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Abstract

We present algorithms for constructing iso-contours from image data or �tting scattered point data
C1, C2 or C3 piecewise smooth chains of single sheeted real cubic algebraic curve segments called cubic
A-splines (short for cubic algebraic splines). Using cubic A-splines we achieve data �tting with either a
higher order of continuity or greater local exibility for �xed continuity, than numerous prior schemes.
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1 Introduction

Generating contours in image data, reconstructing digitized signals, and designing scalable fonts are only
some of the several applications of spline curve �tting techniques. In this paper, we generalize past �tting
schemes with conic splines [4, 16, 17, 18] and even rational parametric splines [7, 13, 19], We exhibit e�cient
techniques to deal with cubic algebraic splines (A-splines) achieving �ts with small number of pieces yet
higher order of smoothness/continuity or greater local exibility for �xed continuity, than prior schemes.
The cubic A-splines are continuous chains of cubic implicitly de�ned algebraic curve segments, fi(x; y) = 0,
with fi(x; y) a bivariate real polynomial, and with achievable local continuity as high as C3 at the junction
points between curve segments.

The primary drawback for the widespread use of splines consisting of implicit algebraic curves is that
a single implicitly de�ned curve may have several real components (ovals) and can possess several real
singularities. In [3] we show how to isolate a non-singular and single sheeted segment of implicit algebraic
curves and furthermore how to stitch these segments together to form splines. In this paper we focus on the
case of cubic A-splines. We provide e�cient algorithms for their use in �tting contour image data, ordered
digital signal data, as well as randomly sampled scattered data sets. Note that rational parametric cubic
splines can only achieve local C2 continuity [8], compared to the local C3 continuity of cubic A-splines.
The class of rational parametric cubic curves is a strict subset of the class of cubic algebraic curves [21]
and also has fewer degrees of freedom ( 8 versus 9 of the cubic algebraic curve). Note, of course that for
�xed continuity (Ck, k = 0; 1; 2; or3), the extra local degrees of freedom which the cubic A-spline segment
posseses, allows for greater local exibility and approximation of the input data.

Related Prior Work:

Since 1960's, considerable work on polynomial spline interpolation and approximation has been done(see
[8] for a bibliography). In general, spline interpolation has been viewed as a global �tting problem to
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Figure 2.1: The BB triangle and related local systems

scattered data[4, 7, 13, 16, 17, 18, 19]. Local interpolation by polynomials and rational functions is an
old technique that traces back to Hermite and Cauchy[6]. However, local interpolation by the zero sets
of piecewise polynomials (implicit algebraic curve segments) is relatively new[3, 14, 15, 20]. The papers
[14, 15] construct a family of C1 (actually tangent continuous) and C2 (actually curvature continuous)
cubic algebraic splines. They however use a reduced form of the cubic which guarantees that each segment
of the spline is convex and furthermore allows one to achieve C2 continuity only if the input data is convex.
Furthermore, their family of curvature continuous curves [14] can achieve C2 continuity only if the given
data is convex. Their results are a special case of the present paper, as our cubic A-splines are based on
the general implicit cubic, and as we show, can always be made to achieve C3-continuity for arbitrary data,
and even C4-continuity for certain special input data[3].

2 Cubic A-Splines

Since the case of C1 smooth cubic A-splines is dealt with in [15], here we consider Ck continuity between
adjacent cubic algebraic curve segments for the cases of k = 2and3. Each algebraic curve segment f(x; y) =
0 can be expressed locally at (non-singular) junction points in functional form as either x = x(y) or y = y(x).
Ck continuity, for k = 2and3, at the junction points is then achieved by the matching of derivatives upto
order k. Relative to a given triangle p0p1p2, we use two local coordinates denoted as (X ;Y)(p0;p1) and
(X ;Y)(p2;p1), and which are de�ned by shifting the origin of the xy-system to p0 and p2 respectively, and
then rotating them in such a way that the vectors p1 � p0 (resp. p1 � p2) are in the same direction as the
new y-axis(see Figure 2.1).

Let

F (�0; �1) =
nX

j=0

n�jX
i=0

bij
n!

i!j!(n� i� j)!
�i0�

j
1(1� �0 � �1)

n�i�j : (2.1)

be the BB form(see [9, 11]) of f(x; y) over the triangle p0p1p2. Here we study only cubic algebraic curves
and so restrict to n = 3. Let F0(X ;Y) and F2(X ;Y) be f(x; y) under the local coordinates (X ;Y)(p0;p1)

and (X ;Y)(p2;p1), respectively, and let Fi(0; 0) = 0 and @Fi(0;0)
@X 6= 0 for i = 0; 2. Then each Fi(X ;Y) = 0

can be expressed locally at pi as a function of Y , denoted X(pi;p1)(Y). The k-th local derivatives, denoted

by X
(k)
(pi;p1)

= X
(k)
(pi;p1)

(0), are also well de�ned. Here the subscript (pi; p1) is to emphasize that X is related

to the local system (X ;Y)(pi;p1) that is de�ned by pi and p1. Correspondingly, �0 = �0i(�1) is well de�ned

locally by F (�0; �1) = 0 at Pi for i = 0; 2, here P0 = (0; 0)T , P1 = (0; 1)T and P2 = (1; 0)T . So do the

derivatives �
(k)
0i = �

(k)
0i (0) at Pi for i = 0; 2. Here the subscript i is to emphasize the dependency on point

Pi. Now, suppose X
(1)
(pi;p1)

= 0, that is, the curves Fi(X ;Y) are tangent with y-axis(this is always the case
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Figure 2.2: Bernstein Bezier Coe�cients of a C0 Cubic Algebraic Curve

in this paper), then we can establish, by di�erentiating X = X(pi;p1)(Y), the following relations among

these derivatives: �
(1)
00 = 0, �

(1)
02 = �1 and

�
(2)
0i =

kp1 � pik
3X

(2)
(pi;p1)

�(p0; p1; p2)
(2.2)

�
(3)
0i =

kp1 � pik
4X

(3)
(pi;p1)

�(p0; p1; p2)
+
3kp1 � pik

4hp1 � pi; p2 � p0i(X
(2)
(pi;p1)

)2

�2(p0; p1; p2)
(2.3)

where �(p0; p1; p2) = det

"
p2 p1 p0
1 1 1

#
.

We �rst state some results of arbitrary degree algebraic splines [3] and then specialize to the cases of C2

and C3 cubic A-splines, the focus of this paper. Let F (�0; �1) be de�ned as (2.1). Since there is constant
multiplier to the equation F (�0; �1) = 0. We may assume b0n = �1 if b0n 6= 0.
Theorem 3.1 [3] For the given polynomial F (�0; �1) de�ned as (2.1), if there exists an integer k(0 < k <

n) such that

bij � 0; for i = 0; 1; :::n� j; j = 0; 1; :::; k� 1 (2.4)

bij � 0 for i = 0; 1; :::n� j; j = k + 1; :::; n (2.5)

and
Pn

i=0 bi0 > 0,
Pn�j

i=0 bij < 0 for at least one j (k < j � n), then
(i) for any � that 0 < � < 1, the straight line �0 = �(1��1), that pass through P1 and the line segment

(P0; P2), intersect the curve F (�0; �1) = 0 one and only one time(counting multiplicity) in the interior of
the triangle P0P1P2.

(ii) The value �1 determined by B�(�1) = F (�(1 � �1); �1) = 0 in the interior of the triangle is an
analytic function of �.

Theorem 3.1 guarantees that there is one and only one segment of F (�0; �1) = 0 within the standard
triangle. The term \A spline" then denotes a chain of such curve segments with some continuity at the
joining (junction) points. We should mention that the curve F (�0; �1) = 0 passes through P1 = (0; 1)T if
b0n = 0. However, we do not use this part of the curve. In our applications in x3 using cubic A-splines,
we take b03 to be �1. Figure 2.2 shows the two di�erent possible cases of cubic A-splines which are C0 at
the two base end points of the triangle. (using Theorem 3.1 for n = 3, k = 1 and k = 2). In each case
there are 7 remaining free degrees of freedom (reduced from the original 9). Figure 2.3 shows the case of
a cubic A-spline which is C1 at the two base end points of the triangle. (using Theorem 3.1 for n = 3 and
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Figure 2.3: Bernstein Bezier Coe�cients of a C1 Cubic Algebraic Curve
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Figure 2.4: The two di�erent cases of C1 join polygon segments

k = 1). In this case there are 5 remaining free degrees of freedom (b10; b20; b11; b02; b12). These free degrees
of freedom can be used for interpolating and least-squares approximation of additional data points in the
interior of the triangle.

Two cubic A-spline curves de�ned over triangles dp0p1p2 and dp4p3p0 can be simply joined with C1 conti-
nuity by either of the two polygon con�gurations as shown in Figure 2.4. These two polygon con�gurations
are known as a Case(a)-join and a Case(b)-join.

3 Fitting with Cubic A-splines

Our data �tting algorithms with C2 and C3 cubic A-splines are as follows.

Algorithm 1.

1. Extract a contour (ordered set of points) from the given input data. See subsection 3.1.

2. Compute breakpoints along the contour. These breakpoints points are the junction points for the cubic
curves which make up the cubic A-spline. See subsection 3.2.

3. Compute derivatives at the junction points using local divided di�erences along the contour. For C2

and C3 continuity one needs upto second and third order derivatives, respectively, at these junction
points. See subsection 3.3.

4. Construct cubic A-spline �ts which interpolate the junction points along with the derivatives, and is
least-squares approximate from all the given data between junction points. See subsection 3.4.

3.1 Extracting an Iso-Contour from a Grey-scale Image

For iso-contour extraction from dense image data we use the following algorithm. The dense image data
is in the form of a two dimensional array of two byte integers, one array for each planar slice through the
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Figure 3.5: Extracting an iso-contour (left) from a dense MRI slice (right)

object. The value in each cell (pixel) of the array is related to the density of the scanned object at that
point in space. Each array may contain any number of iso-contours. To locate the iso-contours :

1. scan for a cell on an initial edge

2. starting at this cell hug the exterior of the cross section working from cell to cell and creating a list
of two dimensional points until the beginning is reached or a dead end is found

3. if a dead end is found, backtrack

4. if the path closes and the algorithm does not backtrack to the beginning point then smooth and
compress the list of points if necessary.

In our implementation of this algorithm the following heuristic rule was used: if the density value in
a cell c is within range and if the density values of all the cells surrounding c are within range, then the
cell c is acceptable. The point list is smoothed and compressed by growing segments that are within a
prescribed constant value of the original polyline. An example contour extraction is shown in the left part
of Figure 3.5 from the input MRI (Magnetic Resonance Imaging) image slice on the right. Of course, more
sophisticated iso-contour extraction algorithms may also be used, see for e.g. [12]

For arbitrarily scattered data we use the alpha shape generation algorithm of [10] to extract an appro-
priate contour of the given scattered data points. Examples of this algorithm are shown in Figure 3.6 for
an initially unordered set of point data sampled from a human head pro�le.

3.2 Computation of Junction Points

The next step is to compute the junction points around the contour. We use a curvature adaptive scheme
for the placement of the cubic curve segments that is given in [5]. The points on a unit circle are in one-
to-one correspondence with the normal directions, (or alternatively the slopes) of the line segments which
make up the polygonal contour. Consider any regular k polygonal subdivision of a circle and number the
k discrete normal directions n of the polygon boundary with integers from 1 to k. See also Figure 3.7.

Now number each line segment of the contour boundary with the integer i if it has the largest dot
product of its normal with the ith normal of the regular polygon. Under this mapping the k discrete
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Figure 3.6: Extracting a contour from scattered data points
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Figure 3.7: Regular subdivision of the space of normals on a planar contour
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Figure 3.8: Junction Points and Cubic A-spline Fits

normal directions on the circle partitions the polygonal contour on a data slice into groups where the
members of a group consist of a connected sequence of line segments having the same assigned number.
The endpoints of groups are the contour (junction) points whose two incident line segments have distinct
assigned numbers. The line segments of each group are then replaced by a single cubic which C2 or C3-
interpolates the group endpoints and the locally computed derivatives and simultaneously least-squares
approximates the contour line segments that originally formed the group and lies within the junction
points. See Figure 3.8 where junction points are computed for di�erent polygonal subdivisions k of the
unit circle. The C2 and C3 interpolation of the pair of endpoints and locally computed derivatives, by
cubic A-splines are explained in the next subsections. If the least-squares approximation yields a poor
error bound then additional cubics can be used to achieve a better bound. This operation is of course
local to the the group and can be achieved by selectively re�ning the regular polygon edge corresponding
to that group, replacing that edge by two or more edges inscribed in the circular arc subtended by that
edge. The newly created normal directions are now mapped to the polygonal contour splitting the group
into sub-groups. Each sub-group can now be replaced by a cubic, improving the approximation.

3.3 Generating Derivatives at Junction Points

There are various forms of divided-di�erence methods that extract geometric information around a junction
point, from a given list of points [8]. Consider a sequence of points � � � ; pi�2; pi�1; pi; pi+1; pi+2; � � � around
the junction point pi and an imaginary power series C(t) from which, we assume, the digitized points near
pi arise, and whose parameter value is t = 0 for pi. Then, the tangent vector of C(t) at t = 0 can be
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approximated by the approximation:

C
0

(0) �
�i

dist(pi; pi+1)
(pi+1 � pi) +

1� �i

dist(pi�1; pi)
(pi � pi�1)

where �i =
dist(pi�1;pi)

dist(pi;pi+1)+dist(pi�1;pi)
and dist(�; �) is the distance between two points.

Repeatedly applying this approximation formula, yields compact formulas [2] for higher order divided-
di�erences:

�jpi =

8><>:
pi if j = 0
1
j
( �i
dist(pi;pi+1)

(pi+1 � pi)

+ 1��i
dist(pi�1;pi)

(pi � pi�1)) if j > 0

Using this divide-di�erence operator, a truncated power series is represented as Ci(t) = �0pi + �1pit +
�2pit

2 + � � � + �kpit
k . The higher order derivatives at the junction points are then approximated by

C
0

(0), C
00

(0), C
000

(0), etc. From these derivatives, we can easily compute the local derivatives X
(k)
(pi;pi+1)

and

X
(k)
(pi;pi�1)

de�ned in x2.

3.4 Exact and Least-Squares Fitting with C2 and C3 cubic A-splines

Consider a C1 cubic algebraic curve segment de�ned over a triangle p0p1p2(see for e.g. Fig. 3.9)

F (�0; �1) = ��31 + b10�0(1� �0 � �1)
2 + b20�

2
0(1� �0 � �1)

+b02�
2
1(1� �0 � �1) + b12�0�

2
1 + b11�0�1(1� �0 � �1)

(3:6)

with
b10 > 0; b20 > 0; b02 � 0; b12 � 0 (3:7)

By di�erentiating F (�0; �1) = 0 about �1 we have the following formulas for �
(k)
0i = �

(k)
0i (0):

�
(1)
00 = 0 �

(1)
02 = �1

�
(2)
00

2!
= �

b02

b10
;

�
(2)
02

2!
=

b12

b20
; (3:8)

�
(3)
00

3!
=

b10 � b10b02 + b11b02

b210
;

�
(3)
02

3!
=
�b20 + b20b12 � b11b12

b220
(3:9)

From these formulas and relations (2.2){(2.3) and the sign requirement (3.7), we can derive the following
algorithm for constructing C2 continuous A-spline curve(see [3] for detail):

Algorithm 2. Let f dqiviqi+1gmi=0 form a C1 polygonal contour of the junction points(see Figure 3.10).

1. Specify the second derivative values such that X
(2)
(qi;vi)

= 0 if qi is of a Case(a)-join, or X
(2)
(qi;vi)

�(qi,

vi; qi+1) � 0 if qi is of a Case(b)-join for i = 1; 2; : : : ; m, and X
(2)
(q0;v0)

�(q0; v0; q0+1) � 0, X
(2)
(qm+1;vm)

�(qm; vm; qm+1) � 0:

2. Compute b02 and b12 by (3.8) and (2.2) for each triangle. Determine the three remaining degrees of
freedom b10 > 0, b20 > 0 and b11 by least-squares approximation of the given data within the triangle,
or via a default choice if there are not enough data points within the triangle.
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Figure 3.9: Bernstein Bezier Coe�cients of a C2 Cubic Algebraic Curve
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Figure 3.10: A C0 polygon and a C1 polygon

For achieving C3 continuity, we specify the second and third local derivatives at the junction points.
These derivatives need to satisfy some of the following conditions in order to have the coe�cients of the
BB-form have the required signs(see (3.7) and Figure 3.11):

X
(3)
(p0;p1)

�(p0; p1; p2) > 0 (3:10)

 
�
(3)
00

6
�

�
(2)
00

2

!
b10 = 1� b11

�
(2)
00

2
;

 
�
(3)
02

6
�

�
(2)
02

2

!
b20 = �1� b11

�
(2)
02

2
(3.11)

On the triangle p0p1p2 and at point p0 we have the inequalities.

�

8<: 1� kp1�p0k
3b11D2

�(p0;p1;p2)
> 0

kp1�p0k4D3

�(p0;p1;p2)
+ 2

�
D2

�(p0;p1;p2)

�2
kp1 � p0k4hp1 � p0; p2 � p0i �

kp1�p0k
3D2

�(p0;p1;p2)
> 0

(3:12)

where Dk =
X
(k)
(p0;p1)

k! , and at p2

�

8<: �1� kp1�p2k3b11D2

�(p0;p1;p2)
> 0

kp1�p2k4D3

�(p0;p1;p2)
+ 2

�
D2

�(p0;p1;p2)

�2
kp1 � p2k4hp1 � p2; p2 � p0i �

kp1�p2k3D2

�(p0;p1;p2)
> 0

(3:13)

where Dk =
X
(k)
(p2;p1)

k! . For dp4p3p0 at p0, we have
�

8<: �1 + kp3�p0k3b11D2

�(p4;p3;p0)
> 0

kp3�p0k4D3

�(p4;p3;p0)
+ 2

�
D2

�(p4;p3;p0)

�2
kp3 � p0k4hp3 � p0; p0 � p4i+

kp3�p0k3D2

�(p4;p3;p0)
> 0

(3:14)

Algorithm 3. Let f dqiviqi+1gmi=0 form a C1 polygon of the junction points and assume hvi� qi; qi+1� qii >
0; hvi�1 � qi; qi�1 � qii > 0 if 1 � i � m.
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1. At each junction point qi (i = 0; 1; : : : ; m + 1), specify the second and third order derivatives as
follows(regard qi; vi; qi+1 as p0; p1; p2 for i � 0 and qi�1; vi�1; qi as p4; p3; p0 for i � m+ 1):

(a) X
(2)
(qi;vi)

= 0, X
(3)
(qi;vi)

satisfy (3.10) if qi is of a Case(a)-join and 1 � i � m.

(b) X
(2)
(qi;vi)

�(qi; vi; qi+1) > 0, X
(2)
(qi;vi)

and X
(3)
(qi;vi)

satisfy both +(3.12) and �(3.14) if qi is of a

Case(b)-join and 1 � i � m.

(c) For i = 0 and i = m + 1, X
(2)
(q0;v0)

�(q0; v0; q0+1) � 0; X
(2)
(qm+1;vm)�(qm; vm; qm+1) � 0; and

X
(3)
(q0;v0)

and X
(3)
(qm+1;vm) satisfy +(3.12) and �(3.13), respectively.

2. For each triangle, compute b10 and b20 using (3.11); compute b02 and b12 using (3.8). The remaining
single degree of freedom b11 � 0 is chosen by least-squares approximation of the given data points
interior to the triangle or via a default choice if there are not enough data points within the triangle.

3.5 Surplus Degrees of Freedom

For the above C2 and C3 data �tting algorithms, after satisfying the derivatives at the junction points,
there still exists three and one remaining degrees of freedom, respectively. These degrees of freedom can
be used to locally control the shape of the curve in each triangle. For example, if b10 and b20 are given
in Algorithm 2, then b11 can be chosen so that the curve in the triangle can be as high as the top vertex
(when b11 tends to 1) or as low as the bottom edge (when b11 tends to �1). In Algorithm 3, the curve
can vary between the two limit curves(one corresponding to b11 = 0, other corresponding to b11 = �1).
As we early mentioned in both Algorithm 2 and Algorithm 3, we currently use these degrees of freedom
to least-squares approximate points in the triangle and based on the sign requirements (3.7). However,
there exist the possibility that there are not enough data points within a triangle to determine these
coe�cients. Default choices of values for the undetermined coe�cients are used in this case. One method
used to determine these default values of the coe�cients is to locally approximate a quadratic or linear
curve with the triangle, which tends to avoid sharp changes in the geometry of the spline curve. The linear
or quadratic approximation is easily achieved by using degree elevation formulas (see [11]). The second
approach is to minimize the energy over the triangle on which the curve is de�ned. That is,

min =
Z Z

�

 �
@f

@x

�2
+

�
@f

@y

�2!
dx dy

where f(x; y) = 0 is the curve in the triangle � in xy-system.
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Figure 3.12: Iso-Contours from volume MRI using C2 and C3 Cubic A-splines

4 Conclusions and Examples

Cubic A-spline curves are an e�ective tool to �t both dense and scattered data. With a low degree cubic
curve, one can achieve a high order of smoothness (C2 or C3), and still have remaining degrees of freedom
to locally modify and control the shape of the curve. If C1 smooth data �ts are all that is required, using
cubic A-splines one has as many as �ve remaining degrees of freedom for local shape control after satisfying
the C1 derivative constraints. These remaining or extra degrees of freedom can be used to both lower the
approximation error as well as require fewer overall curve segments for the global data �t. Figure 3.12
shows examples of iso-contour reconstructions from volume MRI, using C2 and C3 cubic A-splines based
on the algorithms of the previous sections. All implementations were made in our SHASTRA scienti�c
design environment [1].
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