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Abstract

We use a combination of both symbolic and numerical techniques to construct a degree

bounded Ck-continuous, rational B-spline �-approximations of real algebraic surface-surface in-

tersection curves. The algebraic surfaces could be either in implicit or rational parametric form.

At singular points we use the classical Newton power series factorizations to determine the dis-

tinct branches of the space intersection curve. Besides singular points we obtain an adaptive

selection of regular points about which the curve approximation yields a small number of curve

segments yet achieves Ck continuity between segments. Details of the implementation of these

algorithms and approximation error bounds are also provided.

1 Introduction

It is well known that the set of parametric algebraic curves and surfaces are a subset of algebraic
curves and surfaces of the same degree. In particular the intersection curve of two parametric sur-
faces may not be parametric. See [2] for a discussion of these facts and the desired use of parametric
representations for certain geometric modeling and display operations. To compute parametric rep-
resentations for non-parametric algebraic intersection curves requires approximation. In this paper
we present algorithms to construct a piecewise rational B-spline (a degree bounded, piecewise
parametric, Ck continuous) approximation to a space curve, which comes from the intersection of
two implicitly de�ned surfaces (IIS); or the intersection of two parametric de�ned surfaces (IPS).
Though we restrict discussions to implicit and parametric algebraic surface-surface intersections,
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the algorithms can be directly extended to the intersection curve of arbitrary analytic surfaces. The
results of this paper are a natural extension of piecewise rational approximation of non-parametric
algebraic plane curves[5]. Piecewise rational B-spline approximations �nd increasing use in inter-
active geometric design[20] and in the contouring of scattered data[22].

There are mainly two solution approaches to the handling of the piecewise rational B-spline
approximation problem. One is based on the subdivision of the enclosing three dimensional space
into small cells where the intersection curve is evaluated in each cell by �rst transforming it into
Bernstein-Bezier (BB) form. For a topologically correct approximation this method can only cope
with a restricted class of point singularities with distinct tangents. The other method of tackling
the approximation problem is based on a tracing of the intersection curve[7, 21] without any spe-
cial consideration to singularities. In this paper, we too adaptively march along the intersection
curve, paying special heed to singular points, followed by a corresponding stitching together of
the approximating rational B-spline curve segments. We construct a piecewise rational B-spline
approximations to two kinds of space intersection curves (IIS, IPS). Except at singular points, the
composite curve keeps a simpler variant of Frenet frame continuity based on the curve arc length
as the parameter. Among the various local parameterizations of the space curve, taking arc length
as parameter has several advantages as indicated in section 3.

In recent years, several authors have discussed the notion of geometric continuity at a common
point for two incident space curves[13, 15, 24, 25]. Furthermore there are a plenty of references
which use di�erent continuity criteria and construct parametric B-splines to approximate an ordered
list of points (see for e.g. [9, 11, 25]). The frame continuity used in this paper is a simpler form of
geometric continuity with the connection matrix being diagonal, and di�ers from the well known
Frenet-frame continuity that has a lower triangular connection matrix. We also exhibit how Pad�e
approximation can be adapted to yield very natural Hermite approximations.

This paper is organized as follows: Section 2 formally de�nes the piecewise approximation
problem and an outline of our piecewise rational B-spline approximation algorithm. Section 3
presents some mathematical preliminaries and also motivates our choice of frame continuity based
on arc length parameterizations. Section 4 and 5 discuss the expansion of the two di�erent surface-
surface intersection curves into power series based on arc length. In Section 6, we illustrate how to
use Newton iterations to cope with the solution of under-determined system of non-linear equations
at regular curve points and over-determined system of non-linear equations at singularities. Section
7 presents details of several approaches to construct a rational parametric curve segment which is Ck

frame continuous at end points. Here we extend traditional Pad�e approximation techniques [19] to
develop a two point Pad�e rational parametric curve interpolant. We also utilize the transformation
technique of [6] to convert the piecewise rational curve segments into piecewise rational B-splines
and standard NURBS representations. Sections 8 and 9 treat the problem of isolating singular
points on the intersection curve and the use of Newton factorizations to construct the approximation
of the distinct branches of the curve at these singular points. Finally, in Section 10 we discuss the
implementation of our algorithm and present several examples.

The transformation of the piecewise rational approximation into piecewise rational B-splines
and standard NURBS representations are treated in a separate paper[6].
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2 The Problem and the outline of the Algorithm

The Rational Approximation Problem. Given a real intersection space curve SC which is either

(a) the intersection of implicit surfaces (IIS) de�ned by f1(x; y; z) = 0; f2(x; y; z) = 0, and within
a bounding box B = f(x; y; x) : x0 � x � x1; y0 � y � y1; z0 � z � z1g or

(b) the intersection of parametric surfaces(IPS) de�ned by

X1(u1; v1) = [G11(u1; v1) G21(u1; v1); G31(u; v1)]
T

X2(u2; v2) = [G12(u2; v2) G22(u2; v2); G32(u2; v2)]
T

and within a bounding box

B = f(u1; v1; u2; v2) : u10 � u1 � u11; v10 � v1 � v11
u20 � u2 � u21; v20 � v2 � v21g

and an error bound � > 0, a continuity index k, construct a Ck (or Gk) continuous piecewise
parametric rational �-approximation of all portions of SC within the given bounding box B.

The Outline of the Algorithm. The approximation process is a tracing procedure along the curve. It
consists of the following steps:

1. Form a starting point list (SPL) by computing the boundary points containing the intersection
points of the curve SC and the bounding box B. Further the SPL is made to contain at least
one point for each inner loop component of SC i.e. a curve loop completely inside the given
box B. Tracing directions are also provided at each of these points in the SPL. (See section
10 for implementation details).

2. Test if SPL is empty. If yes, the tracing is �nished. Otherwise, starting from a point p in
SPL, trace the curve along the given direction until either of the following tests in step 3 or
step 4 are true. The tracing step consists of the following sub-steps:

(a). Compute an arc length based power series expansion (see sections 4 and 5) up to k+ 1
terms at the given point p.

(b). Determine a step-length and a point q̂ on the above expansion curve in the tracing
direction within a step-length of p, and then starting from q̂ re�ne to a new point q on
the curve SC by Newton iterations (see section 6).

(c). Compute an arc length power series expansion up to k + 1 terms at the new point q.

(d). Construct an approximating rational parametric curve segment by Ck Hermite inter-
polation (see section 7 ) of the two end points p and q.

(e). Add the rational curve approximant into the piecewise approximation list and return
to step 2, to continue the tracing from the newly constructed point q.
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3. Test if a singular point is met. If yes, stop the present tracing and put the end point of the
tracing into SPL (we may delete a few approximation segments from the present approxima-
tion list, because the step length near a singular point is small). Then locate the singular
point(see section 8), and obtain a �nite set of power series expansion at the singular point
corresponding to the distinct curve branches (see section 9). Trace each branch one or two
steps, and then put the end points of the tracing into SPL. Then return to Step 2.

4. Test if another point in SPL is met(see section 10). If yes, we have stitched together one
continuous segment of the curve. Delete the two end points of the traced segment from SPL
and return to Step 2.

3 Mathematical Preliminaries

In this paper, we will express a space curve as a power series, locally at a point and with its arc
length as a parameter. We refer to [10] for some intrinsic parameters of space curves. Let r(s) =
[x(s); y(s); z(s)]T be a space curve, where s is arc length of the curve measured from some �xed
point. The tangent vector t(s) = r0(s) has unit length; k(s) = jjr00(s)jj is the curvature, where jj � jj is
the Euclidean norm in IR3. Further, n(s) = r00(s)=k(s) is the principle normal; b(s) = t(s)�n(s) is
the binormal, where� denotes the cross product of two vectors. Finally, the number T (s) de�ned by
b0(s) = �T (s)n(s) is the torsion. The three orthogonal vectors t(s); n(s) and b(s) form the so called
Frenet frame. These vectors are related by the Frenet formulas: t0 = kn; b0 = �Tn; n0 = �kt+Tb.
The derivatives of r(s) are therefore given by

r0(s) = t; r00(s) = kn; r000(s) = k0n+ kTb� k2t (3.1)

Since t = r0(s), k = jjr00(s)jj and T = r0(s) � r00(s) � r000(s)=jjr00(s)jj2 then the curve is obviously
tangent, or curvature or torsion continuous if r0(s), or r0(s) and r00(s), or r0(s), r00(s) and r000(s) is
continuous respectively. In this paper, we construct a piecewise approximation of the given curve
such that the composite curve is tangent (t(s)), normal (n(s)) and binormal (b(s)) continuous.

Among the various local parameterizations of the space curve, taking arc length as parameter
has several advantages.

A. If r(s) is the parameterization of the given curve and s is arc length starting from some point,
then r0(s), r00(s), r000(s) is equivalent to t(s), n(s), b(s) in the sense that the continuity of r0(s),
r00(s), r000(s) are equivalent to the continuity of t(s), n(s), b(s) where the triple t(s), n(s),
b(s) is the Frenet frame. Therefore, we need only to force the composite curve's �rst three
derivatives to be continuous at the break points without considering the connection matrix
as in the case of geometric continuity.

B. Since the arc length of the curve is independent of any coordinate system, then the expansion
of power series may have larger convergence radius. This will, in turn, lead to fewer segments
of approximation.
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C. From the geometric point of view, Frenet frame continuity is the most natural and useful
requirement. It keeps the tangent, principle normal and binormal varying continuously, while
other types of geometric continuity cannot achieve this conclusion.

4 Local Expansion of the Intersection Curve of Implicit Surfaces

Let f1(p); f2(p) be two algebraic polynomials with p = [x; y; z]T 2 IR3. The intersection of implicitly
de�ned surfaces(IIS) f1(p1) = 0, f2(p1) = 0 is de�ned by f1(p) = f2(p) = 0. In this paper, we
assume the de�ning surfaces are smooth, i.e., the normals of the surfaces are not equal to zero at
any point on the surface in the region considered. Now let F (p) = [f1(p); f2(p)]

T , p0 2 IR3 be
a point on the intersection curve r(s), where s is the arc length measured from p0 = r(0) with
prescribed direction. Then, as in [7], r0(0); r00(0) and r000(0) are computed as follows:

F (r)(s) = F (r)(0) + s
dF (r)(0)

ds
+
s2

2!

d2F (r)(0)

ds2
+ : : : (4.1)

where

dkF (r)(0)

dsk
= Vk(0) +rF (p0)r

(k)(0) (4.2)

V1(s) = 0; Vk(s) = V 0
k�1(s) + [rF (r)]0r(k�1)(s); k = 1; 2; : : : (4.3)

and rF (p) =
h

@F (p)
@x

; @F (p)
@y

; @F (p)
@z

i
2 IR2�3. It follows from F (r(s)) � 0 that

rF (p0)r
(k)(0) = �Vk(0) (4.4)

The system of equation (4.4) has three unknowns and two equations. It has in general in�nitely
many solutions. Now we assume rf1(p0) and rf2(p0) are linearly independent and illustrate how
to get r(k)(0) such that the equations in the last section are satis�ed. Let t be a vector such that

t 2 rF (p0)
?; jjtjj = 1 (4.5)

and its sign is so chosen that t gives the correct direction along the same line we are going. Then
for any vector x 2 IR3 there exist unique � 2 IR and y 2 range(rF (p0)

T ), such that x = �t + y.
Let

r(k)(0) = �mt+rF (p0)
T�m (4.6)

Then by (4.4), we have �m is uniquely de�ned by

rF (p0)rF (p0)
T�m = �Vk(0) (4.7)

and �m is arbitrary. Now we determine �m (m = 1; : : : ; 4), such that r(m)(0) (m = 1; : : : ; 4) satisfy
(3.1).
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A. m = 1. Since V1(0) = 0, then �1 = 0. Hence r0(0) = �1t. According to the de�nition of t, we
choose �1 = 1.

B. m = 2. Since we want the r00(0) orthogonal to r0(0) = t, i.e., r00(0) 2 range(rF (p0)
T ), the

only choice is �2 = 0. We then have k = jjr00(0)jj.

C. m = 3. It follows from (3.1) that k0n+ kTb 2 range(rF (p0)
T ). Then �3 = �k2, and further

k0 = r00(0)T r000(0)=k.

D. m = 4. From (3.1), r(4)(s) = (k00 � kT 2 � k3)n+ [k0T + (kT )0]b� 3kk0t. Then �4 = �3kk0.

Finally we obtain the approximate expansion r(s) �
P4

i=0(r
(i)(0)=i!)si.

5 Local Expansion of the Intersection Curve of Parametric Sur-

faces

Let
X1(u1; v1) = [G11(u1; v1) G21(u1; v1); G31(u; v1)]

T

X2(u2; v2) = [G12(u2; v2) G22(u2; v2); G32(u2; v2)]
T

be two parametric surface, where Gij are given smooth functions. The intersection curve of
the parametric surface (IPS) is de�ned by r(s) = X1(u1(s); v1(s)) (or X2(u2(s); v2(s))) with
X1(u1(s); v1(s)) = X2(u2(s); v2(s)) where the parameter s is the arc length measured from some
point on the curve. Let Q1 = (u1; v1)

T , Q2 = (u2; v2)
T , and Q�1; Q

�
2 be the points in IR2 such

that X1(Q
�
1) = X2(Q

�
2). At point X1(Q

�
1), we want to expand r(s) into power series r(s) =

r(0)+ r0(0)s+ r00(0)
2 s2+ : : :. On the curve r(s), Q1 and Q2 are functions of s, we can express them

as

Qj(s) =
1X
i=0

Q
(i)
j (0)

i!
si; j = 1; 2 (5.1)

As the case of IIS, we expand Xj(Qj(s)) (for j = 1; 2)

Xj(Qj(s)) = Xj(Qj)(0) +
dXj(Qj)(0)

ds
s+

d2Xj(Qj)(0)

ds2
s2

2
+ : : :

dkXj(Qj)(0)

dsk
= Vkj(0) +rXj(Q

�
j )Q

(k)
j (0); j = 1; 2 (5.2)

where

V1j(s) = 0; j = 1; 2; Vkj(s) =
d

ds
Vk�1;j(s) +

d

ds
[rXj(Qj)]Q

(k�1)
j (s)

By X1(Q1(s)) � X2(Q2(s)), we have rX1Q
(m)
1 � rX2Q

(m)
2 (0) = Vm1(0) � Vm2(0). Let ni =

Xiui �Xivi ; Xiui =
h
@G1i

@ui
; @G2i

@ui
; @G3i

@ui

i
. Then n1; n2 are the normals of the two surfaces. Suppose
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n1 and n2 are linearly independent. Let t 2 IR3 such that t 2 [n1n2]
?; jjtjj = 1; and its sign is

properly chosen such that it points to the correct direction. Then we have the expression

rX1Q
(m)
1 (0) + Vm1(0) = rX2Q

(m)
2 (0) + Vm2(0)

= �mt+ [n1; n2]�m
(5.3)

Since nT1rX1 = 0; nT2rX2 = 0, we have from (5.3)

[n1; n2]
T [n1; n2]�m =

"
nT1 Vm1

nT2 Vm2

#
: (5.4)

Therefore �m is uniquely determined by the nonsingularity of the matrix [n1; n2]
T [n1; n2], and �m

is arbitrary. From (5.3), we determine �m, such that r(m)(0) = �mt+ [n1; n2]�m: This can be done
exactly the same as the case of IIS by regarding [n1; n2] as rF (p0)

T .

After r(m)(0) are received, we can compute Q
(m)
j (0), j = 1; 2. From (5.3),

rXT
j rXjQ

(m)
j (0) = rXT

j (r
(m)(0)� Vmj(0)); j = 1; 2: (5.5)

Solving these equations, we get Q
(m)
j (0). The purpose of computing Q

(m)
j (0) is to compute the

approximate value of Qj(s) by (5.1). This approximate value serves as the initial value for the
Newton method to get an accurate value Qj on the curve.

6 Newton Iterations

While tracing a surface-surface intersection curve SC, at simple (regular) points of SC we need
to solve an undetermined nonlinear system that has more unknowns than equations. At sin-
gular points on the curve, we need to solve an overdetermined nonlinear system that has more
equations and less unknowns. Consider in general an arbitrary system of nonlinear equations
F (x) = [ f1(x1; : : : ; xm) � � � fn(x1; : : : ; xm) ]T = 0. We need to determine a solution of the system
F (x) = 0 by Newton iterations from a given initial value p0 2 IR

m. In our tracing procedure these
initial values are points on the local expansion curves, within an adaptively computed step length.
These initial values are then re�ned back to the original intersection curve SC to yield the actual
interpolating points for the rational curve segment approximation. The Newton iteration used is

rF (pk)�k = �F (pk); pk+1 = pk +�k (6.1)

where rF =

�
@F

@x1

@F

@x2
: : :

@F

@xm

�
=
h
rf1 � � � rfn

iT
is a n�m matrix.

Case A: m = n+ 1. Here equation (6.1) is a under-determined linear system. Suppose the set
of rfi is linearly independent, then the general solution of (6.1) is

�k = �kt+rF (pk)
T�k (6.2)
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where t 2 rF (pk)
?, �k 2 IR is arbitrary and �k 2 IR

n satis�es the following equation

rF (pk)rF (pk)
TX = �F (pk) (6.3)

This has a unique solution since rF (pk) is of full rank. Finally, �k is chosen as follows:

1. IIS case. In this case, m = 3, n = 2 and t in (6.2) is the tangent direction of the curve.
The change of pk in the direction of t should be as small as possible. Therefore, we set
�k = 0 ([7]).

2. IPS case. Now m = 4, n = 3, p = (x1; x2; x3; x4)
T := (u1; v1; u2; v2)

T and fi(x1; x2,
x3, x4) = Gi1(x1; x2) � Gi2(x3; x4), for i = 1; 2; 3. The initial value is given by (5.1),
i.e., p0 = (Q1(s0)

T ; Q2(s0)
T )T , where s0 is the step length of the approximation of r(s).

In order to determine �k in (6.2), we project pk+1 2 IR
4 (domain space) into IR3 (value

space) byX1(p
(1)
k )+rX1(p

(1)
k )�

(1)
k , where p

(1)
k (or p

(2)
k ) and �

(1)
k (or �

(2)
k ) are the �rst (or

last) two components of pk and �k, respectively. Let n1 = X1u1(p
(1)
k )�X1v1(p

(1)
k ); n2 =

X2u2(p
(2)
k ) � X2v2(p

(2)
k ) and n3 = n1 � n2. Then there exist ~�k 2 IR, ~�k 2 IR2 such

that X1(p
(1)
k ) + rX1(p

(1)
k )�

(1)
k = ~�kn3 + [n1; n2] ~�k and ~�k is determined uniquely by"

nT1X1(p
(1)
k )

nT2X2(p
(2)
k )

#
= [n1; n2]

T [n1; n2] ~�k and

~�k = nT3X1(p
(1)
k ) + nT3rX1(p

(1)
k )�

(1)
k

= nT3X1(p
(1)
k ) + nT3rX1(p

(1)
k )[�kt

(1) +rF (1)(pk)
T�k]

= a(pk)�k + b(pk)

where a(pk) and b(pk) are constants depending on pk. For the same reason as IIS, we

take ~�k = 0. Hence �k = � b(pk)
a(pk)

.

Case B: n >m. This case happens when we arrive at a singular point on the intersection curve
SC (see Section 9). Now system (6.1) is over-determined. So we �nd the least squares
approximate solution, i.e.,

rF (pk)
TrF (pk)�k = �rF (pk)

TF (pk) (6.4)

7 Rational Curve Hermite Interpolation between Simple Points

Let r1(u), r2(v) be two space curves, where u and v are arc lengths of the curves measured from

some point on the respective curve. At point u = u0, v = v0, if r
(i)
1 (u0) = r

(i)
2 (v0); i = 0; 1; : : : ; k,

we say that r1 and r2 are k-frame connected, or the composite curve is k-frame continuous. In
particular, if k = 3, we say the curve is frame continuous. Given a point p0 on the curve r(s), which
is either IIS or IPS, the arc length s is measured from p0 (i.e., r(0) = p0) in the given direction.
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Step Length. From the approximation r(s) �
k+1X
i=0

r(i)(0)
si

i!
, we compute a trial step length � > 0

such that

kr(k+1)(0)k�k+1

(k + 1)!
= k

kX
i=0

r(i)(0)�i

i!
k < � (7.1)

For such a �, using
k+1X
i=0

r(i)(0)�i=i! (for IIS), or [
k+1X
i=0

Q
(i)
1 (0)T�i=i!;

k+1X
i=0

Q
(i)
2 �i=i!]T (for IPS) as an

initial value, we compute a new point p1 on the curve by Newton iterations (section 6 ). We then
construct rational approximations as follows:

A. Rational Hermite interpolation

Let m, n be two nonnegative integers with m + n = 2k + 1. We construct a rational vector
function R(s) = [R1(s); R2(s); R3(s)]

T , where Ri(s) = Pmi(s)=Qni(s), i = 1; 2; 3 are (m;n) type
rational functions, such that

R(i)(s) = r(i)(s); i = 0; 1; : : : ; k (7.2)

for s = 0 and s = �. If either Qni(s) has zeros in [0; �] or the error max
s2[0;�]

jjr(s) � R(s)jj > �, we

halve the �. The approximation error is bounded in the following way: Since ei(s) = ri(s)Qni(s)�
Pmi(s) = O(sk+1(s� �)k+1); by the remainder formula of Hermite interpolation [9], we have

ei(s) = [s(s� �)]k+1(riQni)[0; : : : ; 0| {z }
k+1

�; : : : ; �| {z }
k+1

; s];

where f [t0; : : : ; tr] stands for divided di�erence of f on t0; : : : ; tr. Hence

jri(s)�Ri(s)j �

�
�

2

�2k+2 jDki(s)j

mins2[0;�] jQni(s)j
(7.3)

where Dki(s) = (riQni)[0; : : : ; 0; �; : : : ; �; s] is a function in s. That can be bounded approximately
by either

jDki(0)j+ jDki(�)j or max
s2[0;�]

j ~Dki(s)j

where ~Dki(s) is the interpolation polynomial of degree 2 at Dki(0), Dki(
�
2 ) and Dki(�). Let g =

ri=Qni. Then the divided di�erence can be computed by the following well known recurrence

g[t0; : : : ; tk] =

8<
:

g(k)(t0)=k! if t0 = : : : = tk
g[t0; : : : ; tr�1tr+1; : : : ; tk]� g[t0; : : : ; ts�1; ts+1; : : : ; tk]

ts � tr
if tr 6= ts

B. Rational Vector Hermite Interpolation
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We construct a rational function R(s) = [Pm1(s); Pm2(s); Pm3(s)]
T =Qn(s) such that (7.2) holds

and

m+ n=3 = 2k + 1 (7.4)

where n is divisible by 3. Now each component of the vector rational function has the same
denominator. But the degree m+ n of each component is higher than the previous case. However,
if we transform the vector rational function in case 1 into a rational function that has common
denominator, then the degree is higher than in case 2. This transform is necessary when we
represent the curve in rational Bernstein-B�ezier form. The error bound of the approximation can
be estimated in the same way as before.

C. Two Point Pad�e Approximation

The two point Pad�e approximation method discussed here consists of the following two steps.
First, compute the Pad�e approximation Pm1i(s)=Qn1i(s) at s = 0, such that ri(s)�Pm1i(s)=Qn1i(s)
= O(sk+1); i = 1; 2; 3, and

m1 + n1 = k: (7.5)

Second, compute the Pad�e approximation Pm2i(s)=Qn2i(s) at s = � to the function ~ri(s) = (ri(s)
Qn1i(s)� Pm1i(s))=s

k+1 such that ~ri(s)� Pm2i(s)=Qn2i(s) = O((s� �)k+1); i = 1; 2; 3, and

m2 + n2 = k (7.6)

The required two point approximation is

Ri(s) =
Pm1i(s)Qn2i(s)� sk+1Pm2i(s)

Qn1i(s)Qn2i(s)

which is (maxfm1 + n2; k +m2 + 1g; n1 + n2) type rational function and satis�es condition (7.2).
For example, if k = 3, take m1 = m2 = 2, n1 = n2 = 1, then Ri(s) is a (6,2) type rational function.
Since the denominator of Ri(s) is a product of two polynomials, it is easy to check the appearance
of the poles of Ri(s) in [0; �] when ni is small, say ni � 2.

Denote Qni(s) = Qn1i(s)Qn2i(s) (n = n1 + n2), the error can be estimated as in the rational
Hermite interpolation case.

D. Two Point Vector Pad�e Approximation

Similar to the rational vector Hermite interpolation, we can also consider a two point vector Pad�e
approximation. Now conditions (7.5) and (7.6) should be replaced bym1+n1=3 = k; m2+n2=3 = k
respectively, and further we require that n1 and n2 are divisible by 3. The error can be computed
as before.

8 Isolating the Singular Points

During the tracing of an intersection space curve, one may encounter singular points1. Near these
points, the coeÆcient matrix of the systems (4.7) for IIS, (5.4) and (5.5) for IPS, are nearly singular.

1The intersection space curve is assumed to be singly de�ned and hence may possess only isolated singular points
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When a near singular condition of the coeÆcient matrix is detected, the tracing procedure is
temporarily suspended and the singular point is accurately isolated as follows.

A. Singular Point of IIS

Let p0 = (x0; y0; z0)
T 2 IR3 be a singular point of the intersection curve of fi(p) = 0, i = 1; 2.

That is fi(p0) = 0; i = 1; 2 and the surfaces f1(p) = 0 and f2(p) = 0 are tangent at p0. Hence
there exist constants �1 6= 0, �2 6= 0 such that

�1F
(1)
1 (p� p0) = �2F

(1)
2 (p� p0) (8.1)

where fi(p) =
P

s=0 F
(s)
i (p� p0) and F

(s)
i (u; v; w) is a homogeneous polynomial of degree s. If the

order of the singularity is greater than two, then equation (8.1) is replaced by �1F
(s)
1 (p � p0) =

�2F
(s)
2 (p� p0); s = 1; 2; : : : ; L or equivalently

�1
@sf1(p0)

@xi@yj@zk
= �2

@sf2(p0)

@xi@yj@zk
; 8(i; j; k) (8.2)

with i + j + k = s; s = 1; 2; : : : ; L, where L + 1 is the order of the singular point. In order

to eliminate �1 and �2, use one equation of (8.2), say �2
@f2(p0)

@x
= �1

@f1(p0)

@x
if
@f2(p0)

@x
6= 0, to

obtain

fi;j;k(p0) =
@f2(p0)

@x

@sf1(p0)

@xi@yj@zk
�
@f1(p0)

@x

@2f2(p0)

@xi@yj@zk
= 0

8(i; j; k) 2 f(i; j; k) : i+ j + k = s; s = 1; 2; : : : ; Lg n f1; 0; 0g.
Now use Newton iterations (Section 6) to solve the system of equations(

fi(p) = 0
fi;j;k(p) = 0; i+ j + k � s

(8.3)

Use s = 1 if the resulting matrix(see (6.3) ) is nonsingular, otherwise increase s by 1 until the
matrix is nonsingular.

B. Singular Points of IPS

Let Q�1; Q
�
2 2 IR

2 be the points such thatX1(Q
�
1) = X2(Q

�
2), i.e., p

� = X1(Q
�
1) on the intersection

curve. We use the de�nition of the singularity for IIS curve to de�ne the singularity for an IPS
curve. For this we need to determine the partial derivatives of the implicit form of parametric
surfaces, as described below. We exhibit this for surface X1. Surface X2 can be treated in the same
way.

Under the assumption of smoothness of the surface X1, the vectors
@X1(Q

�
1)

@u1
and

@X1(Q
�
1)

@v1
are

linearly independent. We may thus assume, without loss of generality, that the Jacobian matrix

J(G11; G21) =

2
664

@G11(Q�
1
)

@u1

@G11(Q�
1
)

@v1

@G21(Q�
1
)

@u1

@G21(Q�
1
)

@v1

3
775
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is nonsingular. The inverse functions of

x = G11(u1; v1); y = G21(u1; v1) (8.4)

also exist and are given by

u1 = ~G11(x; y) v1 = ~G21(x; y) (8.5)

around Q�1. Substitute (8.5) into z = G31(u1; v1), to obtain an implicit representation of the
parametric surface.

f1(x; y; z) = G31( ~G11(x; y); ~G21(x; y))� z = 0 (8.6)

Now compute the partial derivatives of f1. The derivative about z is trivial, so consider @f1
@x

�rst.
It follows from (8.6) and (8.4) that

@f1
@x

=
@G31

@u1

@u1
@x

+
@G31

@v1

@v1
@x

(8.7)

J(G11; G21)

"
@u1
@x
@v1
@x

#
=

"
1
0

#
(8.8)

Solving (8.8), we get @u1
@x

, @v1
@x

, from (8.7) we get @f1
@x

. Similarly, @f1
@y

can be computed. Knowing
the partials one can compute the singular points as in in the IIS case. For higher order singularities
the higher order partial derivatives can be computed similarly to the computation of second order
derivatives shown below. From (8.7), we have

@2f1
@x@y

=
�

@2G31

@u2
1

@u1
@y

+ @2G31

@u1@v1

@v1
@y

�
@u1
@x

+ @G31

@u1

@2u1
@x@y

+
�

@2G31

@u1@v1

@u1
@y

+ @2G31

@v2
1

@v1
@y

�
@v1
@x

+ @G31

@v1

@2v1
@x@y

(8.9)

and di�erentiating (8.4), we have

J(G11; G21)

"
@2u1
@x@y
@2v1
@x@y

#
= �

"
v1
v2

#
(8.10)

where

vi =

 
@2Gi1

@u21

@u1
@y

+
@2Gi1

@u1@v1

@v1
@y

!
@u1
@x

+

 
@2Gi1

@u1@v1

@u1
@y

+
@2Gi1

@v21

@v1
@y

!
@v1
@x

From (8.10) we get @2u1
@x@y

, @2v1
@x@y

, from (8.9) we get @2f1
@x@y

.
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9 The Local Approximation at Singular Points

At the singular points, simple Taylor series expansions fail and we must use special methods to
tackle the approximation problem.

1. IIS. Let p0 = (x0; y0; z0)
T 2 IR3 be a singular point on the curve. Since the matrix rfi(p0) 6=

0, we may assume, without loss generality, that @f1
@z

6= 0. Then we can express z by a power
series z = �(x; y) in x and y from f1(x; y; z) = 0 around the point p0. Substituting z into
f2(x; y; z) = 0, we get h(x; y) = f(x; y; �(x; y)) = 0. As in the plane curve case [5], expanding
h(x; y) = 0 at point (x0; y0)

T by Weierstrass and Newton factorization, we obtain(
x = x0 + tki

y =  i(t)
i = 0; 1; : : : ;m

where  i(t) is a power series in t andm is the number of the branches of the curve h(x; y) = 0.
We then have z = �(x0 + tki ;  i(t)) = �i(t), for i = 0; 1; : : : ;m. Therefore we get the local
parametric form of the space curve as8><

>:
x = x0 + tki

y =  i(t) i = 0; 1; : : : ;m
z = �i(t)

For each branch, use the two point interpolating condition to get a rational approximation.

2. IPS. Let Q�1 = (u�1; v
�
1)

T , Q�2 = (u�2; v
�
2) be the points in IR

2 such that X1(Q
�
1) = X2(Q

�
2) and

X1(Q
�
1) is a singular point of the curve IPS. Since the matrices rX1(Q

�
1) and rX2(Q

�
2) are

full rank in column, we may assume J(G11; G21) is nonsingular at Q
�
1. By one of the �rst two

equations, say the �rst, G11(u1; v1) = G12(u2; v2), we can express u1 as

u1 = �(1)(v1; u2; v2) (9.1)

Substituting it into another equation of the �rst two, we get

v1 = �(2)(u2; v2) (9.2)

Substituting u1 and then v1 into the last equationG31(u1; v1) = G32(u2; v2), we have �(3)(u2;
v2) = 0. Now, using plane curve factorization techniques for dealing with the singularities,
we get u2 = u�2 + tki ; v2 = �i(t); i = 0; 1; : : : ;m. Substituting them back to (9.2) and (9.1),
we have v1 = �(2)(u�2 + tki ; �i(t)) =  i(t); u1 = �(1)( i(t); u

�
2 + tki ; �i(t)) = �i(t). Then the

local parameterization is obtained by

ri(t) = X1(�i(t);  i(t))
or X2(u

�
2 + tki ; �i(t)); i = 0; 1; : : : ;m

The next step for getting the approximation is the same as IIS.
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10 Implementation Details and Examples

1. Starting Points

In order to trace the intersection curve SC, we need to provide a starting point on each
real component of the curve. Besides the boundary points which are straightforward roots
of univariate or coupled bivariate polynomial equations[1] one computes a starting point on
each real component completely inside the given box. For IIS this can be done by projecting
the intersection curve (via resultant elimination) into a plane and then �nding a coordinate
axis extreme point on the projection curve of that component. See [1] for details of such
resultant elimination schemes. For IPS, papers [8] [18] provide some numerical methods for
computing these starting points.

2. Curve Interpolation Points

When we march along the curve, we encounter precomputed points on the way. An encoun-
tered point may be a boundary point, a starting point on a closed loop or may be an end
point of the prior segment tracing. Suppose p0 2 IR

3 is a point on the curve, r(s) (s 2 [0; �])
is a segment of the curve, which approximates the original curve. Then a possible question
is whether r(s) passes through p0 within the allowable error? We answer this question by
computing the distance between p0 and r(s):

dis(p0; r) = min
s2[0;�]

jjr(s)� p0jj (10.1)

Since r(s) is a rational function in s, the minimum point of (10.1) can be computed by
d

ds
jjr(s) � p0jj

2 = 0. If s = s� 2 [0; �] is the minimum point, then if jjr(s�) � p0jj < �, r(s)

passes through p0. Then we modify r(s) such that r(s) is frame continuous at s� and replaces
� by s�. Otherwise, r(s) does not pass through p0.

3. Solving Linear System of Equations

In all the cases in this paper (see (4.7), (5.4), (5.5), (6.3) and (6.4)), we always solve the linear
system Ax = b with a positive de�nite coeÆcient matrix A. The size of matrix A is as small
as one, and as large as four. A stable method to solve this equation is to use singular value
decomposition A = UT�U , where U is an orthogonal matrix and � is a diagonal matrix. The
solution is x = UT��1Ub:

4. Tangent Direction

In Sections 4 and 5, we have mentioned that the sign of the tangent vector t at an expansion
point should be properly chosen. Now we will make this point clear.

a. If the expansion point is a boundary point, then t points to the interior of the box.

b. If the point is a starting point on a loop, then the sign can be any.
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Figure 1: Piecewise Rational B-spline Approximation of the Intersection Curve of Two Implicit
Surfaces

c. If the point is an end point of a previous approximation ~r(s) =
k+1X
i=0

r(i)(0)si =i! (s 2 [0; �]),

then we choose the sign of t such that ~r0(�)T t � 0.

Examples We present several examples of piecewise rational approximations of surface-surface
intersection curves and parametric space curves implemented in GANITH[4], an X-11 based inter-
active algebraic geometry toolkit, using Common Lisp for the symbolic computation and C for all
numeric and graphical computation. Though we did not discuss the approximation of high degree
parametric space curves, the derivation follows similar lines to the IIS and IPS cases.

Example 10.1 The example is shown in Figure 1. The intersection curve is given by the two

implicit surfaces x2+ y2� 1 = 0 and y2+ z2� 1 = 0 within the bounding box [�2; 2;�2; 2;�2; 2] as
shown in the bottom left window. The approximation error epsilon is 0:1 for each of the piecewise

rational B-spline approximations. The left window is a C1 continuous piecewise parametric cubic

B-spline curve while the right window is a C3 continuous piecewise parametric degree 7 B-spline

curve. The bottom right window shows the input window of GANITH.

Example 10.2 The example is shown in Figure 2. The intersection curve is given by the an

implicit surface x2+ z2 +2 � z = 0 and a parametric surface (x = s+s�t2

1+t2 ; y =
2�2�t2

1+t2 ; z =
4�t�2�2�t2

1+t2

within the bounding box [�2; 2;�2; 2;�2; 2] as shown in the top left window. The approximation
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Figure 2: Piecewise Rational B-spline Approximation of the Intersection Curve of an Implicit and
a Parametric Surface

error epsilon is 0:1 for the piecewise rational B-spline approximation in the top right and the bottom

left window and 0:01 in the bottom right window. The top right window is a C1 continuous piecewise
parametric cubic B-spline curve while the bottom windows are C3 continuous piecewise parametric

degree 7 B-spline curve.

Example 10.3 The example is shown in Figure 3. The intersection curve is given by the two

parametric surfaces (x = s; y = t; z = 2 � s4 + t4) and (x = s; y = t; z = 3 � s2 � t � t2 + 2 � t3)
within the bounding box [�2; 2;�2; 2;�2; 2]. The approximation error epsilon is 0:01 for each of

the piecewise rational B-spline approximations. The top two windows are C2 continuous piecewise

parametric quintic B-spline curve while the bottom windows are C3 continuous piecewise parametric

degree 7 B-spline curve.

Example 10.4 This series of examples are shown in Figure 4. The original parametric space

curve of the top left window is given by (x = t; y = t2; z = t3). The original parametric space

curve of the top right window is given by (x = t2; y = t3; z = t4). The original parametric space

curve of the bottom left window is given by (x = t � (t � 1)=(1 + t2); y = t � (1 � t)(1 + t); z =
t � (1� t) � t2=(1+2 � t2)). The original parametric space curve of the bottom right window is given

by (x = t � (t� 2) � (t+2); y = t � (t� 2) � (t+2) � (1+ t); z = t � (t� 2) � (t+2) � (1� t)). For each
of the windows the approximation error epsilon is 0:01 and the approximation is by C3 continuous

piecewise parametric degree 7 B-spline curve.
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Figure 3: Piecewise Rational B-spline Approximation of the Intersection Curve of Two Parametric
Surfaces

Figure 4: Piecewise Rational B-spline Approximation of Parametric Space Curves

17



References

[1] Bajaj, C., \Geometric Modeling with Algebraic Surfaces", The Mathematics of Surfaces III,
edited by D. Handscomb, Oxford University Press, (1990), 3 - 48.

[2] Bajaj, C., \The Emergence of Algebraic Curves and Surfaces in Geometric Design", Directions
in Geometric Computing, edited by R. Martin, Information Geometers Press, United Kingdom
(1993), 1 - 29.

[3] Bajaj, C., and I. Ihm, \Algebraic Surface Design with Hermite Interpolation", ACM Tran. on

Graphics, 11:1, 1992, 61{91.

[4] Bajaj, C., and A. Royappa, \The GANITH Algebraic Geometry Toolkit", in Proceedings of the
First International Symposium on the Design and Implementation of Symbolic Computation
Systems, Lecture Notes in Computer Science, No. 429, Springer-Verlag (1990), 268{269.

[5] Bajaj, C. L., and G. Xu, \Piecewise Rational Approximation of Real Algebraic Curves", CAPO
Technical Report 92-19, Computer Science Department, Purdue University.

[6] Bajaj, C. L., and G. Xu, \Converting a Rational Curve to a Standard Rational B�ezier Rep-
resentation", To appear in GRAPHICS GEMS IV, edited by P. Heckbert, Academic Press,
N.Y., 1994.

[7] Bajaj, C., C. Ho�mann, R. Lynch and J. Hopcroft, \Tracing Surface Intersections", Computer
Aided Geometric Design, 5, 1988, 285{307.

[8] Cheng, K., \Using Plane Vector Fields to obtain all the Intersection Curves of two General
Surfaces", (W. Strasser and H.-P. Seidel, eds.), Theory and Practice of Geometric Modeling,
Springer, Berlin, 1989, 187{204.

[9] de Boor, C., A Practical Guide To Splines, Springer{Verlag, New York, Heidelberg, Berlin,
1978.

[10] do Carmo, M., Di�erential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cli�s,
NJ, 1976.

[11] Farin, G., Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,
Academic Press. Boston. 1988.

[12] Garrity, T., and J. Warren, \On Computing the Intersection of a Pair of Algebraic Surfaces",
Computer Aided Geometric Design, 6, 1989, 137{153.

[13] Garrity, T., and J. Warren, \Geometric Continuity", Computer Aided Geometric Design, 8,
1991, 51{65.

[14] Geisow, A., \Surface Interrogations", Ph.D. Thesis, University of East Anglia, 1983.

18



[15] Goldman, R., and C. Micchelli, \Algebraic Aspects of Geometric Continuity" in Mathematical

Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.), Academic
Press, Boston, 1989, 313{332.

[16] Guggenheimer, H., \Computing Frames along a Trajectory", Computer Aided Geometric De-

sign, 6:1, 1989, 77{78.

[17] M�ullenheim, G., \Convergence of a Surface/Surface Intersection Algorithm", Computer Aided

Geometric Design, 7, 1990, 415{423.

[18] M�ullenheim, G., \On Determining Start points for a Surface/Surface Intersection Algorithm",
Computer Aided Geometric Design, 8:5, 1991, 401{408.

[19] Pad�e, H., \Sur la G�en�erlisation des Fractions Continues Alg�ebriques", Jour. de Math., 4, 10,
1894, 291-329.

[20] Peigl, L., andW. Tiller, \Curve and Surface Construction using Rational B-Splines", Computer
Aided Design, 19, 9, 1987, 485 - 498

[21] Pratt, M., and A. Geisow, \Surface/Surface Intersection Problems", (J. Gregory, ed.), The
Mathematics of Surfaces, Oxford University Press, 1986, 117{142.

[22] Sabin, M.A., \Contouring | the State of the Art", NATO ASI Series, Fundamental Algorithm

for Computer Graphics, F17, 1985, 411{482.

[23] Sederberg, T., J. Zhao and A. Zundel, \Rational Approximation of Algebraic Curves" In
Theory and Practice of Geometric Modeling, eds. W. Strasser and H-P. Seidel, Springer Verlag,
33 - 54.

[24] Sederberg, T., and T. Nishita, \Geometric Hermite Approximation of Surface Patch Intersec-
tion Curves", Computer Aided Geometric Design, 8, 1991, 97{114.

[25] Seidel, H-P., \Polar Forms for Geometrically Continuous Spline Curves of Arbitrary Degree",
ACM Trans. of Graphics, 12, 1, (1993), 1 - 34.

19


