an algebraic surface S of degree n in al most nd 
points, or else it must intersect il infinitely often, iha 
is, a component of C must lie entirely on S. 

3 Interpolation of Points 

3.1 Containment 

There exist applications in object reconstruction in geo- 
metric design, when there is need to construct a surface 
which interpolates a given set of data points. From the 
containment condition of definition 2.1 it directly fol- 
lows that any algebraic surface S : f (r, y, z) = 0, whose 
coefficients satisfy the linear equation f(p) = 0 will con- 
tain the point p. For a set of k data points this yields 
k linear equations. For an algebraic surface of degree 
n, having Ii’ = (“i3) - 1 independent coefficients, vari- 
ous types of exact fits can be obtained by choosing the 
smallest n such that I< > r, where T, (5 k) is the rank 
of the system of k linear equations. Details of meth- 
ods for constructing such real algebraic surfaces can be 
found in [lo]. 
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3.2 Containment with Tangency 

Quite often one also needs a low degree algebraic sur- 
face which not only contains a set of data points 
but is also tangent to a prespecified plane at each 
of those points. A point p = (a, b,c) with a “nor- 
map’ m = (m,, my, m,) determines a unique plane 
P: m,z + myy + m,z - (m,a + myb + m,c) = 0, at 
the point p. An algebraic surface S : f(z, y, z) = 0 of 
degree n that Hermite interpolates a point p, can be 
computed as follows: 

1. (containment condition) For point p setup the 
linear equation f(p) = 0 in the unknown coeffi- 
cients of S. 

2. (tangency condition) One of the following cases 
is selected. 

(a) If me # 0, use the equations m,fy(p) - 
m,f&) = 0 and mzfz(p) - m,f,(p) = 0. 

(b) If my # 0, use the equations myf,(p) - 
m,f,(p) = 0 and myfz(p) - m,f,(p) = 0. 

(c) If mz # 0, use the equations m,f,(p) - 
mzfi(p) = 0 and m,f,(p) - m,f,(p) = 0. 

3. We also ensure that the coefficients off (z, y, .z) = 0 
satisfying the above three linear equations, addi- 
tionally satisfy the linear constraints Vf(p) # 0, 
since non-tangency at p may occur if S turns out 
to be singular at p. 

The proof of correctness of the above algorithm follows 
from the following lemma. 

Lemma 3.1 The equa2ions of the above algorithm sai- 
isfg dejntion 2.1 of point containment and tangency. 

Proof : The first linear equation f(p) = 0 satisfies 
containment by definition. We now show that the re- 
maining equations satisfy Vf(p) = a . m for a fionzero 
(Y. Since m is never taken to be the (O,O, 0) vector, 
without loss of generality we may assume that m, # 0 
in step 2. above. Other cases of my # 0 or m, # 0 
can be handled symmetrically. Now let Q = &, as- 
suming m, # 0. Then fi = a. m, and susbtituting it 
in the selected linear equation m,fy - myfz = 0 yields 
fy = (y-my and substituing it again in the other selected 
linear equation m,fr - m, fz = 0 yields ft = a . m,. 
Hence Vf(p) = (Y. m. Finally, note that fz = 0 for 
m, # 0, in the selected linear equations of’step 2 (a)., 
would cause Vf(p) = 0, which we ensured would not 
happen in step 3 of the algorithm. Hence fi # 0 and 
so (Y # 0 and the lemma is proved. 4 

4 Interpolation of Curves 

The varying “normal” associated with a space curve 
C can be defined implicitly by the triple n(z. y, z) = 



(n,(2,y,%),ny(2,y,%),nl(lly,Z)) where G, ny and nz 
are polynomials of maximum degree m and defined only 
for all points p = (2, y, z) along the curve C. For the 
special case of a rational curve, as defined earlier, and 
which we shall treat separately in sections 4.1.2 and 
4.22, the varying “normals” can also be defined para- 
metrically as n(s) = (n,(s),ny(s),n,(s)), with n,, nY 
and n, now rational functions in s. 

4.1 Containment 

4.1.1 AIgebraic Curves: Implicit Definition 

Let C : (fr (t, y, z) = 0, f~(z, y, Z) = 0) implicitly define 
an irreducible algebraic space curve of degree d. The ir- 
reducibility of the curve is not really a restriction, since 
reducible curves can be handled similarly by treating 
each irreducible component in turn. The situation is 
slightly more complicated if in the real setting, we may 
wish to achieve separate containment of each real com- 
ponent of an irreducible curve. We defer a solution 
to this problem, and for the time being consider it re- 
duced to the problem of choosing appropriate clipping 
surfaces to isolate that real component, after the inter- 
polated surface is computed. Note for parametrically 
defined curves, this problem does not arise. 

An interpolating surface S : f(~, y, Z) = 0 of degree 
n for containment of C, is then computed as follows: 

1. Choose a set L, of nd+ 1 points on C L, = 
,nd+l}’ These; L rntc (Zi,yi,%i)li = l,‘.’ * e 

computed, for example, by tracing the intersection 
of fr = fz = 0, see for e.g., [2]. 

2. Next, set up nd + 1 homogenous linear equations 
f(pi) = 0, for PieLee Any nontrivial solution of 
this linear system will represent an algebraic sur- 
face which interpolates the entire curve C. 

The proof of correctness of the above algorithm is cap- 
tured in the following Lemma. 

Lemma 4.1 To satisfy the containment condition of 
an algebraic curve G of degree d by an algebraic sur- 
face S of degree n, it sufices to satisfy the containment 
condition of nd + 1 points of C by S. 

Proofz This is essentially a restatement of Bezout’s 
theorem of section 2. By making S contain nd -I- 1 
points of C, ensures that S must intersect C infinitely 
often and since C is irreducible, S must contain the 
entire curve. 4 

Remember S : f (z, y, z) = 0 of degree n has I< = 

(“Z3> - 1 independent coefficient unknowns. Let r be 
the rank of the system of nd+ 1 linear equations. There 
are non-trivial solutions to this homogeneous system if 
and only if I< > r and a unique non-trivial solution 

‘Thus. alternatively, an algebraic curve may be given as a list 
of points. 

when I< = r. Hence, again an interpolating surface 
can be obtained by choosing the smallest n such that 
K 2 r. 

4.1.2 Rational Curves : Parametric Definition 

When a curve is given in rational parametric form, its 
equations can be used directly to produce a linear sys- 
tem for interpolation, instead of first computing nd + 1 
points on the curve. Let C : (Z = Gl(t), y = Gz(t), .z = 
Gz(6)) be a rational curve of degree d.. An interpolating 
surface S : f(2, y, .z) = 0 of degree n which contains C 
is computed as follows: 

1. Substitute (Z = Gl(t), y = Gz(t),z = Gs(t)) into 
the equation f(~, y, Z) = 0. 

2. Simplify and rationalize to obtain Q(t) = 0, where 
& is a polynomial in t, of degree at most nd, and 
with coefficients which are linear expressions in the 
coefficients off. For & to be identically zero, each 
of its coefficents must be zero, and hence we obtain 
a system of at most nd f 1 linear equations, where 
‘the unknowns are the coefficients of f. Any non- 
trivial solution of this linear system will represent 
a surface S which interpolates C. 

The proof of correctness of the algorithm follows from 
the lemma below. 

Lemma 4.2 The containment condition is satisfied by 
step 2. of the above algorithm 

Proof: We omit this here and refer the reader to the 
full paper. 4 

4.2 Containment with Tangency 

In order to Herntite interpolate an algebraic curve C 
with associated “normals” n by an algebraic surface S, 
we need to again solve a homogenous linear system, 
whose equations stem from both the containment con- 
dition and the tangency conditions of definition 2.2. 

4.2.1 Algebraic Curves with Normals: Implicit 
Definition 

As before, let C : (fr(t, y,~) = 0, f*(z, y,z) = 
0) implicitly define an irreducible algebraic space 
curve of degree d, together with associated “nor- 
mals” defined implicitly by .the triple n(z, y, z) = 
(n+(x, Y, z), n,(z, y/, %I, n,(z, Y, %)I where n,, ny and n, 
are polynomials of maximum degree m and defined for 
all points p = (2, y, Z) along the curve C. A Hermite in- 
terpolating surface S : f (z, y, Z) = 0 of degree n which 
smoothly contains C is then computed as follows: 

1. Choose a set L, of (n + m - 1)d + 1 points on C, 
L,={pi=(~i,yi,~i)(i= I,..-,(n+m-l)d+l}. 
The set L, may be computed. as before, by tracing 
+.he intersection of fl = fi = 0. see for e.g., [2]. 
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2. Construct the list Lt of (n + m - 1)d + I p&t- 
normal pairs 
C, Lt = ([(ti,Yi,zi),(n,i,n,i,n,i)]li= l,***,(Tl"J 

m - 1)d + l}*, where (nai, n,,i, n,i) = n(p;) for 
Pi& 

3. (containment condition) Next, set up nd + 1 
homogenous linear equations f(pi) = 0, for girl, 
and i= l,...,nd+ 1. 

4. (tangency condition) 

(a) Compute 
t(&Y,z) = Vfltz, Y, 2) x Vh(2, Y, ~1. Note 
t = (2,,t,,t,) is the tangent vector to C. 

(b) One of the following cases is selected. 

i. If& # 0, use theequation fy-n,-ny.fz = 
0. 

ii. If 1, # 0, use the equation f,+,-n,. fz = 
0. 

iii. If t, # 0, use the equation fz.ny -n,.f, = 
0. 

Substitute each point-normal pair in Lt into 
the above selected equation to yield addition- 
ally (n + m - l)d + 1 linear equations in the 
coefficients of the f (2, y, z). 

5. In total we obtain a homogeneous system of (2n + 
m - l)d+ 2 linear equations. Any non-trivial solu- 
tion of the linear system, for which additionally Of 
is not identically zero for all points of C, (that is, 
the surface S is nonsingular at all points along the 
curve C), will represent a surface which Hermite 
interpolates C. 

The proof of correctness of the above algorithm fol- 
lows from Lemma 4.1 and the following lemma, which 
shows why the selected equation of step 4. (b) evaluated 
at (n + m - 1)d + 1 point-normal pairs, are sufficient. 

Lemma 4.3 To salisfy the tangency condition of an 
algebraic curve C of degree d with “normal” n of degree 
m, by an algebraic surface S of degree n, i2 sufices 20 
satisfy the tangency condition at (n+m- l)d+ 1 points 
of C by S as in step 4. of ihe above algorithm. 

Proof : In step 4.(b) above, assume without loss of 
generality that 5, # 0. Then the selected equation 

fy . n, - nY . fz = 0 (1) 

We first show that even though equation (1) is evalu- 
ated at only (n + m - 1)d + 1 points of C in step 4. (b) 
above, it holds for all points on C. Equation 1 defines 
an algebraic surface T of degree (n+m- 1) which inter- 
sects C of degree d at (n+ m - 1)d real points. Invoking 

2Thus, alternatively, an algebraic curve C and its associated 
“normals” n may (either or both) be given as a list of points or 
point-normal pairs. 
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Bezout’s theorem, and from the irreducibility of C, it 
follows that C must lie entirely on the surface T. Hence 
equation (1) is valid along the entire curve C. 

We now show that step 4. of the above algorithm, 
satisfies the tangency condition as specified in defini- 
tion 2.2. Since t of step 4.(a) is a tangent vector at all 
points of C, and the surface S : f = 0 contains C, the 
gradient vector Vf is orthogonal to t, which yields the 
equation ; 

fi * t, + fy * t, + fz * t, = 0 (2) 

valid for all points of C. Next, from the definition of a 
unormal” of a space curve, 

n,~t,+nY~ty+n,~t,=O (3) 

valid for all points of C. Now it is impossible that both 
nY(z, y, z) and nZ(z, y,z) are identically zero along C, 
since if they were then equation (3) would imply that 
nr.b = 0, and as we had assumed that t, # 0, would in 
turn imply that also n, = 0 along C, which would con- 
tradict the earlier assumption that n is not identically 
zero. Hence, at least, one of nY and n, must also be 
nonzero. Without loss of generality, let n,, # 0. Also, 

let (~(t, y, Z) = k. Then, 

fY =f2.nY 

and substituting into equation (1) yields 

(4) 

fz =cr.n, (5) 

for all points on C. From equations (2), (4) and (5) we 
obtain, 

f,.t,+Q.ny.ty~~Qnn,.t,=O (6) 

By multiplying (Y to equation (3) and subtracting equa- 
tion (6) from it, we obtain 

fz . tz = a. n, . t, 

and since t, # 0, finally obtain 

(7) 

fz =a.n, 03) 

valid at 811 points of C. Hence equat,ions (4), (5), and 
(8) together imply that Vf (2, y, Z) = cr.n for all points 
C and some nonzero a3. Hence, the tangency condition 
of definition 2.2 is met. )r 

3From equation (6) we see that Q(Z, y, z) must not be identi- 
cally zero along C, for otherwise, Vj = (0, 0,O) for points along 
C and would contradict the fact that we chose a non-trivial soh~- 
tion for the surface S : f = 0 which was nonsingular at all points 
along c. 



4.2.2 Rational Curves with Normals : Para- 
metric Definition 

When both a space curve and its associated “normal” 
are given in rational parametric form, their equations 
can be used directly to produce a linear system for in- 
terpolation, instead of first computing (n + m - l)d + 1 
points on the curve. Let C : (t = Gr(s), y = &(s), z = 
Go) be a rational curve of degree d with associated 
“normals” n(s) = (n,(s),nY(s),n,(s)) of degree m. A 
Hermite interpolating surface S : f(z, y,z) = 0 of de- 
gree n which smoothly contains C is computed as fol- 
lows: 

1. (containment condition) Substitute (z = 
G(s), Y = G~(s),z = Gs(s)) into the equation 
f(z, y, z) = 0. This results in nd + 1 homogenous 
linear equations as in section 4.1.2. 

2. (tangency condition) 

(a) Compute Vf(s) = Vf(G(s), Gds>, GB(s)) 

and t(s) = ($, $, 9). Note ) = (to, 1,, tz) 
is the tangent vector to C. 

(b) i. If tz # 0, use the equation fy(s) .n,(s) - 
7$(s) * fi(S) = 0. 

ii. If t, # 0, use the equation f&s) . n,(s) - 
n,(s) * f=(s) = 0. 

iii. If t, # 0, use the equation f=(s) .nY(s) - 
n,(s) * f&g = 0. 

In each case, the numerator of the simplified 
rational function equation is set to zero. This 
yields ,additionally (n - 1)d + m + 1 linear 
equations in the coefficients of the surface S : 
f(t, Y, 2) = 0. 

3. In total we obtain a homogeneous system of (27~ - 
1)d + m + 2 linear equations. Any non-trivial so- 
lution of the linear system, for which additionally 
Of is not identically zero for all points of C, (that 
is, the surface S is not singular along the curve C), 
will represent a surface which Hermite interpolates 
C. 

The proof of correctness of the above algorithm fol- 
lows from Lemma 4.2 and the following lemma, which 
shows why the selected equation of step 2. satisfies the 
tangency condition. 

Lemma 4.4 If we choose a nontrivial solution for 
which the resulting Hermite interpolating surface S is 
nonsingular along the given curve C, then the step 2. 
guurantees that the tangency condition of definition 2.2 
is met. 

Proof: The proof is similar to the proof of lemma 4.3 
with minor modifications. We omit this here and refer 
the reader to the full paper. 4 
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5 Applications: Mixed Points 
and Space Curve Data 

The basic mechanics of Hermite interpolation using al- 
gebraic surfaces, as presented in the algorithms of sec- 
tions 9. and 4., are 

1. properties of a surface to be designed are described 
in terms of a combination of points, curves, and 
possibly associated “normal” directions, 

2. these properties are translated into a homogeneous 
linear system of equations with extra surface con- 
straints, and then 

3. nontrivial solutions of the above system are com- 
puted using the smallest surface degree 

In particular the total number of linear equations genr 
erated for a possible algebraic surface of degree n to 
smoothly contain k points with fixed constant “normal” 
directions and also to smoothly contain 1 space curves 
of degree d with assigned “normal” directions, varying 
as a polynomial of degree m, is 3k + (2n + m - l)dl+ 21. 
This number reduces to 3k+(2n- l)dl+m1+21 when all 
the space curves and associated “normals” are defined 
parameterically. 

For a given configuration of points, curves and “nor- 
mals” data the above interpolation scheme, allows one 
to both upper and lower bound the degree of Hermite 
interpolated surfaces. 

1. Lower Bound Let k be the rank of a homogenous 
system of linear equations, derived for the given 
geometric configuration. The rank tells us the ex- 
act number of independent constraints on the co 
efficients of our desired algebraic surface. Depen- 
dencies arise from spatial inter-relationships of the 
given points and curves. From the rank then we 
can conclude that there exists no algebraic surface 
of degree less than or equal to no where no is the 
largest n such that K < k with Jr’ = (“i3) - 1. 

2. Upper Bound Alternatively, the smallest n can 
be chosen such that I( 1 k, where again IC is the 
number of independent coefficient unknowns and k 
is the rank of the above linear system. The non- 
trivial real solutions of the linear system represents 
a K - k parameter family of algebraic surfaces of 
degree n which interpolates the given geometric 
data. We then select suitable real surfaces from 
this family, which additionally satisfy our nonsin- 
gularity and irreducibility constraints” 

‘However some of these interpolating surfaces might still not 
be suitable for the design application they were intended to ben- 
efit. These problems arise when the given points or curves arc 
smoothly interpolated, however tie on separate real components 
of the same nonsingular, irreducible algebraic surface. We con- 
sider this problem again in section 7. 



We now enumerate some results which lower bound 
the degree of feasible Hermite interpolated surfaces. 

1. Two skewed lines in space with constant-direction 
normals cannot be Hermite interpolated with real 
quadrics. The only real quadric which satisfies 
both containment and tangency conditions reduces 
into two planes. 

2. Two lines in space with constant-direction normals 
can be Hermite interpolated with a real quadric if 
and only if the lines are parallel or intersect at 
a. point, and the normals are not orthogonal to 
the plane containing them. The real quadric is a 
“cylinder” when the lines are parallel and a “cone” 
when the lines intersect. 

3. The minimum degree of a real algebraic surface, 
which Hermite interpolates two lines in space, one 
with a constant direction normal, the other with a 
linearly varying normal is three. 

4. Two lines with linearly varying normals can be 
Hermite interpolated by a quadric in only some 
special cases. In general, a surface of at least de- 
gree three is needed. When real quadric surface 
interpolation is possible, the real quadric is either 
a hyperboloid of one sheet (the two lines may be 
parallel, intersecting, or skewed) or a hyperbolic 
paraboloid (the two lines can only be intersecting 
or skewed). 

We exhibit the method of generating tight upper 
bounds on the degree, by constructing the lowest de- 
gree Hermite interpolated surfaces for “blending” and 
“joining” primary surfaces of solid models as well as for 
“fleshing” curved wireframe models of physical objects. 

Example 5.1 A Hyperboloid Patch for Smoothing the 
Intersection of Two Cylindrical Surfaces 

The case of two circular cylinders is a common test case 
for “blending” algorithms. Various different ways have 
been given, (for e.g. see [5,11,15]) for computing a suit- 
able surface which “smoothes” or “blends” the intersec- 
tion of two equal radius cylinders, 5’1 : x2 + y2 - 1 = 0 
and& : x’+z2-1 = 0. We consider an ellipse Cr on Sr 
(it is the intersection with the plane 3r+ y = 0), defined 
parameterically, Ci : (3, s, s) with associated 

rational “normal” nr(t) = (*,O, e), and the el- 

lipse CZ on S;! defined implicitly, C2 : ((y” + .z2 - 1 = 
o,z+3y= 0) with associated “normal” n2(z, y,z) = 
(0,2y,2;). Both Ci and (72’s “normals” are respec- 
tively chosen in the same direction as the gradients 
of thier corresponding containing surfaces 5’1 and Sz. 
This ensures that any Hermite interpolating surface for 
C1 and C2 will also meet Si and Sz smoothly along 
these curves. As a possible Hermite interpolant we con- 
sider a degree two algebraic surface S : f(r.9,:) = 

ax2+by2+cz2+dxy+eyz+fzx+gx+hy+ir+j= 0. 
Applying the method of section 4.22, to S and Cr re- 
sults in 8 equations, 5 from the containment condition 
and 3 from the tangency condition. ( Note: 5 equations 
are supposed to be generated, but 2 of these turn out to 
be degenerate). For C2, we use the method of section 
4.21, and first compute L, = ((0, 0, l), (-3, 1, 0), (3, 
-1, 0), (-2.4, 0.8, -0.6), (2.4,, -0.8, -0.6)) and Lt = {[(0, 
0, l), (0, 0, 2)L K-3, 1, Oh (0, 2, 011, [(3, -1, 01, o-4 -2, 
O)], [(-2.4,0.8,-0.6),(0,1.6,-1.2)], [(2.4,-0.8,-0.6),(0,-1.6,- 
1.2)]}. For these lists, we get 10 equations, 5 from the 
containment condition and another 5 from the tangency 
condition. Hence, overall the linear system consists of 
9 independent unknowns and 18 equations. The rank 
of this system is 9, and hence we get the unique surface 
soution f(z, y, z) = x2 + y2 - 8z2 + 6ty + 8 = 0. This 
real quadric satisfies both the nonsingularity and irre- 
ducibility constraints. It is a hyperboloid of one sheet 
and the lowest degree surface which “blends” the inter- 
section of the two cylinders. See Figure 1. at the end 
of the paper. i 

Example 5.2 A Cubic Interpolation Surface for 
Smoothly Joining Two Cylindrkal Surfaces 

Another example for an interpolated surfaces arises 
when we consider computing the lowest degree surface 
which can smoothly join two truncated circular cylin- 
ders Sr : x2+z2-1 = Ofory>2andSz: y’+z’-l=O 
for I >_ 2. Traditionally, this join has been achieved by 
using a quarter section of a torus (a degree four al- 
gebraic surface). This example was considered in [15] 
where a similar solution was obtained by finding low 
degree surface members in appropriate product ideals 
of the section curves. Here, we illustrate the Hermite 
interpolation technique which also proves that degree 
three, is the lowest degree algebraic surface to satisfy 
the smooth-join requirement for this configuration. AS 
before, we take a circle Cr : ($, 2, &$) on 4 with 

the associated rational “normal” m(t) : ( I$$, 0, $$) 
at and the circle C, : (2,l+ta, p Iwta) on Sz with the associ- 

ated rational “normal” ni(t) : (0, I-$$, ?I$$). Again, 
both Cr and C2’s “normals” are respectively chosen in 
the same direction as the gradients of t.heir correspond- 
ing containing surfaces Sr and S2. This ensures that 
any Hermite interpolating surface for Cr and C2 will 
also meet S1 and SZ smoothly along these curves. A 
degree two algebraic surface does not suffice for Her- 
mite interpolation, since the rank of the resulting lin- 
ear system is greater than 9, the number of indepen- 
dent unknowns. Next as a possible Hermite interpolant 
consider a degree three algebraic surface with 19 inde- 
pendent unknown coefficients. Applying the Hermite 
interpolation method of section 4.2.2, to the curves 
results in 24 equations (28 equations are supposed to 
be generated, but 4 of t,he 28 are degenerate.). The 
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rank of this linear system is 19, and thus there is a 
unique cubic Hermite interpolating surface, which is 
f(X,YlZ> = x3 + y3 + x2y + xy2 + xz2 + yr2 - 4x2 - 

4Y2 - 4r2 - 4xy + 3x + 3~ + 4. See Figure 2. at the end 
of the paper. + 

Example 5.3 A Family of Cubic Surfaces which Flesh 
a Saddle Wirefiame 

Consider a wireframe of a solid model consisting of a 
circle, a parabola , and two lines. Using Hermite in- 
terpolation, we find a 2 parameter family of cubic sur- 
faces which “fleshes” this wire frame. Again we can 
show that no degree two algebraic surface can con- 
tain all these curves simultaneously. Consider the circle 
Cr : (+, &, -l), the parabola C2 : (t, -2t2 + 2, l), 
the line C’s : (l,O, t), and the line C4 : (-l,O,t). As 
a possible Hermite interpolant consider a degree three 
algebraic surface with 19 independent unknown coef- 
ficients. Applying the Hermite interpolation method 
of section 4.12, we obtain a homogeneous linear sys- 
tem of 22 equations. The rank of this system is 17, so 
there is a 2 parameter family of cubic Hermite interpo 
lating surfaces which is f (x, y, z) = -bx2z + %$y’z - 
qyz2 - ax2 - qy2 - yyz + cy + bz + a. A 
suitable real solution surface from this family is ob- 
tained for a = 3, b = 2, and c = 1, yielding f(x, y,z) = 
12+4y-2y2--9yr 2-8x2z+2y2~- 12x2-5yr+8z = 0. 
See Figure 3. at the end of the paper. i 

6 Extensions and Related Tech- 
niques: Meshing Quadric Sur- 
face Patches 
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Solving a linear system of equations plays a key role in 
Hermite interpolation. In what follows, we give another 
approach of algebraic surface design where a nonlinear 
system of equations needs to be solved. 

In Hermite interpolation, the linear equations gener- 
ated represent the constraints to be met by a single in- 
terpolating surface. The larger the number of indepen- 
dent containment and tangency constraints, the higher 
the degree of the resulting interpolating surface. The 
total number of constraints depends largely on the de- 
grees of the given curves and their “normals”. 

Since the number of terms in an algebraic surface 
increases as the cube of its degree, computation with 
high degree algebraic surfaces gets expensive and er- 
ror prone. Hence, for good reasons we are advised 
to keep the degrees of our “blending”, “joining” and 
“fleshing” surfaces as low as possible. The problem con- 
sidered in this section is to Hermite interpolate, conic 
curves in space with (not necessarily one), but a com- 
bination of quadric surface patches which themselves 
meet smoothly along thier intersection curves. Such 
“smooth” meshing has been largely addressed by [12,13] 

amongst others, using the BCzier representations of sur- 
faces. 

We first state a useful theorem from algebraic ge- 
ometry, observed and used independently by numerous 
authors in various alternate forms 

Lemma 6.1 Let S : f(x, y, z) = 0 be an irreducible 
quad& surface, and Q : q(x, y, z) = 0 be a plane which 
intersects S in a conic C. Then, another quadric sur- 
face S1 : fl(x, y,z) is tangent to S along C if and only 
if there exists nonrero constants a, /3 (possibly complex) 
such that fl = af + /3q2. 

Proof: The proof may be found for example, in [10,14]. 
Ir 

Since we are interested in interpolation with real sur- 
faces, we may restrict (Y and /3 to be real numbers. 

A related theorem can be derived for the quadric sur- 
face interpolation of two tonics in space. 

Lemma 6.2 Consider quadrics S1 : fl = 0, S2 : fa = 
0 and planes &I : q1 = 0, Qa : qa = 0. Let CI : (fi = 
0, q1 = 0) and C2 : (fz = 0, q2 = 0) be two tonics in 
space. Then Cl and C2 can be Hermite interpolated by 
a quad& surface S if and only if there exist nonzero 
constants al, a~, PI, and ,Ba (possibly complex) such 
that a1 fl + Plqz - azfa - Pa& = 0. 

Proof: Trivial. (Just apply Lemma 6.1 twice.) 1, 
This theorem is constructive, in that, it again yields 

a system of equations and a direct way of computing a 
Hermite interpolating quadric surface. Furthermore a 
solution to the above equations, linear in the Q’S and 
/3’s, exists if and only if such an interpolating quadric 
surface exists. Again, when real surfaces are favorable, 
we require (~1, (~2, pi, and @z to be real numbers. 

Example 6.1 Suppose C, : (x2 + z2 - 1 = 0,3x + y = 
0), and C2 : (y2 + z2 - 1 = 0, z + 3y = 0). We get the 
following equation from Lemma 6.2: (~1+9/3~-&)x2+ 
(A- a2 -9Pz)y2 +(aY; -a2)z2 +(6P1 -~&)xY+(w - 
a2) = 0. This implies a1 = aa, & = P2, al = -8&. 
When a1 = -8 and PI = 1, the interpolating surface is 
x2 + y2 -8*2+6ry+8=0. 

In the Lemma 6.2 and the example: the two tonics on 
the given quadric surfaces, Si and Sz, were fixed. If we 
have freedom to choose different intersecting planes Qi 
and Qz then we may be able to find a family of quadric 
interpolating surfaces. In this case, the equations of 
planes Qi and Qz would have unknown coefficients and 
the use of Lemma 6.2 would result in a nonlinear system 
of equations, linear in terms of ~1, a?, /3i and h, and 
quadratic in terms of the unknowns of t.he plane’s equa- 
tions. Now, rather than trying to find a single quadric 
surface, we can also extend the above Lemma, to con- 
struct two or more quadrics which smoothly contain 
two given tonics in space, and furthermore themselves 
intersect in a smooth fashion. The following Lemma, 
which is constructive tells us how t.o go about, t,his. 



Lemma 6.3 Let Cl : (!I = 0, q1 = 0) and CZ : (fi = 
O,q2 = 0) be two tonics in space. These two curues can 
be smoothly contained by two “smoothly intersecting” 
quadrics S1 : g1 = alfl + blqf = 0 and quad&s S2 : 

Q2 = a2f2 + b2qz if and only if there exist nonzero con- 
stants al, ~2, bl, b2, a, p, and a plane & : q(x, y, z) = 0 
such that a1 fi + blq: - “(a2f2 + b2q;) - /3q2 = 0. 

Proof: It follows from Bezout’s theorem for surface in- 
tersection, that two quadrics always intersect smoothly 
in a plane curve (either an irreducible conic or straight 
lines). Let the intersection curve lie on the unknown 
plane Q, then just apply Lemma 6.1 three times. 4 

The final equation of the above Lemma results in a 
nonlinear (cubic) system of equations which is linear in 
terms of the unknowns al, a2, bl , b2, a, and ,f3, and 
quadratic in terms of the unknown coefficients of the 
plane Q : q = 0. 

Example 6.2 Let conic Cl be given by fi = z2 + y2 - 
x2. + 4xy + 4x + 4y + 3 = 0 (a hyperboloid of one sheet) 
and q1 = x + y-i- 1 = 0. Simiarly, let conic C2 be given 
by f2 = 19z2+10y2-9t2+38xy-114x-114y+180 = 0 
(a hyperbooid of one sheet), q2 = x + y - 3 = 0, and let 
the unknown plane be P : ax+by+cz+d = 0. Then the 

equation for the system of smoofh interpolating quad&s 

alfl + blq: - a(azf2 + b2q22) = /3(ax + by + cz + dJ2 

results in a nonlinear system of 10 equations: -/?c2 + 
9a2a - al = 0, -2bpc = 0, -2a& = 0, -2pcd = 0, 
-b2/3-crb2+bl - lOa2cY+ai = 0, -2abp-2ab2+261- 
38a2(r+4al = 0, -2b@d+6ab2+2br+114a2o+4al = 0, 
-a2P-crb2+bl -19arc~+ai = 0, -2a@d+6abz+2bl+ 
114azcr+4ai = 0, and -,&t2-9~b2+bl-180a2cr+3al = 
0. This nonlinear system has a nontrivial solution (in 
the sense that al, a2, and a are nonzero) : al = -a2/3, 

h = %x2/3, a2 = -2, b2 = w, and b = c = 

d = 0.5 Hence, the two tonics Cl and Cz are smoothly 
contained by quad&s g1 = 0 and g2 = 0, respectively, 
and which in turn, smoothly intersect in a conic in the 
plane Q. The real quadric g1 = x2 + y2 + .z2 - 1 = 0 is a 
sphere, while the other real quadric g2 = y2 + .z2 - 1 is a 
cylinder. Note that the above solution implies that there 
is only one pair of real quadric surfaces which smoothly 

contain the given con&. Also, for this case, it can be 
shown that neither a single quadric nor a single cubic 
surface can Hermite interpolate the two given tonics. 
Geometrically then, the two hyperboloids of one sheet 
are smoothly joined by a sphere and a cylinder. See 
Figure 4. at the end of the paper. 

The above method of Lemma 6.3 can also be straight- 
forwardly extended to finding a mesh of n quadric sur- 
faces which smoothly contain two given tonics in space. 
Necessarily the complexity of the nonlinear system of 
equations also goes up. 

5This nonlinear system was solved with the aid of MACSYMA, 

on a Symbolics 3650 
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7 Conclusion 

We have implemented the Hermite interpolation algc+ 
rithms, as presented in sections 9. and 4. The program 
takes as input any collection of geometric data points, 
curves, with and without asscociated “normals”. Both 
implicit and rational parametric representations of the 
space curves and “normals” are allowed. The system 
solves the linear system of equations with symbolic coef- 
ficient unknowns, using a variant of the Gaussian elim- 
ination algorithm and based on [7]. The rank compu- 
tation is done im.plicitly during the solution step. The 
result, when nontrivial solutions exist, have some sym- 
bolic coefficients and represent a family of interpolation 
surfaces. These coefficients are instantiated, and desir- 
able nonsingular and irreducible, real algebraic surfaces 
are sought. We are currently improving this implemen- 
tation to include, a more user-friendly method of in- 
stantiating the interpolated solution, as well as a way 
of automatically incorporating the nonsingular and ir- 
reducibility constraints. 

There is however one other desirable constraint which 
is not easily handled. Some of the irreducible and non- 
singular, real interpolating surfaces might not be suit- 
able for the design application they were initially in- 
tended to benefit. For example, one possible Hermite 
interpolated solution for two parallel ellipses is a hy- 
perboloid of two sheets, with one sheet containing one 
ellipse and the other sheet containing the other ellipse. 
We are unable at this time to generate an algebraic con- 
straint on the coefficients of the interpolating surfaces 
which would ensure that all given points and curves lie 
on the same continuous real surface component. 
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