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In this paper, we give an algorithm that triangulates

the convex hull of a three dimensional point set with

guaranteed quality tetrahedral. Good triangulations

of convex polyhedra are a special case of this prob-

lem. We also give a bound on the number of ad-

ditional points used to achieve these guarantees and

report on the techniques we use to produce a robust

implementation of this algorithm under finite preci-

sion arithmetic.

1 Introduction

Triangulation of a point set or a polyhedron is an im-

portant problem with applications for finite element

simulations in CAD/CAM. Though a number of algo-

rithms exist for triangulating a point set or a polyhe-

dron in two and three dimensions [1,6, 11, 13], few of

them address the problem of guaranteeing the shape

of the triangular elements. To reduce ill-conditioning

as well as discretization error, finite element meth-

ods require triangular meshes of bounded aspect ra-

tio [2, 12]. By aspect ratio of triangles or tetrahedral,

one may consider the ratio of the radii of the circum-

scribing circle to that of inscribing circle (spheres in

case of tetrahedral).

In 2D, there are basically two approaches known

so far to produce guaranteed quality triangulations.

The first approach, based on Constrained Delaunay

Triangulations, was first suggested by Chew [7]. He

guarantees that all triangles produced in the final tri-
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angulation have angles between 30° and 120°. In

[8], we improved this algorithm with minor modifica-

tions to guarantee the boundary triangles to have bet-

ter angle bounds. There is another approach based

on Grid Overlaying which was first used by Baker,

Grosse, and Raferty in [3] to produce a non-obtuse

triangulation of a polygon. In [8], we proposed a

simpler method based on this grid approach to tri-

angulate a polygon with good angles. Recently, in

[5], Bern, Eppstein, and Gilbert give algorithms for
producing good triangulations which uses a special

kype of a grid that simulates the planar subdivision

with the quadtree. Though several good heuristics

have been published, to date there is no known al-

gorithm that triangulates the convex hull of a three

dimensional point set with guaranteed quality tetra-

hedral. This paper presents some results on good tri-

angulations of the convex hull of a point set in three

dimensions. The problem allows one to introduce new

points to generate good tetrahedral with the restric-

tion that all points are added only inside or on the

boundary of the convex hull. Good triangulations of

convex polyhedra are a special case of this problem.

Our main results are as follows: (i) a 3D triangula-

tion algorithm based on Delaunay triangulations as

used by Chew [7] in 2D, to produce triangulations

that do not have four out of five pcmible types of bad

tetrahedral, and (ii) a bound on the number of addi-

tional points used to achieve this guarantee. We also

report on the techniques we use to produce a robust

implementation of this 3D triangulation algorithm in

the presence of numerical errors under finite precision

arithmetic.

2 Preliminaries

2.1 Characterizing Bad Tetrahedral

In three dimensions, a tetrahedron that is not of
bounded aspect ratio can be degenerate or bad in

three possible ways as described in [4]. The following

two parameters w, E characterize bad tetrahedral as

follows. Let w = # and 6 = ~, where R is the ra-
dius of the circumscribing sphere of a tetrahedron, L
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and 1 are the lengths of its longest and shortest edges

respectively.

Category(i): w = O(l), K >1.

Category(ii): w >1.

Category(iii): w = O(l), K = 0(1)
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Figure 1: Category(i) tetrahedra

Definition: A sliver is a tetrahedron that is formed
by four almost coplanar points and whose solid angles

are very close to zero.

Category(i) corresponds to tetrahedral that have a

very short edge relative to other edges and have cir-

cumscribing spheres that do not have an arbitrarily

large radius compared to the length of the longest

edge. Specifically, category(i) consists of type(i) and

type(ii) tetrahedral. Type(i) tetrahedral are needle-

like tetrahedral in which one of the solid angles is

highly acute and the face opposite to it has a negligi-

ble area (Figure l(a)). Type(ii) tetrahedral are slivers

with a very short edge (Figure l(b)).

(a) (b)

Figure 2: Category(ii) tetrahedral

Category(ii) corresponds to tetrahedral that have

a circumscribing sphere with arbitrarily large radius

compared to the longest edge. Specifically, cate-

gory consists of type(iii) and type(iv) tetrahedral.

Type(iii) tetrahedral are flat tetrahedral which have

one of the solid angles highly obtuse (Figure 2(a)).

Type(iv) tetrahedral are slivers which lie very close to

the surface of their large circumscribing spheres (Fig-

ure 2(b)). Categor y(iii) consists of type(v) tetrahe-

dral. Type(v) tetrahedral are slivers whose edges have

lengths within a constant factor of each other and

which do not have a close incidence with the surface of

the circumscribing sphere (Figure 3). We present an
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Figure 3: Category(iii) tetrahedral

algorithm that triangulates the convex hull of a three

dimensional point set with the guarantee that type(i)

through t ype(iv) tetrahedral are not generated.

2.2 2D Algorithm

The core of the algorithm presented in this paper

consists of the Delaunay triangulation which is the

straight line dual of the Voronoi diagram. In two di-

mensions, the circumscribing circle of a triangle in the

Delaunay triangulation of a point set does not con-

tain any other points inside it. Similarly, in three di-

mensions, the circumscribing sphere of a tetrahedron

in the Delaunay triangulation does not contain any

other points inside it. This property of the Delaunay

triangulation was utilized by Chew in two dimensions

to produce good triangulations. He introduced the

centers of those circumscribing circles which maintain

a certain minimum distance from the three vertices

of the corresponding triangle. Of course, the edges of

the boundary have to satisfy certain length criteria.

In his algorithm, Chew used edge lengths in between

d and fid where any pair of input points is at least

d units away from each other. In the modified algo-

rithm of [8], we require edge lengths in between d and

1.5d. This gives two distinct advantages.

1. It is easier to divide edges between d and 1.5d in

practice.

2. The triangles that have circumventers outside the

boundary have better bounds on their angles.

We present below this modified

triangulation in two dimensions.
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Algorithm 2D-TRI:

Input: Finite number of points in the plane within

a polygonal boundary. The vertices of the polygonal

boundary are included in the input point set,

Input Conditions: There exists a quantity d, such

that no two given points are closer than d and no

boundary edge ia greater than 1.5d and less than d.

begin

Construct the Delaunay triangulation

of the given point set.

Repeat

Add the circurncenter V1 of a

triangle g = Apipjpk SUtiSbin9

the following property:

V1 is at a distance of at least d horn all

three points pi, pj, Pk.

Update the current triangulation by constructing

the Delaunay triangulation

of the augmented point set.

Until there is no such trian le.
!

end

For a simple polygonal boundary with a certain

lower bound (39° ) on the minimum internal angles

at the vertices, it is always possible to choose a d to

satisfy the input conditions of the algorithm 2D- TRI.

Algorithm 2D- TRI produces a planar triangulation T

that has the following properties.

Property 1: All edges in T have lengths in between

d and 2d and in particular all boundary edges have

lengths in between d and 1.5d.

Property 2: The circumscribing

gles in T has radius less than d.

2.3 Geometric Lemmas

circle of all trian-

We use the following geometric lemmas in the next

section.

Lemma 2.1: Let T be a Delaunay triangulation of

a point set in two dimensions. Let R be the maxi-

mum radius of all circumscribing circles of Delaunay

triangles in T. The radius of any empty circle whose

center Iies inside T is less than or equal to R.

Proof: See Theorem 6.15[14]. A

Definition: Let c be a circle drawn on the surface

of a sphere s. Let ~ be the axis which is perpen-

dicular to the supporting plane of c and which passes

through the center of c. This axis intersects s at pl

and p2. The points pl, ~ are called the poles corre-

sponding to the circle c.

Lemma 2.2: Let c be a circle with radius less than r

drawn on the surface of a sphere s. Let the distance

between c and its nearest pole be greater than d. The

radius R ofs must satisfy the condition R < ~.

Proof Consider the circle c as shown in Figure 4

with the nearest pole pl. Let a, b be the centers
of s and c respectively. Obviously, 1~1 < (R – d).

Consider the right angled triangle Aabt where t is a

point on the circle c. Since the radius of c is less than

r, we have 1~] < r. Hence, @?21 = R2 = l@2+l~12 <

(R– d)2 +r2 giving R < ~. A

‘1

8

3 3D

We assume

P2

Figure 4: Lemma 2.2

Algorithm

that a finite number of points is given in

three dimensional space. We call th~ boundar~ of the

convex hull of these points the boundary. In what

follows, by the convex hull of a point set, we mean

its interior along with its boundary. A point is called

an internal point if it is not on the boundary and
is called a boundary point otherwise. The facets of

the boundary are referred to as boundary facets and

the edges on the boundary facets are called boundary

edges.
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Algorithm 3D-TRI:

Input: Finite number of points in three dimensional

space.

begin

Let dl be the minimum of the distances

between two points.

Let d2 be the minimum distance from an

internal point to a boundary facet.

Let d3 be the minimum distance between

-two nonadjacent boundary facets.

Let r = &min{dl, d2, d3].

Triangulate each facet of the bounday using

algorithm ZD- TRI in such a way that

every edge has length in between r and 2r and

every boundary edge

has length in between r and l.%.

Let P be the current point set.

Construct a 9D Delaunay triangulation T(P]

of the poin$ set P.

repeat

Add the center v of the circumscribing sphere

of a tetrahedron ti in T(P)

satisfying the following properties:

(i) all four vertices of ti are at a distance of

at least 2r from v,

{ii) the center v lies inside the boundary.

Set P= PUv.

Update the Delaunay triangulation T(P).

until there is no such tetrahedron.

end

With the above choice of r and with the assumption

that all the face-angles of the facets on the boundary

satisfy the minimum angle criterion, it is possible to

triangulate them by 2D- TRI maintaining the edge

lengths as stated. In the following Lemma, we prove

that the above procedure terminates.

Lemma 3.1: Algorithm 91?- TRI terminates.

Proof: Algorithm 2D-TRI terminates since the
points added by it are always at a certain distance

from all other points. There can be oniy finitely many

such points inside the given polygonal boundary. Ex-

tending this argument to Algorithm 3D-TRI, we can

observe that all the circumventers of tetrahedral that

are added as new points are at a distance of at least

2r from all other points. There can be only finitely

many such points inside the convex hull of the input

points, which assures the termination of the Algo-

rithm 3D-TRI. &

Lemma 3.2: Any point on a boundary facet that

does not lie on a boundary edge must be at a distance

of at least qr from all edges of that facet.

Proof: Consider a point p on a facet f. Let e be

any edge of f. Note that the edge e is divided into

smaller edges el, ez, . . . . en through the triangulation

of the boundary facets adjacent to e. Drop a per-

pendicular from p on the line supporting e. If the

perpendicular intersects the edge e, let el be the edge

of the triangulation on e which is intersected by it.

According to property 1, all boundary edges of the

triangulation of f must have lengths in between r

and 1.5r. Further, the point p is at least r units away

from the end points of er. Thus, the minimum dis-

tance between p and el is at least ~r. In case the

perpendicular dropped from p does not intersect e, it

must intersect some other edge e’ of f. In that case,

the distance between p and e must be greater than

the distance between p and e’. We can estimate the

minimum distance between p and e by estimating the

same between p and e’. While estimating the distance

bet ween p and e’, if it occurs that the perpendicular

dropped from p does not intersect e’, we will have

another edge to estimate the minimum distance be-

tween p and et. Since there are finite number of edges

and since each time we go to a next edge, its distance

from p gets smaller than the previous one, there must

be an edge off which is intersected by the perpen-

dicular dropped from p. Let e“ be the first such edge

encountered in the above process. As argued above,

the distance between p and et’ is at least ~r. Hence,

the distance between p and e is at least ~r. Thus,

any point on a boundary facet that does not lie on a

boundary edge must be at a distance of at least ~r

from all edges of that facet.~

Lemma 3.3: All edges in the triangulation produced

by the algorithm 3D-TRI have lengths greater than

l~in where l~in = min(r, ~r sin ~). Here Om is

the minimum dihedral angle between two adjacent

boundary facets.

Proof Initially, all internal points are at a distance

of at least 6r units from every other point. Two

boundary points, lying on non adjacent facets, are

at least 6r units away from each other. These con-

ditions are ensured by the particular choice of r, A

boundary point is at a distance of at least r from ev-

ery other point on the same facet which is ensured

by the algorithm 2D-TRI. The points added by the

algorithm 3D- TRI are always at a distance of at least
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2r from every other point. Thus, all points except

the points on the adjacent facets are at a distance

of at least r from each other. To estimate the min-

imum distance between any two points on the adja-

cent boundary facets, consider two points pi, pj lying

on the adjacent facets .fi, .fj respectively. Let e be

the edge shared by .fi and .fj. Drop a perpendicu-

lar from pi on e. Let it meet e at pm. Consider the

triangle Apipjpm. Let the minimum dihedral angle

between any two adjacent facets be Om. It is easy

to prove that the angle between Pipm and m in

the triangle APiPjPm must be at le~t @m. From the

above discussion, it follows that t~[ > ~r and

lm > ~P. Thus, the distance between pi and pj

is at least ~r sin ~. Hence, all edges in the final tri-

angulation produced by the algorithm 3D- TRI have

lengths greater than Imin = min(r, ~r sin ~). *

Lemma 3.4: Any point p present as a vertex in the

triangulation produced by the algorithm 3D- TRIis at

a distance of at least $r sin dm from any boundary

facet on which p does not lie. Here, t?m is a measure

of angle such that all dihedral angles of the input

boundary are within 6m and 180° – Om.

Proof If p is an inner point, we already know p is

at least r units away from every boundary facet. By

the choice of r, any point on a boundary facet is at

least r units away from any other nonadjacent facet.

We prove that if p lies on a boundary facet but not

on a boundary edge, it is at a distance of at least
~r sin Om from all adjacent facets. Let p lie on .f~

and let f j be any facet adjacent to fi. In Lemma

3.2, we proved that the distance of p from any line

supporting an edge of the facet fi , is at least qr.

Let 1 be the distance of p from the Ene where fi and
~j meet. The distance d of P from fj is given by

d = 1sin@ where 0 is the dihedral angle between f~

and fj. Putting the minimum value of 1 and o gives

the lower bound on d. Thus, the distance of a point

from any facet that does not contain it, is at least

G sin 0~) = ~rsin Orn. &dmin = min(r, ~

4 Qualities of Tetrahedral

Definition: A tetrahedron in the final triangulation

is said to have a good circumventer if the center of its

circumscribing sphere lies inside or on the boundary

(convex hull boundary). Conversely, a tetrahedron is

said to have a bad circurncenter if the center of its

circumscribing sphere lies outside the boundary.

We classify the tetrahedral with bad circumventers

into two classes, namely class A and class B.

Definition: A tetrahedron t with a bad circumven-

ter is called a class A tetrahedron if it satisfies the

following property. There exists a facet f intersected

by the circumscribing spheres oft insuch a way that

the foot of the perpendicular dropped from the center

ofs on the supporting plane of f lies inside f. Any

other tetrahedron with a bad circumventer is called a

class B tetrahedron. See figure 5 and figure 6.

Assuming lower and upper bounds on the dihedral an-

gles between adjacent boundary facets, we can prove

that all tetrahedral produced by 3D- TRI cannot be

in category(i) or category. Though we cannot

avoid category(iii) tetrahedral occurrences of them

in practice are rare, as stated in [4]. Finally, in

mmt of the cases these category (iii) tetrahedral can of-

ten be avoided by introducing a suitable point inside

the circumscribing sphere. See [4]. In what follows,

we assume that all dihedral angles between adjacent

boundary facets are greater than 0~ and less than

180° – Om.

Figure 5: class A tetrahedron

Lemma 4.1: No tetrahedron with good circumcentm

can be in category(i) or category.

Proof All tetrahedral in the final triangulation hav-

ing good circumventers must have circumscribing
spheres with radii less than 2r, because otherwise

these circumventers would have been introduced as
new points. Hence, all these tetrahedral have edges

of length less than 4r. By Lemma 3.3, all edges have

lengths greater than rnin(~, ~r sin %). Thus) ~ for
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these tetrahedral can be at most max(4, & * ).

Assuming a lower bound on the dihedral angles of

the input boundary, we get K for these tetrahedral to

be of O(1) which violates the condition for category(i)

tetrahedral. Further, w for these tetrahedral can be at

most max(2, ~,~ ~ ) n ~(l) which prohibits them

to be in category. 4

Lemma 4.2: No class A tetrahedron can be in cat-

egory(i) or categor y(ii).

Prootl Let t be a class A tetrahedron with the cir-

cumscribing sphere s. By the definition of class A

tetrahedron, there exists a boundary facet ~ such that

the foot of the perpendicular dropped from the center

of s on the supporting plane of ~ lies inside ~. Let

c be the circle of intersection of S with the support-

ing plane of ~. By Lemma 3.4, a vertex p of t that

does not lie on ~ must be at a distance of at least

~r sin em from ~ where (jm is defined as before. The

center of the circle c lies inside ~. Thus, the center

must lie inside the triangulation T of ~ produced by

the algorithm ~D- TRI. Further, c must be an empty

circle since s does not include any point of ~ inside

it. See figure 5. By property 2, all triangles of T have

circumscribing circles of radii less than r. Hence, ac-

cording to Lemma 2.1, c must have a radius less than

or equal to r. The vertex p lying on s must be at

a distance of at least ~r sin 19m from c. Further,

the vertex p and the center of s lie on the opposite

sides of c. This implies c is at a distance of at least

@~ r sin Om from its nearest pole. Thus, according to

Lemma 2.2, s must have a radius less than or equal

to klr where /cl = ( * + k). This puts

an upper bound of 2k1 r on the lengths of the edges

of ti.By Lemma 3.2, all edges of tiare greater than

k2r where k-2 = min(l, ~ sin ~). Hence, w, K for

ti k 0(1) assuming a lower bound on 19m (A lower

bound on Om puts lower and upper bounds on the

dihedral angles between adjacent boundary facets).

This prohibits it to be in category(i) or category.

*

Lemma 4.3: Let t be a class B tetrahedron with

the circumscribing sphere s. There must exist two

boundary facets fi, fj intersected by s with the fol-

lowing criterion:

Let c be any circle drawn on s which is normal to the

line where fi, fj meet. The feet of the perpendiculars

dropped from the center of c on the supporting planes

Pi and Pj of fi and fj lie outside the line segments

cnfi,cnfj.

Proofi Consider a boundary facet fi that has the

convex hull and the center of s on opposite sides.

Since t has a bad circumventer, such a facet always

exists. Consider any other facet fj sharing an edge

with fi that has been intersected by s. Drop perpen-

diculars from the center ofs on the supporting planes

of fi and fj. The feet of these perpendiculars lie out-

side -fi, fj since t k a class B tetrahedron. Consider

the great circle c’ ofs whose supporting plane is nor-

mal to the edge shared by fi and fj. The feet of the

perpendiculars dropped from the center of s on the

supporting planes Pi and Pj of fi and fj cannot lie

on the line segments c’ n fi and c’ n fj. Two different

cases are shown in figure 7. This immediately implies

that the condition stated in Lemma 4.3 is true for any

circle c on s that has a supporting plane parallel to

that of c’.*

Lemma 4.4: No class B tetrahedron can be in cate-

gory(i) or category.

Proof: Let t be a class B tetrahedron. Let the cir-

cumscribing sphere s oft intersect the boundary edge

e shared by the facets fa and fj which satisfy the cri-

terion as stated in Lemma 4.3. The endpoints of the

edge segment en on e which is intersected bys cannot

be inside s,. Let w, y be the points where s intersects

e ~. Further, let a and R denote the center and radius

ofs respectively.

Case(i) The tetrahedron t has a vertex p which lies

neither on facet fi nor on facet fj. Consider the circle

c on s whose supporting plane is perpendicular to en

and which passes through p. Let RI be the radius
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Figure 8: Lemma 4.4, caae (i).
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of c. Join the center b of c with the point u where

c meets e.. Extend the line ~ beyond u until it

intersects the boundary of c at v as shown in figure 8.

Let 1~1 = x. Certainly, 1~1 = R’ - x. Let d denote

the minimum distance of p from the two facets fi

and fj. There are two sub cases as shown in figure

8. In subcase i(a), the center of c lies in the sides
of the planes containing t j, fj which are opposite to

those containing the convex huh. It is not difficult to

see that in this subcase d ~ \iiiil = R’ — x. Since,

R > R!, we have d ~ R – x. To estimate a lower

bound on x, drop a perpendicular w from the center

a ofs on e.. This perpendicular has the same length

as ~. Consider the triangle Aawy. We observe that

Im = J=EF Since en can have a length of

at most 1.5r, we have x = I?i%l ~ ~~. Thus,

d s R– J-. we already know d > ~v sin O.

(Lemma 3.4). Hence,

Now, consider the subcase i(b). In this subcase, one

of the supporting planes of fi and fj has the center

of c and the convex hull on its opposite sides and

the other one has them on same side. Without loss

of generality, assume that the supporting plane of fi
has them on same side as shown in figure 8(b). The

line segments c n fi and c n fj make angles less than

equal to 90° with W. Otherwise, fi, fj do not satisfy

the criterion as stated in Lemma 4.3. In this subcase,

we have d ~ R — x since the distance of v from the

supporting plane off j is greater than that of p from

the same plane. Thus, in both subcases i(a) and i(b),

we have,

R< 7sin26m+9
r.

– 8&sin Om

Case(ii) All vertices of the tetrahedron t lie either on

fi or on fj. This immediately implies that one of the

vertices oft lies on fi but not on fj and another on fj

but not on fi. Consider the vertex pi lying on fi but

not on fj. Let c be the circle passing through pi with

the supporting plane being perpendicular to en. As in

the previous case, let b be the center of c, u be the foot

of the perpendicular dropped from b to en, and v be

the point of intersection of the line% and the circle c

such that u is in between b and v. Again, we have two

subcases as shown in figure 9. Consider the subcase

ii(a). We have 1~1 < =, where Oi is the angle

between w and ?ii7. We proved in lemma 3.2 that

the distance of any point on a boundary facet that

does not lie on any of its edges is at least $r away

from any of its edges. Thus, 1~[ ~ <r. Hence,

$r<ti<ti
~ ccst91 — coso; 7

where z = 1~1. Similarly, con-

sidering the vertex pj of t lying on fj but not on fi,

we can prove that ~r ~ ~ where Oj is the an-
Cosej ~

gle between fj n c and iiii. The angle $ = 8i + Oj is
the dihedral angle between fi and fj. Since one of

(?i, 6j is less than or equal to 90” and the cos func-

tion decreases monotonically from 0° to 90°, we have

~r S ~. By the same argument as in case(i), we
.

Assuming an upper bound on f? < (180° – @m) we

have,

Now, consider the subcase ii(b). The angles between

~ and the line segments c n f; and c n fj are less

than 90° since otherwise fi, fj violate the condition

of Lemma 4.3. Without loss of generality assume that

di < 6j. The distance between v and c n fj is greater

than that between pi and c n fj. This implies d ~

R–z giving the same upper bound on R as we derived

in case(i).

Thus, all class B tetrahedral have a circumscribing

sphere of radius kl r where kl = O(1) assuming lower

and upper bounds on the dihedral angles between ad-

jacent boundary facets. This with the fact that edges

of all tetrahedral have lengths greater than k2r where

k2 = 0(1) (recall Lemma 3.3), makes w and K of these

tetrahedral to be of O(1) and thus prohibits them to

be in category(i) or category. &

The following Theorem is immediate from Lemmas

4.1, 4.2, and 4.4.

Theorem 4.1: Algorithm 9D- TRI triangulates the

convex hull of a three dimensional point set with

the guarantee that no tetrahedron of type(i) through

type(iv) are generated assuming lower and upper

bounds on the dihedral angles between adjacent

boundary facets of the convex hull.
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Figure 9: Lemma 4.4, case (ii).

5 Complexity

Algorithm 9D- TRI produces tetrahedral whose edges

are greater than lmin as defined in Lemma 3.3. The

circumscribing sphere of each such tetrahedron must

have a volume of Q(i~in). Let V be the volume of the

convex hull of the given point set. Let n and no be

the number of points present in the input and output

respectively. Certainly, no = 0(~). Consider a tri-
Zeim

angulation T of the input point set where {Tl = O(n).

Such a triangulation always exists. See [11]. Let L

be the Iargest edge length in T. All tetrahedral in T

have a volume less than L3. Thus, V = 0(nL3). This

gives an upper bound of O(n g) on n.. putting
“,<.......

A= ~, we have no = 0(nA3). The quantity A

captur;;the notion of how badly distributed the in-

put point set is.

The basis of 3D- TRI is the incremental Delaunay

triangulation algorithm. We use Watson’s algorithm

[17] for this purpose. In this algorithm, ail tetrahe-

dral whose circumscribing spheres contain the inserted

point inside are removed. The new point is connected

to the triangles present in the boundary of the union

of all removed tetrahedral to produce new triangu-

lation. In $D- TRI we introduce the circumventers

of tetrahedral that satisfy speciiic properties as new

points. We maintain a queue of all such tetrahedral

throughout the algorithm. This queue supports dele-

tion and addition of an element in logarithmic time.

Thus, we can pick a tetrahedron t~ whose circumven-

ter ia to be added in O(log no) time. We can deter-

mine all tetrahedral to be removed and to be added in

O(no) time once we have chosen G. This is because
there are at moat O(no) tetrahedral to be removed and

added for each insertion and they form a connected

component together. Updating the queue for these re-

moved and added tetrahedral takes O(nO log nO) time

which dominates the time complexity for a single ir-

sertion, Thus, inserting all valid circumventers takes

O(n~ log n.) time. Algorithm 2D- TRI cannot take

more than O(r$ time [8]. Hence, 3D- TRI takes

O(n~ log no) = 0(n2A6 log n log A) time and O(nO) =

0(nA3) space.

6 Implementation Issues

We consider the problem of numerical errors under

finite precision arithmetic while implementing the al-

gorithm $D-TRI. The basic numerical computation

in the incremental Delaunay triangulation is the in-

sphere test. This test tells us whether a point is inside

the circumscribing sphere of a tetrahedron or not. In

presence of numerical error thw teat may provide in-

accurate answers. This, in turn, may cause the pro-

gram to fail. To overcome this problem, we use rules

that guide the answers of the insphere tests to satisfy

the following topological constraints. While inserting

a point we require that the lmundary of the union of

removed tetrahedral is connected and has a skeleton

of a triangulated planar graph of genus zero. Further-

more, not all tetrahedral incident on a vertex are re-

moved so that the vertex becomes an isolated vertex.
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These topological criteria can be checked without any

numerical error.

Another difficulty that arises under finite precision

arithmetic is the following. With numerical errors,

the computed points on the boundary facets may not

be exactly coplanar, and without proper care they

may form very thin tetrahedral. While constructing

the triangulation of the point set obtained by trian-

gulating all boundary facets we take into account the

topological constraint that the points generated on a

boundary facet are coplanar. The details of this ro-

bust Delaunay triangulation will appear in [16]. Cur-

rently, the implementation is being carried out on

SUN workstations in AKCL.

7 Conclusion

The good triangulation algorithm of convex polyhe-

dra together with the convex decomposition alg~

rithm of nonconvex polyhedra [9] gives a method for

good triangulations of nonconvex polyhedra aa well.

However, this method has the limitation that the con-

vex polyhedra produced by the convex decomposition

algorithm may be very bad in shape. An algorithm

that achieves good triangulations directly of noncon-

vex polyhedra is more practical.

Though, in our algorithm we avoided type(i)

through type(iv) tetrahedral, we could not avoid some

special type of slivers i.e., type(v) tetrahedral. Our

immediate goal is to find a new method or modify this

algorithm so that we can avoid these slivers too. The

difficulty with the avoidance of these slivers comes

from the fact that an upper bound on the radius of

circumscribing sphere and a lower bound on lengths

oft he edges of a tetrahedron do not prohibit it to be a

type(v) tetrahedron. A lower bound on the radius of

the inscribing sphere together with an upper bound

on the radius of the circumscribing sphere of a tetra-

hedron avoids such tetrahedral. But, currently we are

unable to achieve both these bounds simultaneously.
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