
Brokered Collaborative Infrastructure for CSCW

Chandrajit Bajaj Peinan Zhang Alok Chaturvedi

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract
We demonstrate the advantages of a distributed col-

laborative system for CSCW, and highlight the requare-
menls of brokered support for such a system. We also
demonstrate how we have augmented the infrastruc-
ture of a prototype CSCW environment called SHAS-
TRA to accommodate brokered collaboration. Several
applications and possible scenarios of CSCW with bro-
kered cooperative system are also presented. We de-
scribe how brokers can be used to exploit plurality and
commonality of tasks in a cooperative setting, improv-
ing performance for the enlire system.

Keywords: CSCW Infrastructure; Groupware;
Task Brokering; Scheduling; Load Balancing; Coop-
erative Problem Solving;

1 Introduction
Successful implementations of distributed CSCW

application systems have been extremely limited, al-
though there are man well developed single user dis-
tributed applications 6][15][12][17]. The primary rea-
son is that distributed CSCW systems are complex
and difficult to build.

The difficulties in developing CSCW systems or in
porting single user distributed applications to multi-
user applications arise from:

1. Special distributed features caused by the het-
erogeneous environments, and the imbalance of
user’s motivations and activities.

2. The contradiction between transparency in dis-
tributed systems and awareness in CSCW sys-
tems.

3. Absence of general models and enabling infras-
tructure for collaboration within a group as well
as among groups.

The motivation of this paper is to provide a
paradigm for the development of distributed collabo-
rative systems. We hope our system can not only make
collaborative applications easy to build, but also can
make single user applications easy to port to multiuser
collaborative applications. To achieve our goal, we de-
fine a new model for collaboration, which can support
collaboration not only within a group, but also among
groups, and which can provide a great flexibility, shar-
ing ability and extensibility. Based on this model, we

Krannert School of Management
Purdue University

West Lafayette, IN 47907

build an infrastructure, which relies on the concept
of the Object Request Broker. Our brokered collabo-
rative infrastructure provides an efficient support for
managing a hierarchy of sessions, allows a flexible con-
nection and communication in a distributed environ-
ment, and makes CSCW systems easy to integrate and
extend. Finally, we develop distributed collaborative
applications upon the infrastructure to demonstrate
its feasibility.

The rest of this paper is organized as follows: sec-
tion 2 describes related work; section 3 briefly intro-
duces our environment; section 4 presents our bro-
kered collaboration model and special CSCW design
issues; section 5 describes our brokered collaborative
infrastructure; section 6 shows some applications as
our initial results; at last, section 7 addresses the fea-
tures of our system and future direction.

2 Related Works
Groupware focuses on using the computer to facil-

itate human interaction for problem solving. Ellis et
al present an overview of this field in [7]. The Ren-
dezvous system proposes a powerful architecture for
multi-user applications and provides high level sup-
port for creating groupware [14]. Language based ap-
proaches to generating multi-user applications are de-
scribed in [lo]. GroupKit presents a mechanism for
creation of realtime work surfaces which are essentially
shared visual environments [16]. Weasel is another
system for implementing multi-user applications [9].
Networked collocation facilities have also received con-
siderable attention e.g. MMConf [6], Rapport [l], etc.
They provide useful conference management facilities,
and support content-independent shared view-spaces.

All these system are built either by a centralized
model, which may lose flexibility; or by a replicated
modeI, which may have limitations in shared input
or computation. So most of them are fail to satisfy
flexibility and sharing requirement at the same time.
Another common problem with these systems is that
they only consider the collaborate transition within a
group but not among groups.

Object Request Broker is one of useful concept
in current distributed systems. Object Management
Group (OMG), an industrial consortium, proposed
the Common Object Request Broker Architecture
(CORBA) [13], which was adopted from a joint pro-
posal of the constituent companies (DEC, Hewlett-

207
1080-1383/95 $4.00 0 1995 IEEE

Packard , HyperDesk, NCR, Object Design, and Sun-
Soft). The document defines a framework for differ-
ent Object Request Broker (ORB) implementations
to provide common services and interfaces to support
portable clients and implementation objects. In the
design arena, brokers can be used to access servers for
analyses, simulations, animations, and other special
purpose computation not locally available in an appli-
cation. They also can be used to conduct database
and file system searches in information systems. In
general, brokers can provide clients a full transparent
access to services, and make distributed systems easy
to integrate and extend.

3 Highlights of Shastra
Shastra is an extensible, distributed and collabo-

rative geometric design and scientific manipulation en-
vironment. The CSCW infrastructure of the Shastra
system facilitates creation of collaborative multime-
dia applications [3]. We adopt an abstract application
architecture that enables inter-application communi-
cation and cooperation. The Shastra system archi-
tecture is described in detail in [3]. Example collab-
orative multimedia applications are described in [2].
Shastra consists of a static and a dynamic compo-
nent. The static component, the Shastra layer, is a
CSCW infrastructure for building scientific CSCW ap-
plications. It defines an architectural paradigm that
specifies guidelines on how to construct applications
which are amenable to interoperation. Its connection
and distribution substrate facilitates inter-application
cooperation and distributed problem solving for con-
current engineering. Its communication substrate sup-
ports transport of multimedia information. The col-
laboration substrate supports building collaboration-
aware synchronous multi-user applications by provid-
ing session management and access regulation facili-
ties. In addition to the distribution, communication
and collaboration framework, Shastra provides a pow-
erful numeric, symbolic and graphics substrate. It en-
ables rapid prototyping and development of collabora-
tive software tools for the creation, manipulation and
visualization of multi-dimensional geometric data.

Since Shastra is an extensively flexible system, it
is easy to design a new model which can extend the
collaboration functions not only within a group but
also among groups to meet diverse requirements of
practical applications. Considering the operating en-
vironment is distributed and heterogeneous, we need
to find well developed distributed techniques to pro-
vide a flexible support.

4 Model
The main consideration of our model design is the

flexibility. We define a policy-free support and control
mechanism that lets an application or a user make
policy decision to satisfy the different requirements of
CSCW applications. We introduce the concept of Ob-
ject Request Broker into our model, and call it bro-
kered collaborative model.

'Shastra is the Sanskrit word for Science

A broker is a customizable agent that functions as
an intermediary between clients and servers. It allows
applications to locate required servers and connect and
communicate with them. A broker's list of tasks in-
cludes:

0 Directory service.

0 Locate suitable server in a directory to obtain

0 Co-ordinate tasks between servers and balance

best "price" and performance.

loads.

removed from the system.
0 Notify other brokers if a new service is added or

The brokered collaborative model includes two lay-
ers, collaboration layer and distribution layer.
4.1 Collaboration Layer

The collaboration layer consists of a set of tools,
which can be identical or different, and a central ses-
sion manager. A session is a unit of collaborative ac-
tivities. The central manager simplifies the synchro-
nization control among tools.

4.1.1 Single Session
A single session in the Shastra model consists of a

set of replicated tools at each site, which will provide
flexibility. The session context is defined as a view
of the shared state. To begin a collaborative activity,
a session is started and a session manager is created.
The session manager is responsible for setting up the
connection for each user to the session context inside
a session and maintaining the shared context. When
a user joins a session, the session manager creats a
shared context for him and add it to session context;
while the session manager will tear it down when a
user leaves the session. When a user modifies the ses-
sion context, this modification will be reflected to all
members, shared by all members in the session. There-
fore session supports collaboration awareness.
4.1.2 A Hierarchy of Sessions

A hierarchical structure of sessions is defined to
support collaboration among groups. Each session in
the hierarchy can be a single session or a group session.
A single session contains identical members, while a
group session contains different members. When a ses-
sion want to collaborate with other sessions, a group
session is started, and a group session manager is cre-
ated. As in a single session, the group session man-
ager is responsible for handling collaboration control
among sessions, and maintaining the group session
context, which is a shared context among those ses-
sions.

1 shows, the local context, the single
session context and the group session context, make
the total view of the application on a site. Since the
group session context is the view of a group shared
state, any changes of a group session context are vis-
ible to all its members. So the hierarchy of sessions
support collaborative session awareness. By extending
this structure, we can provide a hierarchy of sharing
among users.

AS Figure

208

Context Context

A Sin le Session *
FIGURE 1: A hierarchy od sessions for collaboration model

4.1.3 Main Design Issues
Among all the design issues involved in building a

collaborative system, there are several distinguishing
issues which make our model unobtainable by simple
extend of traditional models.

0 Session control: Because we support a hierar-
chy of sessions, compared to the traditional mod-
els, there are many more sessions in our system.
Thus naming of sessions and the overhead of ses-
sion managers will become problems.

0 Access control: In traditional models, user’s ac-
cess right is described by either capability or per-
mission. In our model, we have two kinds of ses-
sions, single session with identical members and
group session with different members. Therefore,
simply using either one will become insufficient.

0 Floor control: In traditional models, sessions
are independent of others, so granting of the floor
can be determined by the session manager itself;
while in our model, there may be some relation-
ships among sessions in the hierarchy, so granting
of a floor in a session may depend on other ses-
sions, and likewise relinquishing a floor may also
affect other sessions.

We will address these different requirements in our
implement at ion.
4.2 Distribution Layer

Since we are considering a practical distributed col-
laborative environment, there are a lot of communica-
tions in distributed computation and in multiusers col-
laboration. This layer defines a mechanism to support

a flexible connection and communication in the whole
system. A dynamic scheduling method is designed to
maintain system load balance in a distributed setting,
so that a better performance can be achieved.

Another important issue defined in this layer is
common task sharing. Since in a CSCW application,
multi-users always work in the same working space,
common task sharing will become an important op-
timization. By this mechanism, our model can avoid
the disadvantage of hard to share common computa-
tion in a replicated system and can satisfy both the
sharing ability and the flexibility at the same time.

Since we introduce the concept of Object Request
Broker into our model, an d a broker will become an
agent between clients and servers, this will make our
model easy to support the above two consideration.

5 Brokered Collaborative Infrastruc-

We introduce the concept of Object Request Broker
[13] to implement our brokered collaborative infras-
tructure. In the following sections, we will describe
the two most important substrates of our model, col-
laboration substrate and distribution substrate, and
will show how the concept of Object Request Broker
works in our system.

5.1 Collaboration Substrate
This fulfills the need of collaboration control, and

provides a mechanism to implement multi-user inter-
action within a session and among sessions.

5.1.1 Session Control
This substrate provides mechanism to implement

the management of the hierarchy of sessions, which

ture

209

include initiating a session, inviting other users into a
session, requesting to join or leave a session, and ter-
minating a session. The key issue here is how to imple-
ment our session manager, since there are many more
session managers in a hierarchy of sessions compared
to a single session model. There are two extremes in
implementation. In one extreme, each session man-
ager is implemented by an independent session man-
agement server. Although it gets a distributed perfor-
mance, a quick response, it will suffer a huge overhead
of session managers. In the other extreme, all session
managers are implemented in one management server,
i.e., a central server to manage all sessions, this will
reduce the overheads, but the central server can be-
come a bottleneck to cause a bad performance. To
solve this problem, we introduced the concept of Ob-
ject Request Broker into our system. Broker works as
the substitute of a session manager to each session.
A set of session management servers are connected to
a broker to do the real job. So for a session, broker
works as if it were its session manager. Actually, bro-
ker just routes the request to one of session manager
servers to handle the request. See Figure 2.

i_ session i ASession j

I
I

I
I

I

Brokers \
\
\
\
I

FIGURE 2: Brokered session management

For some certain applications, if the loads on the
session managers is light, then we can simply use one
server to manage all sessions and achieve the lowest
overhead of a centralized management. If there are
some session managers with heavy tasks, then we can
use more than one server to manage these sessions
to avoid the bottleneck. Therefore, by dynamically
changing the number of session management servers,
this implementation makes it possible to transparently
move from centralized approach to a full distributed
approach, so we can get distributed performance with
a centralized overhead. Because of broker, this change
cannot affect the sessions.

5.1.2 Access Control
Since the hierarchy consists of two kind of sessions,

we use a hybrid access control scheme in our system.
For a single session, which contains identical mem-
bers, we describe user’s access right in a capability
list, which will allow users to have independent right;
while in a group session, which contains different mem-
bers, it is insufficient to use the same capabilities to
describe users ability, so we use a permission to define
user’s access right to simplify the implementation.

5.1.3 Floor Control
Floor dependency is the major point in the floor

control. A request propagation mechanism is de-
signed. Here we use a single floor situation to describe
how our system is implemented. In the hierarchy of
sessions, an object can be shared not only within a
session, but also among sessions. Suppose an object
is only shared in a session A and if a user in session
A requests the floor, the session manager of session A
can handle the request immediately. But if the object
is also shared with other sessions, that means session
A is joining another group session G I the session man-
ager of session A needs to get the floor in the session
G first, only after this, it can handle that request. So
we can see the request of a floor by a member in a
session may cause the request of a floor by a session
manager in its upper (group) session.
5.2 Distribution Substrate

This fulfills the need of distribution control, and
provides a mechanism to implement connection and
communication. Brokers introduced in this substrate
play an important role in the implementation.

A broker works in a server-based model as classified
by CORBA[13], that is clients and servers can commu-
nicate with a broker, and the broker’s job is to route
requests from clients to servers, and pass the results
back if needed. Multiple brokers are introduced in our
system, see Figure 3.

To reduce system bottleneck and risk of failure,
servers in our system are divided into groups and one
broker is only responsible for one group, and several
brokers can work for the same server group. All bro-
ker in the system can communicate with each other as
a client-server setting.

Several functionalities are implemented in the bro-
ker.

5.2.1 Flexible Connection
Broker can provide a full transparent connection

and communication between clients and servers as in
a common object request broker system. Furthermore,
our system can support a more flexible control. Bro-
kers provide several kinds of system information, such
as what hosts or services are in the system, are they
busy or idle, what are their costs or speed etc. Based
on these information, users can select the connection
according to their time and cost consideration. At
last, this intermediary can be by-passed after clients
get a schedule information, that is, clients can commu-
nicate to servers directly, this will be much cheaper
whenever the message passing is heavier than task
computing.

2 10

............................

.............................

. . , .
j Group-1 j i Groupn
: ...

Servers
.. - Client-Server connection through Broker

<- - -* Peer-Peer connection
Client-Server direct connection

FIGURE 3: Brokered connection and
communication

Here are the basic requests and responses between

* HostInfo-Request/HostInfo-Notify: re-
quest/response current system host information.

ServiceInfo-Request/ServiceInfo-Notify:
request/response current system service informa-
tion.

clients and brokers :

0 Schedul-Request/Schedul-Notify:
request/response several possible schedules for a
certain number of request to a certain kind of ser-
vices. The total response time and cost also give
to each schedule.

request/response to send requests to a service,
broker will do the automatic scheduling to some
severs to achieve total minimum response time.

request/response to send requests based on a cer-
tain scheduling.

0 ScheToServer-Request/ScheToServer-Notify: re-
quest/response to connect directly to some
servers based on user selection.

In general, this substrates provide mechanisms to
tailor the transparent control to satisfy different re-
quirements of CSCW applications.

5.2.2 Dynamic Scheduling
A dynamic scheduling mechanism is implemented

in our system. It is used for broker to match servers
in case more than one server is available. Since the
requests are routed by a broker to servers, the results

e Autosend-Request/AutoSend-Notify:

ScheSend-Request/ScheSend-Notify:

are passed back to the client through the broker, the
dynamic scheduling scheme will not introduce many
overheads. And because a broker works as a server
to other brokers, our dynamic scheduling method bal-
ances loads not only among servers, but also among
brokers.

5.2.3 Common Task Sharing
Common task sharing performed by brokers is an

important optimization task implemented in our sys-
tem. The key issue here is how brokers can detect a
common task, since the meaning of a common task
varies from task to task. The distribution substrate
provides a mechanism to let a user indicate his/her
preference meaning of a common task. Currently,
there are several system predefined meanings of a com-
mon task which can be selected by users. As a last
solution, the user can describe the detecting functions
and hand them to the system. Broker will detect the
common task by user’s functions.

This substrate only provides the support and con-
trol mechanisms, it leaves the policy decision to appli-
cations or users.

6 Applications
* a

There are many possible users, brokers and tasks
configuration scenarios in the Shastra brokered col-
laborative system.

6.1 Cooperative Design
An example of a multi-user cooperative design in

Shastra is Collaborative Smoothing using Shilp and
Ganith toolkits [2 . This application permits a group
of collaborating A hilp users to collectively smooth
out a rough polyhedral model by fitting C1 contin-
uous patches using Hermite interpolation [5]. The
Ganith Algebraic Geometry Toolkit is optimized to
perform algebraic manipulation - curve-curve, curve-
surface, and surface-surface intersection, as well as in-
terpolation. The Shilp Geometric Design and Model-
ing Toolkit is optimized for boundary representation
based solid modeling. Generation of the surface patch
is a compute intensive operation. The actual interpo-
lation operation is performed by using instances of the
Ganith Toolkit, or Ganith servers, Figure 4.

In the brokered setting, the Shilp instances commu-
nicate with their broker. The broker based on the load
information of each machine creates multiple Ganith
service instances on idle machines on the network, and
return the speeds and costs information to the Shilp
instances. Shilp sends multiple patch computation re-
quests to a broker. In one way, the broker transpar-
ently passes the request to Ganith servers according
to the dynamic, adaptive load balance policy which is
sensitive to the changes of load on the server machines.
In the other way, the broker can generate a set of pos-
sible schedules based on current machines’ load infor-
mation, Shilp can select a schedule according to its
time and cost consideration. After the selection, the
requests are then serviced on the connected servers in
keeping with the schedule. See Figure 4. This setup
significantly improves the throughput of large design
tasks.

211

choice: Speed: Costs: Host-lists: nun of requests
i i A

17,00

50.00

50.00

48,40
pnfiakhil's shaganith (Tag: 270869806)
pnzgalka's shaganith (Tag: 270163799)
pn7Mastra's shaganith (Tag: 271717465)

pnz@akhil's shaganith (Tag: 270869806)
50,#

50.00

17
17

16

50

pnsalka's shaganith (Tag: 270163799) 50

pnzkhastra's shaganith (Tag: 271717465) 50

FIGURE 4: Collaborative Smoothing using Shilp and Ganith toolkits with broker support

6.2 Volume Visualization
Volume visualization is a very intuitive method for

interpretation of volumetric data [ll]. It provides
mechanisms to express information contained in typ-
ically huge, data sets via images. The synchronously
conferenced collaborative volume visualization envi-
ronment in Shastra [4] lets multiple users on a network
share volume data sets, simultaneously view shaded
volume renderings of the data, and interact with mul-
tiple views. It supports several ways of viewing vol-
umetric data. Facilities are provided €or interactive
control and specification of the visualization process.

Visualizing volumes is data computationally inten-
sive. Large data sets are visualized using brokers
which partitions image space (the volumetric data set)
appropriately and use a pool of visualization servers
on the network to generate the final image. The bro-
kers use load balancing and scheduling strategies to
optimize total rendering time. The most important
feature is common task sharing mechanism that let
multiusers share common images or parts of images
to avoid needless recomputation. As Figure 5 shows,
two people collaboratively visualize the same data set
with different cutaways. Broker allows them to share
the same data part to avoid duplicated computing.

7 Features and Future Work
In this paper, we introduced the concept of Object

Request Broker for CSCW systems. We developed a
brokered, collaborative infrastructure underlying the
current well developed distributed techniques. This
infrastructure provides an efficient collaboration sup-
port for a hierarchy of sessions, allowing collaboration
among groups as well as within a group. It also im-
proves throughput of the system by balancing system
load and exploiting the plurality and commonality of
tasks in a cooperative setting. The brokered infras-
tructure makes CSCW system easy to integrate and

extend.

tion mechanisms to describe tasks to brokers.
We need to explore formal information representa-

References
[1] S. Ahuja, J. Enson, and D. Horn. The rapport

multimedia conferencing system. In Proceedings
of ACM Conference on Ofice Information Sys-
tems, 1988.

[2] V. Anupam and C. Bajaj. Collaborative Multi-
media Scientific Design in SHASTRA. In Proc. of
the First ACM International Conference on Mul-
timedia, ACMMULTIMEDIA 93, pages 447-456.
ACM Press, 1993.

[3] V. Anupam and C. Bajaj. SHASTRA - An Ar-
chitecture for Development of Collaborative Ap-
plications. In Proc. of the Second Workshop on
Enabling Technologies: Infrastructure for Collab-
orative Enterprises, pages 155-166. IEEE Com-
puter Society Press, 1993.

[4] V. Anupam, C. Bajaj, D. Schikore, and
M. Schikore. Distributed and Collaborative Vol-
ume Visualization. Computer Science Technical
Report, CAPO-93-50, Purdue University, 1993.

[5] C. Bajaj and I. Ihm. Algebraic surface design
with Hermite interpolation. ACM Transactions
on Graphics, 19(1):61-91, January 1992.

[6] Terrence Crowley, Paul Milazzo, Ellie Baker,
Harry Forsdick, and Raymond Tomlinson. Mm-
conf An infrastructure for building shared mul-
timedia applications. In CSCW' 90, pages 329 -
342, 1990.

[7] G. A. Ellis, Simon J. Gibbs, and Gail L. Rein.
Groupware: Some issues and experiences. Com-
munications of the ACM, 34(1), January 1991.

212

FIGURE 5: Distributed collaborative visualization with broker support

[8] T.Todd Elvins and David R. Nadeau. Netv: An
experimantal network-based volume visulization
system. In 1991 IEEE Visualization, pages 239 -
245, 1991.

[16] M. Roseman and S. Greenberg. A groupware
toolkit for building real-time conferencing appli-
cations. In Proceedings of ACM Conference on
Computer Supported Cooperative Work, 10 1992.

[I71 A. s. Ta"aum and R. v. Renesse. Distributed
operating systems. ACM Computer Surveys,
17(4):419-470, Dec. 1985.

[9] T.C Nicholas Graham and Tore Urnes. Relational
view as a model for automatic distributed imple-
menation of multi-user applications. In CSC W'
92, pages 59-66, 1992.

[lo] R. Hill. Languages for construction of multi-user,
multi-media synchronous (mumms) applications.
1992.

Ill] A. Kaufman. Volume Visualization. IEEE Com-
puter Society Press Tutorial, New York, 1990.

*
[12] W. H. Kohler. A survey of techniques for synchro-

nisation and recovery in decentralsied computer
systems. ACM Computer Surveys, 13(2), June
1981.

[13] OMG. The common object request broker: Ar-
chitecture and specification. Technical report,
OMG, 1991.

[14] John F. Patterson, Ralph D. Hill, and Steven L.
Rohall. Rendezvous: An architecture for syn-
chronous multi-user applications. In CSC W' 90,
pages 317 - 328, 1990.

[15] Richard L. Phillipa. Distributed visualization
Computers, at 10s alamos national laboratory.

22(8) :70-77, August 1989.

2 13

