
Distributed Volume Modelling and Collaborative Visualization�

Chandrajit Bajaj Daniel Schikore Guoliang Xu

Department of Computer Science,

Purdue University,

West Lafayette, IN 47907

Telephone: 317-494-6531

FAX: 317-494-0739

Email: bajaj@cs.purdue.edu

Abstract

In this brief paper we describe a conferenced environment that we have built in a client-server networked
environment called SHASTRA to support distributed volume modelling and collaborative visualization. The
SHASTRA environment allows multiple users to share and interact over extremely large volume data sets
while viewing multiple isosurfaces and renderings with independent viewing directions and cutaways. The
distributed modelling and visualization algorithms uses the computational power of multiple networked work-
stations to speedily produce piecewise trivariate polynomial �nite elements (modelling) and translucent shaded
images of isosurfaces as well as volume rayshaded renderings (visualization) of extremely large data sets. The
color graphics in SHASTRA are built on top of XS, a machine independent 3D-graphics and windows library,
that runs on multiple platforms in a heterogeneous environment.

1 Introduction

Measurement-based volumetric data sets arise for example from medical imaging (Computed Tomography { CT,
Magnetic Resonance Imaging { MRI), atmospheric, geological, geophysical measurements. Synthetic volume
data sets are generated for example by computer based simulation such as meteorological, thermodynamic simu-
lations, �nite element stress analyses and computational 
uid dynamics. Modelling the information contained in
these, typically huge, data sets via trivariate polynomial �nite element approximations provides mechanisms to
allow querying, interaction and manipulation. Volume visualization provides mechanisms to express information
contained in these, typically huge, data sets via translucent displays of isosurfaces or volume renderings { the
challenge, of course, lies in making these images easy to understand. In [3] we present details of distributed
volume rendering computations in SHASTRA.

Our goal is to depart from traditional single user systems and build computer-enhanced multi-user collabora-
tive scienti�c visualization and analysis environments [2]. Such CSCW (Computer Supported Cooperative Work)
environments provide support for collaboration in the problem-solving phase, as well as in the review phase [9]. A
conferenced collaborative volume visualization environment lets multiple users on a network share a volume data
set, simultaneously view shaded volume renderings of the data, and interact with multiple views, cutaways and
iso-surfaces. It provides facilities for interactive control and speci�cation of the visualization process. We have
adopted a hybrid strategy to bene�t from distributed systems. Distributing the output of a high computation

�Supported in part by NSF grants CCR 92-22467, DMS 91-01424, AFOSR grants F49620-93-10138, F49620-94-1-0080, ONR

grant N00014-94-1-0370 and NASA grant NAG-93-1-1473.

1



Figure 1: A Stack of C1 Smooth Cubic Spline Contours which are Iso-Curves from a Stack of MRI Data Slices

task emphasizes sharing of resources among applications. In addition, partitioning a high computation task,
and distributing it, accords us the bene�t of parallelism of distribution [8]. The distributed system, thus, serves
as a high-performance multi-user virtual machine for large �nite element and isosurface calculations as well as
volume rendering computations and collaborative visualization.

In x2 of this paper we present details of distributed trivariate polynomial �nite element computations for
both dense cuberille data (CT/MRI) as well as volumetric scattered data (
ow simulations on unstructured
grids or meshes). In x3 we elaborate on the collaborative visualizations of multiple isosurfaces and volume
renderings within the SHASTRA environment. Timing details of an implementation of distributed volume
rendering computations in SHASTRA are given in [3].

2 Modelling for Visualization

We construct smooth trivariate polynomial �nite element approximations to model and visualize scalar �elds
in three dimensions. These �nite elements are higher dimensional analogues of traditional piecewise smooth
interpolatory and approximatory surface patches [5, 7]. For CT/MRI cuberille data the trivariate �nite elements
are C1-smooth and either tri-quadratic or tri-cubic degree and generalizations of the C0 continuous piecewise
linear or trilinear approximations [10, 11]. After constructing these piecewise trivariate polynomial approximants
one can e�ciently compute stationary points or intrinsic curves on any iso-surface (iso-contour), perform inter-
surface calculations as well as simultaneously view several iso-surfaces or arbitrary cross-sections.

One of our distributed algorithms to construct these piecewise approximants utilizes the fact that three di-
mensional CT/MRI cuberille image data comes in a stack of parallel slices. In this approach we consider each
slice data as lying in three dimensional space with the spatial coordinates x; y being two dimensions and the
CT/MRI density values yielding the third dimension w. We then �t a C1 smooth piecewise bi-cubic polynomial

function W (x; y) =
P3

i=0

P3
j=0 wijB

3
i (u(x))B

3
j (v(y)) to simultaneously interpolate and least-squares approxi-

mate this dense data, with a small number of polynomial pieces [6]. Here Bn
i (t) =

n!
i!(n�i)!

ti(1�t)n�i is the degree

n Bernstein-Bezier polynomial, and u(x) = x�a1
a2�a1

and v(y) = y�b1
b2�b1

and is de�ned locally for rectangles given by

[a1 � x � a2, b1 � x � b2]. The desired contours in each slice of anatomical data are now C1 smooth iso-curves
w = constant of this computed density function. In one data partitioning scheme the di�erent data slices are
handled by di�erent workstations (servers) and the results of the iso-curves are communicated and viewed by

2



Figure 2: A Shared Visualization in SHASTRA of the Models of the Head and the Brain which are Iso-Surfaces
from the Volume Cuberille MRI Data

designated display workstations (clients). Alternatively, since the piecewise trivariate interpolants are locally
computable, each data slice may be further subdivided into rectangles and processed on separate workstations.
See Figure 1 which shows an example of this approach used to construct a contour model of a human head from
MRI data.

Another of our distributed algorithms to construct piecewise approximants works directly in object space.
Here the given cuberille volume data is considered as lying in four dimensional space with the spatial coordinates
x; y; z being three dimensions and the CT/MRI density values yielding the fourth dimension w. We then �t a C1

smooth piecewise tri-cubic polynomial function W (x; y; z) =
P3

i=0

P3
j=0

P3
k=0 wijkB

3
i (u(x))B

3
j (v(y))B

3
k (w(z))

to simultaneously interpolate and least-squares approximate this dense volume data, with a small number of
polynomial pieces [6]. Here Bn

i (t) =
n!

i!(n�i)! t
i(1� t)n�i is the degree n Bernstein-Bezier polynomial, and u(x) =

x�a1
a2�a1

, v(y) = y�b1
b2�b1

and w(z) = z�c1
c2�c1

and de�ned locally for cuboids given by [a1 � x � a2, b1 � x � b2,

c1 � x � c2]. The desired surface models of subparts of the anatomical data are now C1 smooth iso-surfaces
w = constant of this computed volume density function. See Figure 2 which shows an example of this approach
used to construct a volume model of a human head from MRI data.

In the �rst type of algorithm we construct C1 smooth bi-cubic bivariate interpolants and approximants on
networked workstations, where each server system computes the solution of a linear system with 16 variables.
In the second type of algorithm we construct C1 smooth tri-cubic trivariate interpolants and approximants on
networked workstations, where each server system computes the solution of a linear system with 64 variables.
Details of the derivation of the individual linear systems are given in [6].

We also model and visualize, using trivariate polynomial �nite element approximations, scattered data
(x; y; z; w) de�ned over a domain surface S in three dimensions. Note that the (x; y; z) points are all lying on a
surface S in three dimensions (rather than in all of three space) and the scalar data w at each of these points
arises variously, for example as temperature on the surface of a human; or a pressure distribution over the surface
of a jet engine. The distributed modelling algorithms reconstruct both the domain surface S using C1 smooth
piecewise implicit tricubic polynomial surface S(x; y; z) =

P3
i=0

P3
j=0

P3
k=0 wijkB

3
i (u(x))B

3
j (v(y))B

3
k (w(z)) = 0

patches de�ned over an adaptive cubical grid and approximating the (x; y; z) data. See Figure 3 where such a

3



(a) (b)

Figure 3: Sampled points of a jet engine outer cowl and its C1 smooth piecewise tricubic polynomial surface
approximation

piecewise smooth approximation of teh domain surface is shown together with the de�ning adaptive cubical
grid encompassing the scattered data. The scalar function is additionally modelled by a C1 smooth piecewise
tricubic polynomial function W (x; y; z) =

P3
i=0

P3
j=0

P3
k=0 wijkB

3
i (u(x))B

3
j (v(y))B

3
k (w(z)) approximating the

scalar values w de�ned for the (x; y; z) points. The modelled scalar function W (x; y; z) can be visualized by
displaying it around the modelled domain surface and in a direction normal to the surface (at every point), or as
iso-value contours of the function, surrounding or projected onto the domain surface. See Figure 4 where such
visualizations are computed for sampled pressure values surrounding a jet engine. Details of this algorithms are
given in [7]. See also [4] where this model recosntruction problem is solved using �nite element approximations
de�ned over a tetrahedral mesh (rather than a cubical grid).

3 Shared Workspaces

SHASTRA is a collaborative multimedia scienti�c manipulation environment in which experts in a cooperating
group communicate and interact to solve problems. The SHASTRA environment consists of a group of inter-
acting applications. Some applications are responsible for managing the distributed environment (the Kernel
applications), others are responsible for maintaining collaborative sessions (the Session Managers), yet others
provide speci�c communication services (the Service Applications), while yet others provide scienti�c design and
manipulation functionality (the SHASTRA Toolkits). Service applications are special purpose tools for mul-
timedia support { providing mechanisms of textual, graphical, audio and video rendition and communication.
Di�erent tools register with the environment at startup providing information about what kind of services they
o�er (Directory), and how and where they can be contacted for those services (Location). The environment
provides mechanisms to create remote instances of applications and connect to them in client-server mode (Dis-
tribution). In addition, the environment provides support for a variety of multi-user interactions (Collaboration).
It provides mechanisms for starting and terminating collaborative sessions, and joining or leaving them. The
infrastructure is described in detail in [1].

3.1 A Collaborative Visualization Tool

POLY is a 3-D rendering and visualization tool in the SHASTRA environment. New SHASTRA toolkits use
POLY as their 3D graphics interface, since it isolates 3D graphics object manipulation, rendering and visual-

4



Figure 4: A Pressure Surface over a Jet Engine surface displayed around the Engine as well as Iso-Pressure
Contours of the Pressure Surface projected onto the Engine surface

5



Figure 5: Using the SHASTRA Application called POLY for Collaborative Visualization

ization functionality. POLY provides a variety of mechanisms for visualization of multi-dimensional data. It
understands a number of graphical object formats, which it converts to an internal form for e�cient display and
transport. It has a user interface that supports manipulation of graphical objects. At its network interfaces,
POLY interoperates with other SHASTRA toolkits, and provides a very high level abstraction for manipulation
of such data. The Motif based GUI is used to manipulate visualized objects in multiple XS graphics windows.

The user interface of the visualization system is shown in Figure 5. The top image is a volume rendering of
the upper torso of Freddy. The skeletal structures are opaque and shaded, while the rest of the structures have
been assigned di�erent levels of transparency. The bottom image shows a surface rendering of a human head
with a cutaway of the skull to show part of the brain surface.

The SHASTRA environment for collaborative visualization consists of a collection of instances of POLY. A
collaborative session is initiated by one of the POLY users in the environment. This user becomes the group
leader and speci�es to the local Kernel the list of POLY users that will be invited to participate in the session,
and becomes the group leader. The Kernel instantiates a Session Manager, which starts a session with the group
leader as its sole participant, and then invites the speci�ed users of concurrently executing remote POLY sessions
to participate. Users that accept are incorporated into the session. Any POLY instance not in the conference can
request admittance, and join. A participant can leave an ongoing session at any time. Users can be dynamically
invited to join or removed from conferences by the group leader or his designees.

The hybrid computation model for conferences in SHASTRA consists of a centralized Session Manager for
each session, which regulates the activity of multiple instances of POLY. Though this model su�ers from problems
of scale due to the centralized Session Manager, it performs well for typical group sizes. An important bene�t
derived from the replication is in the realm of platform heterogeneity { the application instances are responsible
for dealing with particular platform idiosyncracies. In addition, since the conference consists of cooperating
applications, the notion of private and shared workspace and private and shared interaction is easily supported.
The centralization of the Session Manager for a collaborative session accords us the bene�t of centralized state.
The Session Manager serves as a repository of shared objects. This makes it easy to accommodate late joiners
of sessions to come up to date quickly. It also eases the task of serialization of input actions for multi-point
synchronous interaction, and constraint management for mutual consistency.

A permissions based regulatory subsystem permits control of data 
ow at runtime, providing a variety of

6



Figure 6: One Site in a Collaborative Visualization

interaction modes. Collaboration in SHASTRA can occur in the REGULATED (Turn-taking or Master-Slave)
mode or in the UNREGULATED (Free Interaction) mode. In the REGULATED mode, users take turns by
passing a baton. The collaboration infrastructure of SHASTRA has a two tiered permissions based regulatory
subsystem used to control interaction primarily in the UNREGULATED mode. SHASTRA permissions control
`Access' to a view of the conference, local viewing controls to `Browse' a view, rights to `Modify' conference state,
and rights to `Copy' shared objects.

The session manager allows only one user to manipulate \hot spots" in the shared space { where there is
a possibility of contention { at any particular instant. It uses the �rst-come-�rst-served paradigm to decide
which user gets temporary exclusive control. The baton passing facility of the system can be used to take
turns to adjust visualization parameters. Alternately, designers can use the auxiliary communication channels {
like audio, video, and text by initiating SHASTRA service applications PHONE, VIDEO or TALK { to regulate
access, and for arbitration[1]. All operations are performed via the (central) session manager which is responsible
for keeping all sites up-to-date, so that the users have a dynamically changing and continuously updated view
of the action in the shared windows.

3.2 Collaborative Volume Visualization

Every participating POLY instance creates a shared window in which all the cooperative interaction occurs.
Users introduce graphics objects into the session by selecting them into the Collaboration Window. The Session
Manager is responsible for providing access to the objects at all participating sites which have the Access
permission, and for permitting interaction relevant to the operation at sites which have Modify permission for
the collaboration. Collaborating users can twiddle visualization modes and parameters, and adjust viewing
modes and direction. The system provides telepointers in the shared windows. It also provides indications of
remote presence which describe the viewing location of remote users in the collaborative session. Figure 6 and 7
depict two sites in a three way collaborative visualization. The entire volume rendering of Freddy is shared by
all collaborating sites { they share the data set, the viewing location, as well as visualization control parameters.
The collaborators share data sets and viewing location in the other two renderings of MRI data sets of the human
head. However, they use di�erent cutaways to examine di�erent parts of the data.

7



Figure 7: Another Site in a Collaborative Visualization

At one extreme, the SHASTRA implementation for Collaborative Visualization can be used by a single user
to perform scienti�c visualizations, just like in a non-collaborative setting. Allowing other users to join the
session with only Access and Browse permissions sets up the environment like an electronic blackboard to teach
novice users the basics of the process. An appropriate setting of collaboration permissions and turn-taking can
be used to allow hands on experience with the task. In conjunction with the audio and video communication
services of SHASTRA, this becomes a powerful instructional environment. Collaborative sessions using POLY
are a valuable tool for review and analysis of problem solutions. Multimedia communication facilities permit a
rapid exchange of rationales for choices, interpretations of analyses and iterative improvement.

4 Conclusions

We have used the SHASTRA distributed and collaborative environment to both model and volume render large
data sets e�ciently. Timings for distributed ray casting and shading for volume visualization are discussed in
detail in paper [3]. For example, the skull data set (512 x 512 x 113 short integers, 56.5 Mb) was volume rendered
on an Indigo in 255 seconds. Using only two remote servers, the volume rendering took 195 seconds, and using
only four remote IPX servers it took 165 seconds. (All numbers are whole seconds of real time the user has to
wait before the �nal image is available. Note that this includes network latency, process swapping, and NFS
access time.) Our computing environment for the distributed modelling and rendering tasks consisted of an IRIS
Indigo R4000 with Elan graphics, and Sun 4/50 (Sparc IPX) server workstation, each with 32Mb RAM, linked
by a 10Mbps ethernet. The data sets used are stored on remote �le systems, and are accessed through NFS.
Preliminary measurements of total time taken to model and visualize di�erent volumetric data sets (made during
conditions of normal network tra�c) are very encouraging, and indicate that there is close to a linear speedup
achieved by using multiple workstations to render very large volume data sets.

Acknowledgements: We are grateful to the of research center of Johns Hopkins University (E. Fishman, D. Hauser)

8



for the human cadaver data set, SUNY Stony Brook (A. Kaufman) for one of the human head data sets, and
the University of North Carolina for anonymous ftp access to the skull and the other human head data set.

References

[1] V. Anupam and C. Bajaj. Collaborative Multimedia Scienti�c Design in SHASTRA. In Proc. of the First

ACM International Conference on Multimedia, ACM MULTIMEDIA 93, pages 447{456. ACM Press, 1993.

[2] V. Anupam and C. Bajaj. SHASTRA - An Architecture for Development of Collaborative Applications. In
Proc. of the Second Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pages
155{166. IEEE Computer Society Press, 1993.

[3] V. Anupam, C. Bajaj, D. Schikore, and M. Schikore. Distributed and Collaborative Volume Visualization.
IEEE Computer, x(x):x{y, 1994.

[4] C. Bajaj, F. Bernardini, and G. Xu. Reconstruction of Surfaces and Surfaces-on-Surfaces from Unorganized

Weighted Points. Computer Science Technical Report, CS-94-001, Purdue University, 1994.

[5] C. Bajaj, J. Chen, and G. Xu. Free form surface design with a-patches. In Proceedings of Graphics

Interface'94, pages x{y, Ban�, Canada., 1994.

[6] C. Bajaj and G. Xu. Trivariate Interpolants and Scienti�c Visulization. Computer Science Technical Report,
CSD-TR-93-18, Purdue University, 1993.

[7] C. Bajaj and G. Xu. Reconstructing CAD models from Scans. Computer Science Technical Report, Purdue
University, 1994.

[8] D. Choi and C. Levit. Implemenation of a Distributed Graphics System. International Journal of Super-

computing Applications, 2:82{95, 1987.

[9] M. Gerald-Yamasaki. Cooperative Visualization of Computational Fluid Dynamics. Computer Graphics

Forum, 12(3):497{ 508, 1993.

[10] Lorensen, W., and Cline, H. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
Computer Graphics, 21:163{169, 1987.

[11] J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. Computer Graphics, 24:57{62,
1990.

9


