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Abstrac t

Algorithms are presented for polygonalizing implicitly
defined, quadric and cubic hypersurfaces in n > 3 di-
mensional space and furthermore displaying their pro-
jections in 3D . The method relies on initially construct-
ing the rational parametric equations of the implicitly
defined hypersurfaces, and then polygonalizing thes e
hypersurfaces by an adaptive generalized curvature de -
pendent scheme . The number of hyperpolygons use d
are optimal, in that they are the order of the minimu m
number required for a smooth Gouraud like shading o f
the hypersurfaces . Such hypersurface projection dis-
plays should prove useful in scientific visualization ap-
plications . The curvature dependent polygonal meshe s
produced, should also prove very useful in finite dif-
ference and finite element analysis programs for multi -
dimensional domains .

1 Introduction

Man has always strived to vault beyond the visual hand-
icap of three dimensions . The power of algebra has
allowed him to mathematically define and manipulate
geometric objects in any dimensions . The advent o f
sophisticated graphics workstations with true 3D ren-
dering capabilites may perhaps provide the springboar d
to visualizing higher dimensional objects .

This paper deals with algebraic hypersurfaces in n
3 dimensional space . An algebraic hypersurface is sim-
ply the set of zeros of a single multivariate polynomia l
equation, f (x l , x2 i • • . , xn,) = 0 [17] . We further re-
strict ourselves to only polynomials of degree 2 and 3 ,
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for then these hypersurfaces are also rational . Rational-
ity of the algebraic hypersurface is a restriction wher e
advantages are obtained from having both the implici t
and rational parametric representations . For example ,
an algebraic surface, in three dimensional space, is rep -
resented implicitly by the single polynomial equation
f (x, y, z) = 0 and parameterically by the three equa-
tions (x = G 1 (s, t), y = G 2 (s, t), z = G3 (s, t)) . When
the G 2 , i = 1, . . . , 3 are rational functions, i .e . ratio
of polynomials . Simpler algorithms for geometric mod-
eling and computer graphics are possible when bot h
implicit and parametric representations are available ,
see for e .g . [6, 9] . For example for shaded displays, th e
parametric form yields a simple way of polygonalizin g
the surface, while the implicit form yields an efficien t
calculation of the exact normals of the surface at eac h
of the vertex endpoints of the constructed polygona l
mesh . We utilize both these advantages, and others, t o
yield an efficient method for displaying implicitly de -
fined, rational quadric (degree two) and cubic (degre e
three) hypersurfaces .
The Problem : Given implicit representations of quadric
and cubic hypersurfaces, in n dimensional space, n > 3 ,
obtain realistic shaded displays of the surfaces in 3 D
and true 3D shaded displays of orthographic or per-
spective projections of 3D slices of the hypersurfaces i n
higher dimensional spaces .
Prior Work : Numerous facts on rational algebrai c
curves and surfaces can be gleaned from books and pa-
pers on analytic geometry, algebra and algebraic geom-
etry, see for example [15, 17, 18, 19] . For the case of
3D space, all degree two algebraic surfaces (quadric s
or conicoids), are rational . All degree three surface s
(cubic surfaces or cunicoids), except the cylinders o f
nonsingular cubic curves and the cubic cone, have a ra-
tional parameterization, with the exceptions again only
having a parameterization of the type which allows a
single square root of rational functions . Most algebrai c
surfaces of degree four and higher are not rational, al-
though parameterizable subclasses can be identified . In
general, for n dimensional space, all hypersurfaces (not
cylinders or cones) of degree d with d < n, are rational .

Various algorithms have been given for constructing
the rational parametric equations of implicitly define d

117



algebraic curves and surfaces, (i .e ., hypersurfaces in 2 D
and 3D) . See for instance [2, 3, 11, 13, 16] . The param-
eterization algorithms presented in [4] and [5] are appli -
cable for irreducible rational plane algebraic curves of
arbitrary degree, and irreducible rational space curve s
arising from the intersection of two algebraic surface s
of arbitrary degree .

Several approaches are known for rendering paramet-
ric surfaces, see for e .g . [7, 10] . The algorithm in [7 ]
is based on convex hull properties of Bezier surfaces
and uses subdivision to polygonalize the surfaces . The
polygons are of course then scan converted to produce
the displayed image. On the other hand lcbw uses sca n
lining for direct scan conversions of the curved surface .
The extension of these basic techniques for the wire -
frame display of hypercubes and simplicies is given i n
[12], while [8] provide a hidden-line algorithm for suc h
hyperobjects .
Results : Our main results are algorithms for polygo-
nalizing implicitly defined, quadric and cubic hypersur-
faces in n > 3 dimensional space and furthermore dis-
playing their projections in 3D . The hypersurface dis-
play algorithm is in two steps . In section 3 ., step I of
the algorithm constructs rational parametric equation s
of the implicitly defined hypersurfaces . In section 4 . ,
step II of the algorithm polygonalizes these hypersur-
faces by an adaptive, generalized curvature dependen t
scheme. The number of hyperpolygons used are opti-
mal, in that they are the order of the minimum num-
ber required for a smooth Gouraud like shading of th e
hypersurfaces l

Zd is known as a threefold of degree d . A hypersur-
face Z' is reducible or irreducible based upon whether
f (x i , x 2 , . . ., xn) = 0 factors or not, over the field of com -
plex numbers . A rational hypersurface Z,(f ), can ad-
ditionally be defined by rational parametric equation s
which are given as (xi = G1(ui, s, , . . , 1Gn_1), x2 =

G2(u1, u 2 . . .,2En—1) . . .,xn = Gn(ui,u2 i . . .,iln—1) )
where Gi , G2r . . . , Gn are rational functions of de-
gree d in u = ,u2 , . . . , un_i), i .e ., each is a quotient
of polynomials in u of maximum degree d .

3 Step I : Parameterizing the
Implicit Hypersurfaces

QUADRICS : Consider the implicit representation o f
a quadric hypersurface (which is neither a cylinder no r
a cone), in n > 2 space ,

n (Z 2 f)

	

aii2 , . . .,in x l . . . , x n = 0

	

(1 )
il+i2+ . . .+i„< 2

We assume that all quadratic terms of ZZ (f) ar e
present, for otherwise there exists a trivial parametric
representation .

1 . Choose a simple point (a l , . . ., an) on Z2(f) and
apply a linear coordinate transformatio n

yj =xj —aj ,

	

j=1 . . .n

	

(2)

to make the hypersurface pass through the origin .
Applying the linear transformation (2) to equatio n
(1) yield s

2 Preliminaries Zz ( fl) :

1<i l + 2+ +i„.<2
n` = 0 (3)

A point in complex projective space CP n i s
given by a nonzero homogeneous coordinate vecto r

(X 0 , X1 , . . . , Xn) of n + 1 complex numbers . A
point in complex affine space CA' is given by th e
non-homogeneous coordinate vector (xi, x2, . . . , xn) =

x, , • • • , X) of n complex numbers. The set
of points Z qf) of CA" whose coordinates sat-
isfy a single non-homogeneous polynomial equatio n
f (x i , x 2i . . ., xn) = 0 of degree d, is called an n — 1 -
dimensional, affine hypersurface of degree d . The hy-
persurface Zj (f) is also known as a flat or a hyper-
plane, a Z' ''(f) is known as a quadric hypersurface ,
and a Z3 (f) is known as a cubic hypersurface . The
1-dimensional hypersurface Z, is a curve of degree d,
a two-dimensional hypersurface Zd is known as a sur-

face of degree d, and three-dimensional hypersurface

I Current graphics workstations have built in hardware sca n
conversion chips, and accept polygons as their high level inpu t
for efficient rendering. We assume this scan conversion facilit y
too, and therfore only concentrate on efficiently polygonalizin g
the curved surfaces .

with the constant term boo . . .0 = 0 . That is

Z2i ( fl) : bloo . . .oyi + bolo . . .oy2 + . . . + b000 . . .lyn

= 0 (4)
ii+i2+ . . .+i„= 2

2 . Now, there must be at least one nonzero coefficien t
amongst the linear terms in equation (4) . Other -
wise the origin is a singular point for the surface
and this contradicts the earlier assumption . With-
out loss of generality, let b 100 . . .0 � 0 . Then appl y
the linear transformatio n

zi

	

=

	

bloo . . .oyl + b01o . . .0y2 + . . . + b000 . . .lyn

zi = yj,

	

j = 2 . . .n

	

(5 )

which makes the z i = 0, the tangent hyperplane of
ZZ (fl ) at the origin. This yields

b 200 . . .0 2

	

bolo0

	

2Z (f2) : zi + • 2	 •z l + [b020 . . .0 + 	 2	
. . .	

j
z 2

b loo . . .o

	

b loo . . . 0
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(6 )

+ . . . + [ b 000 . . .z +
'200 . . .11 z

n'100 . . .0 JJ

	

[~

	

i 1+

	

. . .z„
i„ = 0

	

il-i- . . .{-i„=2,ik=it,

	

1<i<k,t

CUBICS : Consider the general implicit equation o f
a cubic hypersurface (which is neither a cylinder nor a
cone), in n > 3 space

Z3 (f

	

E1 Y2

	

Y„ = 0

	

( 13 )

i 1 +i 2 +i n <3

3 . To equation (6), apply the linear coordinate trans -
formation which maps the origin to infinity, alon g
the z l axis . Namely,

1 . Choose a simple point (ca l , a2i . . ., an) on 41 ( f ) and
apply the linear coordinate transformatio n

yi =xi —

	

? =1, . . .,n

	

(14 )

which translates the hypersurface Z3 (f) to pas s
through the origin . This yield s

zl =

zi = j = 2, . . .,n (7 )

This yield s

Zz
n

	

1

	

b20o . . .0 1

	

boloo wz
(f3) : wl +

b ioo . . .o — + bozo . . .o +
b ioo . . .o w i

b0000

	

w n
+ . . . + [ b 000 . . .2 +

	

. .

bl2oo . .0

	

w
2
l

	

+ w z

	

ci2 . . .i„wz
w 3 . . .w n = 0 ( 8 )

1

4 . Clearing the denominator of equation (8 and sim-
plifying the expression for ZZ (f3 ) yield s

Hence from transformation (7) above, we obtai n

1
92(w2, . . .wn)

wi

92(w2 . . .wn )

From transformation (5) we obtain ,

1 — b01o . . .ow2 — b001 . . .ow3 — ••, — b000 . . .lW n
yl

	

=

	

b1oo . . .o92(w2 . . . wn)

j = 2, . . ., n .

Finally from transformation (2) we obtain ,

Xi = yi + ai ,

	

j = 1, . . ., n .

	

(12)

as rational functions of the parameters w 2 , . . . , wn ,

a rational parametric representation of the quadri c
hypersurface .

j = 2, . . ., n

	

(10)

w22w 3i' . . . w
b200 . . . 0

wl
b 1

2
oo . . . 0

= 92(w 2 . . .wn)

	

(9 )

zl =

zi =

Z3(fl)

	

b ili2 . . .6„y11 y Y22 . . . ym„

it+i2+ . . .i„= 1

+

	

.i„ ylly 22, . .yn„

+

	

b i Y i2 . . .i„ y l ly2 „ . . .yn = 0

	

(15 )
it+i2+ . . .+in-3

2 . Apply the linear transformation

z l

	

=

	

b 1oo . . .oy1 + bolo . . .oy2 + . . . + b 000 . . .l yn

zi = yi,

	

j=1, . . .,n

	

(16 )

which makes z l = 0 to be the new tangent hyper -
plane to the hypersurface at the origin . The hy-
persurface Z3 (fl ) of equation (15) then becomes

Z3 (f2) : z 1 + z l

	

C i 2 . . . z22 . . .zn

0<i2+ . . .+i„ < 2

	

2

	

T

	

it
. . .z ni „

	

~'z 1	 	 ~

	

+

	

z 2? . . . znY n

i 2 + . . .+„= 2

	

+

	

t i 2 . . .i„ z 22 . . .z;;

	

(17)
tie+ . . .i„= 3

3. Intersecting the hypersurface Z3 (f2 ) with the tan-
gent hyperplane z l = 0 yield s

n—1

	

\ `

	

i 2

	

i „Z3

	

(f3)

	

S i 2 . . .i„ z 2 . . .zn

+

	

= 0

	

(18 )

4. Consider a u = (u 1 , ., ., u k ), k < n — 2, parameter
family of lines, passing through the origin and lyin g
in the hyperplane z l = 0 . These lines are given b y

zi+z = Uizz,

	

1 < i

	

k

zi = z2i

	

k<j<n—2

	

(19)
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5 . Intersect these lines given by equation (19) with
Z3 1 (f3) of equation (17) to yield

i2 . . . {-in=2 si2 . . .i„fli3

	

i, •{ 2
. . .u~

i 3

	

Ek-I' 2
il+ . . .i,,=3 ti2 . . .i„ul .uk

which together with (19) above yields a parametri c
representation of Z3-1(f3) in terms of parameter s
u = (ul, . . ., uk) .

6 . Using the linear transformation (14), (16), th e
parametric representation of Z3 —1 (f3 ) and Z1 = 0
we can straightforwardly construct a u parameteri-
zation of Z3 -1 (f3) in the original space (x 1 , . . ., xn ) .
Namely

	

x i = Mi(u)

	

i i

	

(21 )

7 . Next choose another simple point (01, Q2,

	

/3n )

	

on Z3 (f) and repeat steps 1 ., 2 ., 3 .

	

replac -
ing (a l , a 2i . . .an ) with (/3 1 , p2i . . ., PO ) . This would
yield another Z3 -1 (f3) of similar structure as
equation (17), viz .,the intersection of a correspond-
ing hypersurface Z3 (f2 ) with an appropriate tan -
gent hyperplane z l = O .

8 . Analogous to Step 4. above, consider then a
v = (v l , . . ., vi ), 1 = n — k — 1, parameter famil y
of lines, passing through the origin and lying in
the hyperplane z 1 = O . These lines are again given
by

= vj z2i

	

1<j< l

	

= z 2 ,

	

l < j < n — 2

	

(22 )

9 . Similar to Steps 5 . and 6 . above, intersect thes e
lines of equation (22) with Z3 -1 (f3) to derive a v

parametric representation of Z3' 1 (f3 ) in the orig-
inal space (x 1i . . ., x n ) . Namely ,

	

x i = N1 (v)

	

1 < i < n

	

(23 )

10 . Finally

	

consider
the (u, v) parameter family of lines in (x 1 , . . ., x n )
space joining points (M1 (u), M 2(u), . . ., Mn (u) )
and (NI (v), N2(v), . . ., Nn(v)) . Namely,

x i = Ni(v) I (N
i(v) — Mi(v))

(x 1 — N1(u) )
N1(u) — M1(u)

1 <i<n

	

(24 )

11 . Intersect these lines of equation (24) with the hy-
persurface Z3(f) to yiel d

f (x i , u, v) = 0

	

(25)

with degree of x 1 to be at most three, i .e ., the line s
intersect the hypersurface in at most three distinc t

intersection points .

12 . Two of the intersection points lying on the hyper-
surface Z3 (f) have x 1 values Ml (u), and Nl (v) ,

Hence Tx 1	 m,)(x.
,'1 N1) yields an expression whic h

is linear in xi . Thus x 1 = R(u,v) where R is a
rational function in the 1+ k = (n — 1) parameters
u = (u l , . . ., u k ), v = (v l , . . .,v i ) . Using this to-
gether with equation (24) yields a parametric rep-
resentation of the hypersurface Z3 (f) in terms of
the n — 1 parameters u, v .

4 Step II : Polygonalization of
Parametric Hypersurface s

Knowing

	

the

	

param-
eterization, namely, (x 1 = Gl (u l , u2i . . . , un_ 1 ), x 2 =
G2(u1 i 4L2, . . . , un_1), . . ., xn = Gn(u1 i u2, . . . , un–1)) of
the n 1-dimensional hypersurface Z2 (f) or Z3 (f) i n
n space, points on the hypersurface can be straight -
forwardly generated by substituting parameter values ,
u = (ul , . . ., uk)eR n . A generalized net of n — 1 dis-
tinct, intersecting families of lower n — 2-dimensiona l
hypersurfaces can be obtained, all lying on the origina l
hypersurface, by setting each parameter in turn to b e
fixed and having the n — 2 remaining parameters vary-
ing. The n — 1 different choices of the fixed paramete r
u i , yields the n—1 different families of n—2-dimensional
hypersurfaces . Recursing on the dimension of the hy-
persurface, one finally obtains 1-dimensional rationa l
curves lying on the boundary of the hypersurface . B y
advancing values of each of the parameters u i , start-
ing from uo, by small increments Au i , one obtains a a
piecewise-linear approximation to these curves .

However advancing the parameters u i naively, ma y
yield quite unsuitable displays. In particular a
parametrization of a curve is good if with a constant
value Au i the points on the curve tend to bunch up in
regions of high curvature and spread out in regions o f
low curvature. Such a reparameterization of the curve ,
can be obtained by applying the planar methods of [14] ,
suitably generalized to curves in n dimensional space .

Considering all linear, curvature dependent, approx-
imations of the intersecting families of curves, yield s
a wireframe polygonal complex of line segments . In
3D the hypersurfaces are ordinary two dimensional sur-
faces and the wireframe complex reduces to a curva-
ture dependent polygonal surface mesh . Using Gourau d
shading, available on most graphics workstations on e
is able to get excellent shaded displays . For four an d
higher dimensions, appropriate slices are computed o f
the complex and projected (orthographic or perspec-
tive) down to the 2D screen or in 3D for the stereo -
graphic 3D displays .

We first explain how the rational parameterizatio n
of a hypersurface in 3 space can be displayed smoothly

Z 2 = (20 )

Z,j+ 2

z~
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using curvature (and torsion dependent) stepping of th e
parameters . Consider the rational surface S defined b y
the parametric equation s

x = X(s, t), y = Y(s, t), z = Z(s,t )

where X, Y, Z are rational functions . A simple way o f
displaying S is to let s vary from s 2 to S f by a con-
stant step of 0, and let t vary from t i to t f by a con-
stant step of A t . This creates a rectangular grid of
(s,t) points . The surface can be directly polygonal-
ized by evaluating it at each grid point and connect-
ing the grid points together to form polygons . A bet-
ter way of creating the grid is to step adaptively. Let
X(t) = [X (s, t), Y(s, t), Z(s, t)] . Then

(~~t + brt ) II X ' 11 2
	 0°

1
As =	

(am,+ br,)11 X '112

A°

Here h and r are the curvature and torsion of the sur-
face, respectively, and are defined b y

V(X' X')(X" X") — (X 'X") 2

(X' .X' ) 2

[X' X" X'"] T
r–

(X' .X')(X",X")(X',Xii) 2

To get A t , all derivatives are performed with respec t
to t, and for 0„ with respect to s . Given some pai r
(so, to), to step along t, we compute A t by evaluatin g
the formula above at s = s 0 i t = to, and likewise to step
along s . One can use constant-stepping in one variable
and adaptive stepping in the other, or adaptive stepping
in both . The latter approach is more expensive, but w e
find it produces smoother-looking surfaces . We used
the following stepping process . The algorithm below
fills the given grid with n 2 (s,t) pairs . Stepping along
s and t starts at so and to respectively.

make grid(yrid, so, to, n )
{
local s, t, i, k ;

/* initialize row and column i * /

gt ' id ( 1 , 1) — (so, to) ;
fori :=2tondo {

s 4-= grid(1, i — 1) .s ; t 4---- grid(1, i — 1) .t ;
grid(l,i) F— (s,t + At (s,t)) ;
s

	

grid(i — 1, 1) .s ; t E-- grid(i — 1, 1) . t
grid(i, 1) 4-- (s + A, (s, t), t )

* initialize rows and columns, diagonally* /

fork :=2tondo {
/* row k */
for i := k to n do {

s 4- grid(k, i — 1) .s ; t <— grid(k, i — 1) . t
grid(k, i) F- (s,t + A t (s, t) )

}
/* col k */
for i := k + 1 to n do {

s E-- grid(i — 1, k) .s ; t 4-- grid(i — 1, k) .t ;
grid(i, k) E- (s+ A, (s, t), t )

}
}

}

See appendix A and the figures 1 . -4 . . Figs 1 . and 2 .
are for a hyperboloid of one sheet, with equal parame-
ter ranges -3 < s, t < 3 . I-Iowever, fig 1 . uses constant
s— t stepping of 0 .1 requiring 3600 polygons to display ,
while fig 2 . using adaptive stepping requires only 90 0
polygons for an equally good shaded display. Figs 3 .
and 4. are for a parabolic hyperboloid, with equal pa-
rameter ranges -3 < s, t < 3 . However, fig 3 . uses
constant s — t stepping of 0 .1 requiring 3600 polygon s
to display, while fig 4 . using adaptive stepping requires
only 840 polygons for an equally good shaded display .

Hypersurfaces S in 4D space are three dimensiona l
solids . Their displays are generated in the followin g
manner. Fixing each of the three parameters, one at
a time, in the rational parameterization of S, yield s
three distinct families of rational two-dimensional sur-
faces in 4D, which are polygonalizecl by the previou s
method . These surfaces in 4D are then projected (bot h
orthographic and in perspective) clown to 3D and the n
rendered as before . In the pictures at the end of the
paper, the projected surfaces were not shaded, in order
to be able to better visualize the combination of th e
three families of surfaces meshing together to yield the
hypersurface . See appendix A and the figures . Figs .
5 . , 6. , and 7 . are the three distinct projected (per-
spective) families of surfaces (for s fixed, t fixed and u
fixed, respectively), covering the parabolic hyperboloi d
hypersurface . Fig. 8 . shows the composite projecte d
display of the three surface family covering of the hy-
persurface . Fig. 9. shows the composite projecte d
(perspective) display of the three surface family cover-
ing of the nodal cubic hypersurface. Fig . 10 . shows a
single projected (orthographic) family of surfaces lying
on the hypersphere, together with the same family ro-
tated by 30 degrees in the z—w plane in 4D space . Fig .
11 . shows a similar sequence of a single projected (or-
thographic) family of surfaces lying on the hyperboloi d
hypersurface, together with the same family rotated b y
45 degrees in the x — y plane in 4D space .

By similar methods, one can easily construct dis-
plays of projections (unfortunately) of hypersurfaces i n
higher dimensions . Of course, similar to the people o f
flatland [1], our visualization abilities of the boundar y
of the higher dimensional hypersurfaces, are severely
lacking .

1
A t =

=

}
/
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5 Conclusions and Future Re -
search

We have presented algorithms for parametrizing an d
displaying quadric and cubic hypersurfaces for any di-
mension > 3 . The methods detailed in sections 3 . and
4. were implemented in a combination of Common Lis p
and C on a SUN 4-110 . (Common Lisp for the polyno-
mial symbolic manipulations and C for the numerica l
calculations) . The graphics displays were generated on
a Tektronix 4337 fitted with a stereoscopic 3D screen .

There exist other rendering alternatives and varia-
tions to these basic methods . Clearly, raytracing to-
gether with pattern and texture mapping, of bounded
projected patches of these hypersurfaces are some of the
unexplored alternatives . Algorithms for parametrizing
and thereby displaying general quartics and higher de-
gree hypersurfaces are as yet unknown . Deriving suc h
parametrizations, for their use in scientific visualizatio n
and other manipulations, is also a keen area of future
research with a number of open algorithmic problems .

Acknowledgements : I sincerely thank Insung Ihm an d
Andrew Royappa for the many hours they spent in fron t
of the graphics workstation, helping me visualize in fou r
and higher dimensional space .
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A Appendix : Examples

Fig Hypersurface Implicit Equation Parametric Equatio n

1,2 H

	

erboloidY p x 2

	

— z2 - 1= 0
+

y 2 t 2 -2 * s * t-1

	

_

	

2 * t-l-s(t2 -1 )
x= t

	

1 ~, J -

	

-0 + 1

	

, z= s

3,4 Parahyperboloid x 2 -y 2 -2*z=0 x = s, y=t,z= 2 *(s 2 -t 2 )

5-8 Hyper-Parahyperboloid x 2 - y 2 - z 2 - 2 * w = 0 x = s, y = t, z = u, w = 2 * ( s 2 - t 2 - u 2 )

9 Hyper-Nodal Cubic x 2 — y2 — z3 = 0 x = s * (s 2 — t 2 ), y

	

* (s 2 — t 2 )

z = s 2 —t 2 , w=1t

10 Hyper-sphere x 2 + y 2 + z 2 -{- w 2 - 1 = 0 =
~3 2 t2 21 2~_1

	

2* sx

	

3 2 .~t2+ 21 2 .1 f y = 5 2 .+. t2+ 41 2+ 1

2*t

	

2 *
- -

uz

	

3 2 +( 2 +11 2 +1 , uJ -

	

3 2 -} t 2 21 2 -- 1

11 Hyper-hyperboloid x 2 + y 2 + z 2 - w 2 - 1 = 0
-g 2 i_t 2 u 2 -1

	

-2 ux = S`-t3_u2_1

	

f

	

= 3 2 _ t 2_ u ~ —1.

_

	

-2t

	

_

	

- 2 sZ

	

3 2 -t 2-u 2 -1 ,w - 3 2 -t 2 -11 2
—1 .

Color images for this paper can be found in the colo r
plate section .
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Figure 3 : Parahyperboloid
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Figure 5 : Hyper-Parahyperboloid
Figure 6 : Hyper-Parahyperboloid

Figure 7 : hyper-Parahyperboloid
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Figure 11 : Hyper-IIyperboloi d

Figure 10 : Ilyper-Spher e
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Figure 8: Hyper-Parahyperboloid .,,r 

Figure 9: Hyper-Nodal Cubic 

\ \ 

#. 

Bajaj, "Rational Hypersurface Display". 
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