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Abstract 
We present a compiehensive algorithm to construct 
a topologically correct triangulation of the real affine 
part of a rational parametric surface with few restric- 
tions on the defining rational functions. The ratio- 
nal functions are allowed to be undefined on domain 
curves ( pole curwes) and at certain special points (base 
points),  and the surface is allowed to have nodal or 
cuspidal self-intersections. We also recognize that for 
a complete display some real points on the paramet- 
ric surface may be generated only by complex pa- 
rameter values, and that some finite points on the 
surface may be generated only by infinite parameter 
values; we show how to compensate for these con- 
ditions. Our techniques for handling these problems 
have applications in scientific visualization, rendering 
non-standard NURBS, and in finite-element mesh gen- 
eration. 

1 Introduction 
Points on a parametric surface patch can be gener- 
ated by sampling the parametric functions over some 
region of the parameter domain. Because of this, the 
display of patches of polynomial parametric surfaces 
is well-understood [16, 221. Some methods address in 
detail the problem of generating a triangulation on a 
surface that is sensitive to variations in surface cur- 
vature: view-dependent methods [24] as well as view- 
independent [7]. 

The parametric functions that define a surface can 
be viewed as a map from R2 into R3. “Domain sam- 
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pling” methods such as the above assume that the 
parametric functions are defined and continuous in the 
region of the parameter domain that is being mapped. 
If the parametric functions are rational, however, they 
could be undefined at some points in R 2 .  Many sur- 
faces (including simple ones such as some quadrics) are 
given by rational maps which are undefined at domain 
points and curves. 

We investigate how to correctly triangulate a por- 
tion of a rational parametric surface, given a ratio- 
nal map that defines the surface. Our techniques are 
applicable whether this portion of the surface is de- 
scribed by a bounded region of the parameter domain, 
or by a bounding box in R3. In this formulation 
the problem is of interest to  CAD designers as well 
as scientists interested in surface visualization. The 
former usually express the rational functions defining 
the surface in terms of the rational Bezier or B-spline 
bases with non-negative weights, restricting the ratio- 
nal functions to a standard part of the domain. How- 
ever, researchers are considering non-standard gener- 
alizations to rational patches in which the rational 
functions are not defined everywhere [25], making our 
techniques relevant. In addition we consider the prob- 
lem of constructing triangulations on singular ratio- 
nal parametric surfaces, especially surfaces that self- 
intersect. Constructing triangulations on such sur- 
faces is useful for mesh generation in finite-element 
analysis. 

A rational parametric surface is defined by the three 
rational functions: 

where X ,  Y ,  Z ,  W are polynomials with real coeffi- 
cients and no common factor. Our surface triangu- 
lation problem is as follows: Given a bounded region 
of the domain or a bounding box in R3, compute a 
topologically correct triangulation of the correspond- 
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ing portion of the surface defined by (1). In this paper 
we provide all details for the bounding box case of the 
problem, noting that our techniques apply as well for 
the bounded region in the parametric domain. We fur- 
ther require the surface triangulation to have all the 
requisite properties of a simplicial mesh [15], i.e. it 
must be a triangular mesh whose edges meet only at 
vertices, without dangling edges, etc. 

In this paper we describe the various subproblems 
that arise in trying to solve the above problem when 
we don’t place any restrictions on the rational func- 
tions ~ ( s ,  t),y(s, t ) , z ( s ,  t ) .  We then give a solution for 
each subproblem, and combine the solutions into a 
comprehensive algorithm. The subproblems are ex- 
plained in detail in the full version of the paper[9]. 
They are: domain poles, domain base points, surface 
singularities, complex parameter values, and infinite 
parameter values. We mention them briefly here. 

1. 

2. 

3. 

4. 

5. 

Domain poles. The map yields a divide by zero 
at points satisfying W(s , t )  = 0, the poles of the 
rational functions. These domain poles are alge- 
braic curves. The parametric functions cannot be 
evaluated a t  such points and a domain triangu- 
lation which intersects these domain pole curves 
will yield invalid surface triangulations. 

Domain base points. The map is undefined 
at points satisfying X ( s , t )  = Y ( s , t )  = Z ( s , t )  = 
W ( s ,  t )  = 0. There are finitely many such points, 
called domain base points. It is known that a ra- 
tional curve on the rational parametric surface is 
the image of each base point however the points 
on this curve cannot be directly computed us- 
ing the given rational functions. Ignoring domain 
base points can lead to a topologically incorrect 
surface triangulation. 

Surface singularities. The given rational sur- 
face may be singular. Even if the rational map 
has no poles or base points, mapping an arbitrary 
domain triangulation onto the parametric surface 
may yield intersecting surface triangles. 

Complex parameter values. Some real points 
of the surface are generated only by complex pa- 
rameter values. 

Infinite parameter values. Some finite points 
of the surface are generated only by infinite pa- 
rameter values. 

Note that for modern day graphics display and 
NURBS rendering, subproblems (4) and (5) need to 

Figure 1: Hyperboloid of 1 sheet with seam curve gaps 
caused by base points 

be addressed while subproblem (3) is not essential (al- 
though z-buffering still causes wavy lines along poly- 
gon intersections due to aliasing). The above prob- 
lems can be extended to include rational parametric 
surfaces and rational varieties in higher dimensions, 
but we don’t discuss this here. The general flavor of 
the methods discussed will still apply, although im- 
plementing higher-dimensional methods would require 
more computational tools. 

The rest of this paper is organized as follows. First 
in section 2 we discuss two approaches: either directly 
approximating the surface in the range space of the 
parametric functions, or computing those portions of 
the domain that map onto the desired parts of the 
surface. We argue that the domain-space approach is 
preferable in this context. Next in section 3 we present 
techniques for dealing with each subproblem in section 
1. In section 4 we then collect these techniques into a 
comprehensive algorithm for generating topologically 
accurate surface triangulations and provide practical 
details and simplifications based on our extensive ex- 
perimentation. 

2 Domain space vs. range 
space approaches 

One way to construct a triangulation of a paramet- 
ric surface is to evaluate the parametric functions at 
various points on the parameter domain, and link to- 
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gether the resulting surface points to form a simplicial 
mesh. When considering arbitrary rational parametric 
surfaces, the evaluations of the parametric functions 
fail at the poles and base points and techniques of this 
paper are needed to circumvent them. 

Another way to approach the problem is to work 
directly in the range space of the rational function 
map. Since we are only interested in portions of a 
surface inside a bounding box, and poles correspond 
to surface points at infinity, a range-space method 
can avoid explicitly evaluating the rational functions 
at poles. However base points still cause problems. 
The following system of equations is equivalent to 

W ( s , t ) z  - Z(s , t )  = 0 One can theoretically im- 
plicitize the parametric surface by eliminating s, 1 
from this system [19] using several available meth- 
ods [21] and then approximate the resulting implicit 
surface directly. Note that a parametric surface of 
degree n could have an implicit equation of degree 
n2. However, implicit surface approximation tech- 
niques [ll, 181 don’t handle surface singularities very 
well, although research is being done to overcome this. 
Since we would like to display surfaces with compli- 
cated singularities and several real sheets, we avoid the 
range-space approach. We show instead that a careful 
evaluation of the domain is sufficient to generate an 
accurate triangulation of the parametric surface. 

(1): W ( S , t ) X  - X ( s , t )  = 0, W(s,t)y - Y ( s , l )  = 0, 

3 Techniques for overcoming 
difficulties 

In this section we outline the basic idea for solving 
each of the problems addressed above. The complete 
algorithm is presented in the next section along with 
implementation specific details. 

3.1 Partition of domain by pole curves 
Rational functions are undefined at points in the do- 
main where their denominator vanishes, and continu- 
ous everywhere else. Hence, the pole curve partitions 
the parameter domain into regions, such that inside 
each (open) region the functions of the parametric 
map are defined and continuous. 

Therefore, our approach to handling pole curves is 
simple: we partition the domain by the pole curve. 
In particular, we construct a special triangulation of 
the domain that respects this partition. In this trian- 
gulation, a domain triangle contains pole points only 
on its boundary and not in its interior. We construct 
a piecewise-linear topologically correct approximation 

of the plane algebraic pole curve[6, 101 and then con- 
struct a triangulation which conforms to this linear 
approximation i.e. the triangles abut the linear curve 
segments at vertices or edges. The conforming trian- 
gulation may require additional points to be inserted 
in the piecewise linear approximation of the curve. 
Bounds on the numerical approximation (number of 
bits of precision) required for a topologically correct 
linear approximation of an algebraic curve is given in 
[lo] and are based on the gap theorem of [12]. 

Once such a triangulation is constructed, we know 
that each domain triangle maps onto a single-sheeted 
patch, since there are no pole points in the interior 
(pole points at a vertex correspond to points at in- 
finity, and therefore the patch may be semi-infinite). 
A conventional domain sampling technique is used in 
the interior of the triangle to mesh the patch to any 
desired precision [24]. The patch can then be clipped 
against a bounding box, if necessary. If base points are 
not present, domain partitioning combined with the 
handling of infinite parameter values (discussed be- 
low) suffices to generate a topologically correct trian- 
gulation of the parametric surface, even if it is multi- 
sheeted. 

3.2 Base points and seam curve pa- 
rameterizations 

When base points are present, it is not sufficient to just 
handle pole curves as gaps may still be present, as in 
Figure 1. The surface approximation will then not be 
topologically correct, since the surface approximation 
will be “torn” along the seam curves. 

To handle base points, we must “stitch” the surface 
up along seam curves. This can be done in the frame- 
work of domain partitioning, as follows. We compute 
all base points and insert them into the domain trian- 
gulation as additional vertices - thus base points will 
occur explicitly at the vertices of a domain triangle. 

In general, approaching a base point along different 
directions in the domain leads to a different surface 
point (in the limit). Thus a base point “blows up’’ onto 
an entire “seam” curve on the surface [23] - each point 
of this curve corresponds to a different limit direction 
at the base point. A consequence of this fact is that a 
domain triangle with a base point vertex maps onto a 
four-sided patch on the surface. In general, a triangle 
with b base point vertices maps onto a ( b  + 3)-sided 
patch - a fact exploited in [25] to represent multi-sided 
patches over triangular domains. 

Once we have a parameterization of the seam 
curves, it is easy to generate the patch corresponding 
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to a domain triangle with base point vertices, however 
many sides it has. Each of the two edges adjacent to 
a base point vertex corresponds to a particular direc- 
tion, and therefore to  a particular parameter value. 
The two parameter values then define a segment of 
the seam curve. This curve segment is the side on the 
patch that corresponds to the domain base point. 

We now discuss the computation of seam curve pa- 
rameterizations. Points on a rational parametric sur- 
face are given as follows (temporarily using projec- 
tive coordinates for notational convenience): p X  = 

where p is a non-zero constant of proportionality (we 
still use an affine domain, which is sufficient as we later 
show). 

Then, let 0 be a common solution of the curves 
X = 0, . . . , W = 0. Furthermore, let us suppose that 
0 is a point of multiplicity q on each of the curves X = 
0,. . . , W = 0, and that the curves have no common 
tangent a t  0. Then the image of the base point 0 is 
a rational curve of degree q on the surface [23]. 

In [13, 141, a method is given to find the paramet- 
ric equations of this curve. The basic idea is to  pass a 
pencil of lines through the base point and then use the 
slope of these lines as a parameter, since approaching 
the base point from each direction leads to a differ- 
ent point on the seam curve. The seam curve equa- 
tions are not given explicitly, but as quotients of cer- 
tain polynomials. The algorithm fails when the curves 
X = 0,. . . , W = 0 have common tangents at 0; in this 
case the parametric equations given by this algorithm 
generate only a single point of the seam curve. In 
[20] a method is given for parameterizing seam curves 
that works for all cases (i.e., even when the tangents 
are equal). However, it is much more expensive than 
the previous method and not currently practical: mul- 
tivariate resultants are used to compute a projection 
onto a plane of all the seam curves simultaneously, 
yielding a bivariate equation. Along with the pro- 
jection, a rational map R is computed between the 
projection and the curves on the surface. A bivariate 
factorization algorithm (over the complexes) such as 
[4] must first be applied to  separate out the the prc- 
jections of the individual curves. Each projected seam 
curve is then parameterized using a general curve pa- 
rameterization technique [2], and finally mapped onto 
the surface using the rational map M. 

Our solution to  the problem is a simplification of 
of the method of [13] and stated in the Theorem be- 
low which allows us to give an explicit formula for the 
parametric equations of the seam curve and a “blowing 
up” of the base point based on affine quadratic t r a n s  

X ( s , t ) ,  pY  = Y ( s , t ) ,  p z  = Z ( s , t ) ,  pW = W ( s , t )  

formations [l, 61 for the special case when the tangents 
at the base point are equal. The affine quadratic trans- 
formation we use are of the type T : x = r,  y = rs with 
inverse T-’ : r = x ,  s = y/z with the base point trans- 
lated to the origin. This transformation is applied to  
the product of the curves X = 0,. . . , W = 0 whose 
tangents at the base point are equal. Its affect is to 
yield a curve with distinct tangents a t  the base point. 
The transformation being birational (i.e. rational and 
with an inverse which is rational) allows one to  map 
the seam curve parameterization for the transformed 
domain curves back to  the original. Only a finite num- 
ber of these transformations are required to separate 
the tangents[l]. Details of its application for tracing 
through curve singularities is given in [SI. Bounds on 
the numerical approximation (number of bits of pre- 
cision) required for the blowing up procedure at the 
base point are similar to  those given for singularity 
computation in [lo] and are based on the gap theorem 
of [12]. This then together with the explicit formula 
for the parametric equations of the seam curve given 
below, solves this base points problem. 

THEOREM 1 Let ( a , b )  be a base point of mul- 
tiplicity q .  Then for  any m E 72, the image of 
a domain point approaching ( a , b )  along a line of 

PROOF. See the full version of the paper[9]. 

COROLLARY 1 If the curwes X ( s , t )  = 
0, . . . , W(s,  t )  = 0 share t tangent lines at ( a ,  b ) ,  then 
the seam curve ( X ( m ) ,  Y (m),  Z(m),  W(m))  has de- 
gree q - t .  In particular, if X ( s , t )  = 0,. . . , W(s , t )  = 0 
have identical tangents at (a, b) ,  then for  all m E R 
the coordinates ( X ( m ) ,  . . . , W(m))  represent a single 
point. 

3.3 Partitioning along surface singu- 

Earlier, we mentioned two reasons why a domain tri- 
angulation might not stay a triangulation when it is 
mapped onto a parametric surface. The first reason 
was because the domain sampling density was not high 
enough, and the second reason was because the sur- 
face might self-intersect. The first case can be han- 
dled by increasing the domain sampling density (either 
locally or globally, although local curvature-sensitive 

larities 

12 



sampling is much preferred since it generates fewer 
polygons). Several domain sampling techniques al- 
ready adjust the sampling density due to curvature, 
so we focus on the second case. 

The domain-partitioning technique lends itself to 
generating triangulations on singular surfaces. The 
key idea is to compute those points and curves in the 
parametric domain that map onto surface singulari- 
ties, and then partion the domain by these points and 
curves (as well as by the pole curves). If this is done, 
no domain triangle will contain in its interior a point 
that map onto a surface singularity. Hence, triangles 
on the surface will meet only along their edges or at 
their vertices, even if the surface is singular. 

Domain curves (and points) mapping onto surface 
singularities can be computed by solving systems of 
polynomial equation@, 5, 121. Singularities corre- 
spond to domain points where the Jacobian matrix 
of the rational map does not have full rank. We can 
compute the symbolic Jacobian matrix and equate its 
minors to zero, yielding a set of polynomial equa- 
tions whose common solution are domain points and 
curves that map onto surface point and curve singular- 
ities. Multivariate resultants [19, 5, 211 can be used to 
project the solutions onto the parameter plane, after 
which a curve-tracer can be used to compute a lin- 
ear approximation as for the domain pole curves. For 
tracing the curve one can use either subdivision meth- 
ods, e.g. [17], or a marching method such as [6, lo]. 
Bounds on the numerical approximation (number of 
bits of precision) required for the singularity tracing 
computation are given in [lo] and are based on the 
gap theorem of [12]. 

For example, consider the surface given by the the 
following equations, taking z(s, t )  = X ( s ,  t ) / W ( s ,  t ) ,  
etc. 

X ( s , t )  = s3 + st2 - 3s 
Y ( s , t )  = ( s ’+t2)2-3(2+t ’ )  
Z ( s , t )  = s2t + t 3  - 3t 

W(s , t )  = ( s2  + t 2 ) 2  + 2(s2 + t 2 )  + 1 

This is a surface of revolution (see Figure 3) and has 
a point singularity at the origin. 

It can be shown that the domain points mapping 
onto the surface singularity satisfy ( t 2  + s2 - 3) ( t2  + 
s’) = 0. Thus the circle of radius centered at the 
origin, and the origin itself both map onto the surface 
singularity at ( O , O ,  0). This circle and the origin, par- 
tition the parameter domain into regions that meet at 
the surface self-intersection. By partitioning the pa- 
rameter domain by treating the curve t 2  + s2 - 3 = 0 

and the point (0, 0), similar to the domain pole curves, 
we can construct a triangulation on this surface. 

3.4 Computing complex parameter 

We now show one way to compute the complex param- 
eter values that map onto these points. Let the param- 
eters s ,  t denote complex numbers given as s = a + bi ,  
t = c + d i ,  where a ,  b, c, d E R and i = G. 

Then the parametric map from C2 + R3 can be 
expressed as 

z(s, t )  = .(a + bi ,  c 3- d i )  
y(s,t) = y(u + bi ,  c +  d i )  
z ( s , t )  = z(u  + bi ,  c +  d i )  

values 

= 
= 
= 

where X R  denotes the real part of z(a + bi ,  c + d i )  
and XI denotes its imaginary part, etc. 

Then X r ( a ,  b , c , d )  = 0 ,  Y r ( u , b , c , d )  = 0 ,  
Z r ( a , b , c , d )  = 0 form a system of three equations in 
four unknowns whose solutions give parameter values 
that map to real surface points. In general, such a 
system has a one-dimensional solution set. 

Note that this particular system has the trivial two- 
dimensional solution b = d = 0 which must be ex- 
cluded. Thus the marching methods of [6] cannot be 
used directly; rather, as for surface singularities, we 
must use resultants to first compute a projection of the 
space curve. After deleting the extraneous component 
due to the trivial solution, we can trace the projected 
plane curve and finally map it onto the space curve 
using the inverse of the projection. 

The points ( a ,  b ,  c ,  d )  of the space curve give com- 
plex parameter values s = a + bi and t = c + d i  that 
map onto real points of the surface. 

X R ( a ,  b, c ,  d )  + X r ( a ,  b ,  c ,  d )  . i 
Y R ( a ,  b, c, d )  + Y r ( u ,  b ,  c ,  d )  . i 
Z R ( a ,  b ,  c, d )  + Zr(a,  6 ,  c, d )  . i 

3.5 Mapping infinity using projective 
reparameterization 

To handle infinite parameter values, we use projective 
reparameterizations [8]. Specializing Theorem 1 of 181, 
we use four reparameterizations of the original rational 
map, given by 

U 
s = *- 

1 - U - v  

t = *- 
1 - U - v  

V 

Each reparameterized map needs to be sampled 
only over the unit triangle of its domain ( U  2 0, v 2 0, 
U + v 5 l ) ,  yielding a triangular patch. The patches 
meet along their boundaries and together cover the 
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entire surface (including finite points that were gener- 
ated by infinite parameter values in the original sur- 
face). Figure 6 shows a member of the Steiner surface 
family mapped using four reparameterizations. Each 
piece is the image of a different domain quadrant un- 
der the original rational map. Each piece is given a 
different color. 

4 The Triangulation Algorithm 
As is common in domain sampling techniques, a tri- 
angulation of the parametric domain is mapped onto 
the surface, yielding a piecewise-linear approximation 
to it. Triangular surface elements have several advan- 
tages, described in detail in [24]. 

The pole curve partitions the parameter domain 
into several regions. The rational functions of the map 
are continuous inside these open regions, and there- 
fore each region maps to a possibly infinite but single 
sheeted surface patch. The algorithm uses the pole 
curve and any self-intersection image curves to parti- 
tion the domain into regions. This is done by generat- 
ing a piecewise-linear approximation to the pole curve 
and the surface singularity domain points and curves. 
A conforming triangulation is then constructed of 
the curve points, base points and sufficiently many 
other ordinary domain points. The conforming do- 
main triangulation “respects” the pole curves and self- 
intersection image curve. In other words, the interior 
of a domain triangle in this triangulation maps onto 
a patch of the surface that is single-sheeted and does 
not intersect itself. Figure 2 shows a domain triangu- 
lation respecting a pole curve. Each domain triangle 
is allowed to have up to two vertices that are on the 
pole curve (note that base points are also on the pole 
curve). Each domain triangle then corresponds to a 
single-sheeted surface patch. 

We first present the algorithm, and then provide 
implementation details and examples. 

proximation to the image curves or points of any 
surface singularity 

4. (GENERATE BASE POINTS) Compute all the 
base points of the current mapping that lie inside 
the unit triangle. 

5. (GENERATE DOMAIN POINTS) Generate 
points in the rest of the unit triangle according 
to some fixed or adaptive sampling scheme. 

We label each kind of point accordingly as pole, 
singularity, base or ordinary domain point. 

6 .  (TRIANGULATE) Compute a triangulation of 
the points thus generated. If the edge of any tri- 
angle crosses the pole curve or the singularity im- 
age curves, insert the intersection points; if any 
triangle has three pole vertices, insert its centroid. 

7. (MAP TRIANGLES) Every triangle can now 
have up to 2 pole vertices or base point vertices. 
Map each triangle onto a surface patch and clip 
it against the bounding box. Various types of 
patches result depending on the labels of a do- 
main triangle. They are as follows: 

0 All vertices are ordinary. The image of the 
triangle is a finite triangular patch. 

0 One vertex is a pole. The image is an infinite 
triangular patch with one corner at infinity. 

0 Two vertices are poles. The image is an in- 
finite triangular patch with two corners at 
infinity. 

0 One vertex is a base point. The base point 
blows up to  a curve on the surface. Ap- 
proaching the base point vertex along each 
of its incident edges leads to a different sur- 
face point on this curve. Thus, the image is 
a finite rectangular patch. 

1 0 Combinations of ordinary, base points, and 
pole points. The resulting patch can be finite 
or infinite, with up to six sides. 

(RESTRICT T O  FINITE DOMAIN) Perform 
a projective reparameterization so that the en- 
tire surface is mapped in four pieces, each over 
the “unit” trianglespanned by ( O , O ) ,  (0, l) ,  ( 1 , O ) .  
Treat the four new mappings independently, and 
for each mapping perform the following steps. 

Mapping each domain triangle is accomplished by 
walking along its boundary and checking the ver- 
tex labels. For clipping, an iteration must be used 

2. (GENERATE POLE POINTS) Compute a 
piecewise-linear approximation to the pole curve 
of the current mapping inside the unit triangle. 

3. (GENERATE SURFACE SINGULARITY IM- 
AGE POINTS) Compute a piecewise-linear ap- 

to  locate the intersection(s) of each edge of the 
surface patch with the bounding box. To map 
domain triangles with base point vertices, a pa- 
rameterization of the corresponding seam curve is 
necessary, as explained previously and elaborated 
below. 
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PLA Of pole CUNe ._....____ .. .. 
Pole curve vertex 

Ordinary vertex 

Figure 2: Partition of the domain triangulation by a 
pole curve 

Finally, we could compute surface points corre- 
sponding to complex parameter values as explained 
earlier. Since these points form a one-dimensional 
family in general (i.e. they are curves), we don’t in- 
clude them in the triangular mesh; they should how- 
ever be used to augment the surface display in scien- 
tific visualizations. 

4.1 Details and Implementation Issues 
We now discuss the steps in more detail. 

In step 2, we use an adaptive tracing scheme based 
on [6] and suign estimates of Lipschitz constants as in 

In step 4 we find the base points by solving the 
equations Fi = 0, i = 1,.  . . , 4 .  This is done by picking 
two of the equations, finding their common solutions, 
and then checking whether these are solutions of the 
other two equations. In [3] and [13] a method based 
on resultants and birational maps is given for finding 
all base points and their multiplicities directly. 

In step 5, points on the unit triangle can be gen- 
erated either uniformly or adaptively spaced. Points 
that are uniformly spaced in the s and t directions 
are easily generated. For instance we can generate 
n(n+ 1)/2 points by taking i+ 1 equally spaced points 
on each line s + t = i / ( n  - l), i = 0 , .  . . , n - 1. The 
points can also be selected based on local surface cur- 
vature, for instance using heuristics that test the local 
“flatness” of the surface using the tangents at triangle 

1241. 

endpoints. 
For step 6, any triangulation method can be used, 

although some triangulations such as the Delaunay 
have convenient properties [15]. Furthermore for De- 
launay triangulations upper bounds are known for the 
number of additional points required to make the tri- 
angulation conform to the linear approximation of the 
domain pole and singularity curves. 

Step 7 is complicated only because of the many 
cases involved. We know that each of the current do- 
main triangles maps onto a single-sheeted patch with 
up to 5 sides. The domain triangle is subdivided if 
necessary, using an adaptive domain sampling tech- 
nique [24] where again estimates of Lipschitz constants 
are used to decide when a portion of a surface is suffi- 
ciently linear to  be approximated by a triangular facet. 

Finally, base point vertices need special treatment. 
A domain triangle with b base point vertices maps 
onto a patch with b + 3 sides. Three sides of the patch 
are the images of the domain triangle’s three edges, 
and therefore tracing these sides (for clipping) is not 
a problem. How to trace the other b sides of the patch 
is not obvious, and we describe that here. Consider 
a triangle with a base point vertex p. Suppose p is 
incident to the edges e l  and e 2 .  Let the slope of the 
edges el  and e2 be ml and m2 respectively. Approach- 
ing p along the line of slope ml leads to one point on 
the surface, and approaching it along the line of slope 
m2 leads to another point on the surface. Both these 
points lie on the seam curve corresponding to the base 
point. Parameterize the seam curve in terms of m, the 
slope of lines through the base point. Then the side 
of the patch that corresponds to the base point vertex 
can be traced by evaluating the seam curve parame- 
terization at values between ml and m2. 

We have implemented the entire algorithm and 
tried various techniques for solving the above prob- 
lems. Based on our experiments we feel that 
the domain partitioning approach is most suit- 
able. Our implementation is in the Ganith sys- 
tem [7] and was used to generate Figures 1, 3,6, 
4,5, 7 ,  and 8. The last four show various self- 
intersecting and multi-sheeted rational parametric 
surfaces. More information on the software is avail- 
able via anonymous ftp from ftp.cs.purdue.edu and 
via World Wide Web access using Mosaic from 
http:///www.cs.purdue.edu/research/shastra/shastra.html. 
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