THE GATI CLIENT/SERVER
ANIMATION TOOLKIT

Chandrajit L. Bajaj
Steve Cutchin

CSD-TR-92-096
December 1992

The GATI Client/Server Animation Toolkit*

Chandrajit L. Bejag Steve Cutchin

Department of Computer Science,
Purdue University,
West Lafayette, IN 47907

Tel: 317-494-6531
Fax: 317-494-0739
email: {bajaj,cutchin}@cs.purdue.edu

Abstract

This paper presents GATI, an animation server that provides for, distributed, potentially
coliaborative, real time interactive animation in two and three dimensions. The system supports
a high level animation language based upon a commands/event paradigm. Examples are given of
how the toolkit is being used in a distributed, collaborative geometrical modeling environment.
GATI runs on umnix platforms supporting the X-11 windowing environment and using the XS
Graphics Libraries.

1 Introduction

Recently tlere has been great interest in algorithm animation, user interface animation and key-
frame animation. Algorithm animation and user interface animation have concenfrated almost
exclusively on two-dimensional animation and key-frame animation systems have put great effort
into generating photo-realistic three-dimensional animations that require hours per {rame to gener-
ate. There exists in the area of computational geometry many problems that deal with a moderate
number of graphical objects in three dimensions. With todays powerful graphics workstations it
is longer necessary to limit animation to two-dimensions or to be satisfied with prolonged frame

generation sequences for this particular class of problems.

*Supported in part by NSF grants CCR 90-00028, DMS 91-01424 and AFOSR. contract 91-0276

We present in this paper GATI, a system [or general purpose three-dimensional interactive
animation that runs on various hardware platforms and provides close to real time three-dimensional
animation services. GATI should be very useful in many areas of computational geometry and solid
modeling. It could prove to be very useful as a visual debugger. GATI is an animation toolkit
developed within the frame-work of a collaborative, distributed geometric software environment
called SHASTRA[2]. The SHASTRA software environment provides a powerful substrate of tools
for collaborative and distributed work, it also provides advanced networking facilities that ease the
task of communicating between applications.

This paper provides an overview of the organization of the GATI animation system plus presents
examples of how the system has been used to ease the creation of several geometric modeling and

robotics applications and to provide animation services to other SHASTRA applications.

2 Related Work

Much recent research has been done in the area of algorithm animation and animating user in-
terfaces. Balsa[4] is 2 well known algorithm animation system. Tango[l4] is another algorithm
animation system based upon a path-transition paradigm. Both of these systems provide excellent
facilities for generating two-dimensional animations of algorithms.

With respect to animated user interfaces Whizz{5] typefies a system for developing an arimated
interactive application. Whizz is based on a streams/event model and is limited to two-dimensional
animation.

In the area of three dimensional animation systems a host of systems are available. Powerlul
keyframe animation systems are available from such companies as Wavefront Technologies Inc{9].
Alias Research Inc.[6] Abel Image Research[12], Vertigo Systems Inc.{8], Symbolics Inc.[7] and
others. Also a collection of animation systems have been developed at various universities as part
of ongoing research projects into motion planning, dynamic simulation and animation seripting
systems[13](11]. There is also DYNAMO({10] a system for generating dynamic simulations via
kinematic constraints, behavior functions, and inverse dynamics. However most of these systems

are single user, single workstation programs. In contrast GATI can simultaneously service multiple

clients and allow multi-user interactions. Furthermore GATI can asynchronously support multiple
views and can distribute its rendering over a network of workstations for distributed parallelism.
SHASTRA[2] is a highly extensible, distributed and collaborative geometric software environ-
ment consisting of a growing set of individually powerful and interoperable (client-server) toolkits
which support collaborative design sessions. In the SHASTRA environment, the application toolkits
listed below, run as independent processes on separate workstations having separate user interf{aces
{(using X-11 and Motif). The application toolkits make use of a custom designed network library
to communicate data structures conveniently between each other and manage multiple connections

across a network.

1. The GANITII algebraic surface modeling toolkit provides symbolic and numeric computations

on algebraic varieties.

2. The SHILP solid modeling and display toolkit manipulates curved solid objects with piecewise

algebraic surfaces.

3. The VAIDAK medical imaging and model reconstruction toolkit manipulates medical image

volume data.

4. The BHAUTIK physical analysis toolkit provides a graphical interface and functionality to

set up and perform scientific and engineering simulations on geometric models.

GANITH provides the surface modeling infrastructure for SHILP and VAIDAK. Further, SHILP
provides all the solid model manipulation and display functionality for skeletal structures recon-
structed from CT/MRI image data in VAIDAK. GANITH, SHILP and VAIDAK provide BHAU-
TIK with a varied source of geometric domains. Collectively these toolkits provide a vast modeling
infrastructure. GATI interoperates with GANITH, SHILP, VAIDAK and BHAUTIK toolkit pro-

cesses and acts as their animation server.

3 System Model - Commands/Events

The GATI animation paradigm is based on the basic client/server model. Animation applications
are Lhe clients of an animation server that accepts commands in a high-level animation language.
The animation server generates animation events that are sent to its clients. These events can
be caused by mouse events {(button press, motion) in animation windows or can be caused by the
interaction of various animation objects within the animation environment. For example when an
object has entered a certain region of a coordinate system or if an object has completed a specific
animation command. This second set of events is useful in providing applications with the ability
to interact asynchronously with the animations generated. A client can begin an animation and be
signaled when the animation has completed.

The server can provide animation to multiple clients. The clients can each either generate
separale animations or can collaborate on a single animation. This can be useful for a set of
multiple processes working on a single task or possibly for a set of distributed interactive systems
that each generate a portion of the animation.

This animation server to animation clients paradigm fits in nicely with the distributed and

collaborative nature of the SHASTRA environment.

4 System Overview

The GATI system consists of three primary components: An interactive animation server that
is responsible for displaying the animations, A user library that is linked to animation clients to
simplify communication between the server and the users client, and finally an interactive graphical
editor that provides facilities for creating preset animations that can be used ’off-the-shelf’ in user

programs. These three components are described in detail in the following sections.

4.1 Animation Server

The GATI server provides interactive animation services to other SHASTRA applications, poten-

tially even other GATI servers. The server accepts commands in a high level animation language

View

One
A
User Animalicn
Applicalion Library
(objests FH{ Ligns)
Events . .
Animation
Server
\ Spaces H Regions j
User Animalion

Application Library

Shared
View

One

Ficurg 1: The Software Architecture of GATI

and can generate animation events in response to user input and various graphical events. It sup-
ports multiple clients that can either share animations or have there own separate animations. It
provides facilities for generating [rame-by-{frame movie files that can be used to play-back anima-
tions quickly or to use more powerful rendering programs to generate photo-realistic frames that

can be saved on video-tape for high-quality animations.

4.1.1 Animation Language

The animator accepts commands [rom other SHASTRA applications in a high-level textual language
that can be used to define complex animations. The language allows the definition of movies with
a set of objects, lights, spaces, scripts, views, and regions. A host of operations can be

periormed on each of these items. The nature of these items are defined below.

object An object is a two or three dimensional graphical object represented internal as a set
of polygons. Associated with every object is a collection of attributes that can alter the

appearance of that object in an animation, for example color, material, orientation, etc.

lights The animator supports two kinds of light sources. Either point lights or infinite lights. Point
lights exist within a coordinate system and can be seen in an animation. As such point lights
can have polygonal representations associated with them. Infinite lights have no coordinate
position and are represented primarily as a direction vector. Thus it is not possible to see an

infinite light source. Only the effect that the light it generates is visible in a view.

spaces A space is an organizational device that allows for the creation of hierarchical models
for animation. [t also provides facilities for mixing two-dimensional animations and three-
dimensional animations in a single animation. A space defines a local reference frame that can
contain objects, hights, regions and other spaces. Spaces can contain both two-dimensional
and three-dimensional objects and spaces. This ability to mix two and three dimensional

animations canr provide some powerful animation effects.

scripts scripts are nothing more than user-defined animations. A collection of animations can
be collected together into a single script that can be later applied to multiple objects. This
simplifies animation development, and provides simple mechanisms for having a collection of

items undergo identical animations.

views views are actual on-screen windows and can be used to look at animations from different

positions, angles and with different projections {orthographic versus perspective).

regions are used to mark subsections of spaces for event management. If an ohject enters or exits
a region an event is triggered and sent to the client responsible for the particular animation.

Events are discussed in more detail in the following section.

4.1.2 Animation Events

The animation server provides for two types of events: graphic events and mouse input events. A
graphic event occurs when an object enters/exits a region or when an object completes a specific
animation sequence. The occurrence of a graphic event causes a message to be sent to all clients
that can access the object that triggered the event. The second class of events, mouse events, occur

when 2 button on the mouse is pressed within an animation view or the mouse is moved within an

animalion view. A mouse event causes the space. object, position, and button information to be
passed on to the clients that can access the view in which the event occurred.

Events must be turned on by sending explicit commands to the server. These animation events
provide for interactive manipulation of animations. For example by using a region event simulation

of course grain collision detection can be created at little cost to the applications developer.

4.1.3 Animation commands

The animation language provides commands for creating all of the previously described objects
as well as performing animations on them. It can perform rotations, tramslations, and scaling of
objects , spaces, and lights. It supports changes in color and shade of objects and lights. Scripts can
be defined and applied to objects, spaces, lights, and scripts. Events can be specified for objects, ,
lights, and regions. Recording can be turned on for any number of views so that an animation in

a particular view can be saved and played back later.

FIGURE 2: An apple moving along a simple path

- a sample gati script for moving an apple

create gobject "apple" "apple.poly" ;
create gobject "square" '"square.poly" ;
create view "bouncer" ;
create space “"dancer" ;
create space "suber" ;
gobject set space "apple" "suber" ;

gobject set space "square” "dancer” ;

space set space "suber" "dancer" ;

view set space "bouncer" "dancer" ;
translate space "dancer" (-4.0 0.0 0.0) 1 ;

scala space "dancer" (0.5 0.5 0.5) 1

scale gobject "apple" (0.8 0.8 0.8) 2 ;
scale gobject "square" (2.5 2.5 2.5) 1 ;
translate gobject "apple" (-1.0 1.0 0.0) 1 ;
define "curvae" ("obji")

translate
translate
translate
translate
enddef

space
space
space
space

"obj1"
“obj1"
"obj1"
"obj1"

(1.6 1.6 0.0) 3;
(1.60.00.0) 3
(1.6 -1.6 0.0) 4;
{ 0.0 -1.6 0.0) 4;

#now apply the curve to the object a faw times

apply "“curve" { "subar") ;
apply “curve" ("suber") ;
apply “curve" { "suber") ;

Ficure 3: A sample GATI script

4.2 User Library

The user library is a C library that must be linked to an application for it to take advantage of the
Animation server. It provides utilities for sending animation commands to the server, specifying
callback functions to handle animation events, loading saved objects, loading and saving animation

scripts to files.

4.3 GATI Animation Editor

The GATT animation editor is an interactive graphical editor that allows animators to create and

edit animation scripts that can be saved for later use.

{|Have Qhjece
H[Edic Objccc
3{[Link Objecex] 1

:Croato Space
:Ule- Material
Craste Haterlal
:Vlou Taxtura
eronte Taxture

Create Script

IEdi: Seript

Iquit

FicuRE 4: The GATI animation editor

4.4 Implementation Details

The GATI system has been implemented on a collection of unix workstations in a machine inde-
pendent manner. [t accomplishes this by using an extended version of the XS Graphics Libraries
developed as a part of the SHASTRA project. The XS Graphics Libraries are a suite of 3D graphics
libraries under X-11 that access system-dependent graphics facilities (and hardware) in a uniform,

system-independent manner {1].

5 Examples

In this section we outline experiences with using GATI to implement some interactive animated
applications within the area of geometric modeling and robotics.

GATI is being used in the development of an experimental algorithm for performing low cost
obstacle avoidance, generating animations of families of implicit functions and an interactive ap-

plication for manipulating the structure of molecules.

5.1 Motion Coordination

A recurring problem in robot motion planning is coordinating the motion of a collection of objects
while ensuring that none of the objects collide with each other. GATI provides many benefits when
used for visualizing this particular problem. It provides immediate feedback to changes in the
motion planning algorithm. It also removes from the application developer the burden of writing
routines and functions for manipulating graphical objects. Thus allowing her to concentrate upon
solving the motion planning problem and not delving into the details of how to draw and animate
graphical objects on a workstation.

We have implemented an experimental motion planner that relies upon GATI for input and
display. The motion planner is a prototyping application for experimenting with various heuristic
and deterministic algorithms for motion planning. An initial problem that we are experimenting
with is given n objects in three dimensional space, each with an initjal position and final position,

compute paths for the objects such that no two objects collide as they travel along these paths.

10

Our current algorithm is as follows:

¢ For each object place it at its initial position and specify its final position in three dimensional

space.

¢ A polynomial parametric surface is either calculated or specified by the user such that all
of the initial points and final positions lie on that surface. (Even though the objects move
in space, they follow restricted polynomial parametric trajectories and so naturally all their

paths lie on a suitable polynomial parametric surface.)

» The parametric equations of this surface is then used to project the initial and final points
on the surface to the parametric plane. Motion Paths are now computed in this parametric

plane.
¢ A Voronoi diagram in the plane is next created from the initial positions of the objects.
¢ Initial paths are then generated from the objects start positions to there final positions.
¢ Now we perform the following loop:
o Calculate the minimum possible collision time between neighbors in the Voronoi diagram.,
¢ Move all objects along their paths to this time.

¢ Update the Voronoi diagram and locally modify the paths of the objects that have a potential

collision.

¢ repeat until all objects have reached their goal positions.

The GATI animation system has provided a great deal of benefit in the development of this ap-
plication. Particularly useful was the immediate feedback that was provided. This help a great deal
in the debugging process as it was visually obvious when the algorithm was performing incorrectly.

Figure 5 displays the paths of three moving objects from initial positions towards their goal

positions moving in such a fashion to ensure no collisions.

11

FiGURE 5: The paths of moving objects avoiding each other

5.2 Mathematical Animations

GATI was used to enhance the capabilities of an existing SHASTRA application called GANITHI3].
GANITH provides tools for visualizing algebraic surfaces and performing complex manipulations
of these surfaces. GATI provided GANITH with 2 mechanism for animating the presentation of a
sequence of members of a family of implicit functions.

In figure 6 an overlay of a sequence of steps in an animation shown. The picture is that of a
family of concentric circles intersecting a quartic.

Figure 7 depicts a sequence of surfaces that smoothly join three pipes together. An animation
of this type can be used to view and choose a surface that best joins three pipes and meets other
visual criteria.

In figure 8 an overlay of snapshots of an animation depicting the intersection of families of

surfaces is given.

12

FIGURE 6: A family of algebraic curve intersections

FIGURE 7: A family of smoothly joining surfaces

13

FIGURE 8: A family of intersecting surfaces with one surface shown

5.3 Molecular Docking Animation

An interactive application was developed using GATI to visualize the ” docking” of drug and protein
molecules under molecular Brownian motion.

The application reads in a description of the atom locations of a molecule from a file, computes
the bonding information and then displays the molecule through GATI. Then either under program
control (via the Gati Language) or 2 user can select two or more bonded atoms of the molecule. The
angle between these bond atoms is varied with time and the structure of the molecule is updated
and redisplayed. This provides for a animated view of how attractor drug molecules "dock” with

protein molecules under dynamic situations.

6 Conclusions

In this paper we have presented GATI an animation system for providing low cost real-time in-

teractive three dimensional animation services to computational geometry applications within the

14

FIGURE 9: Two snapshots of an animated drug molecule

SHASTRA environment. GATI has many useful and novel features including the ability to cre-
ate collaborative animations, animation events, and mixing two-dimensional and three-dimensional

animations via the use of the spaces abstraction.

7 Acknowledgements

We thank Assumpta Sabater for her help in the development of the motion planner and Dr. Andrew

Royappa for his assistance in the molecular docking animation project.

References

[1} V. Anupam, C. Bajaj, A. Burnett, M. Ficlds, A. Royappa, and D. Schikore. X5: A Hardware
Independent Graphics and Windows Library. Computer Science Technical Report, CAFP0O-91-

28, Purdue University, Department of Computer Sciences, 1991.

15

[2] V. Anupam, C. Bajaj, and A. Royappa. The SHASTRA Distributed and Collaborative Geo-
melric Design Environment. Computer Science Technical Report, CAP(-91-38, Purdue Uni-

versity, Department of Computer Sciences, 1991.

[3] C. Bajaj and A. Royappa. The GANITH Algebraic Geometry Toolkit. Proceedings of the
First International Symposium on the Design and Implementation of Symbolic Computation

Systems, Leciure Notes in Computer Science, 1990.
[4] M. H. Brown. Algorithm Animation. PhD thesis, Brown University, 1987.

[5] Stéphane Chatty. Defining the dynamic behavior of animated interfaces. In 5th IFIP Working

Conference on Engineering for Human Computer Interaction, 1992.
(6] Alias Research Inc. 110 richmond St. East, Suite 500, Toronto, Ontario, Canada m5¢-1pl.
(7] Symbolics Inc. 1401 Westwood Blvd, Los Angeles, CA 90024.

[8] Vertigo Systems International Inc. 119 W Pender St., Suite 221, Vancouver, BC, Canada v6b
1s5.

[9] Wavelront Technologies Inc. 530 East Montecito, Santa Barbara, CA 93101.

(10] Paul M. Isaacs and Michael F. Cohen. Controlling Dynamic Simulation with Kinematic Con-
straints, Behavior Functions, and Inverse Dynamics. ACM COMPUTER GRAPHICS (Sig-
graph Proc. '87), 1987.

[11] N. Magnenat Thalmann and D. Thalmann. Computer Animation Theory and Practice.
Springer Verlag, 1985.

(12] Abel Image Research. 953 N. Highland Ave., Los Angelese, CA 90038-2481.

[13] C. Reynolds. Computer Animation with Scripts and Actors. Compuler Graphics (Siggraph),
1982.

[14) John T. Stasko. TANGO: A Framework and System for Algorithm Animation. Computer,
1990.

16

