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1 Introduction

We present a locality-based algorithm to solve the prob-

lem of splitting a complex of convex polytopes with a hyper-

pl,ane or a convex subset of it. The solution to this problem

has several applications. One goal is to perform boolean set

operations. The solution can ,also be used to decompose a

polyhedron into convex polytopes [3] and to generate good

meshes [4]. In higher dimensional spaces it can be used

to efficiently compute isocontours of linear approximations

of scalar fields (a basic technique of Scientific Visualiza-

tion) [17, 19]. The approach taken here can also be included

in a set of robust algorithms[11, 13, 15,20,27, 28] based on

finite precision arithmetic. It is also defined in a dimension

independent framework [5, 16,24, 25].

The main contributions of this approach atw (i) it c,an

be applied to polyhedral complexes of any dimension d; (ii)

the algorithm is robust (it always produces valid output) and

consistent (the topological structure of the result always has

a geometric counterpart); (iii) it can be used to split a poly-

hedral complex with ,any convex subset of a hyperplan~

(iv) degradation of the decomposition quality in the result

is avoided since the computations are performed only lo-

cally, in the zones where the splitting really takes place (v)

the worst c,ase time complexity for the intersection between

two d-dimensional polyhedra with m vertices and 71 facets

is O(ml+’ + j n m l–1/ld/21 log m + P q n), where ~#

,and q are (small) constants that depend on shape and relative

position of the two polyhedra.

The main idea for robustness (similar to [13]) is to com-

pute the result using mostly symbolic manipulations and fur-

ther reduce any numerical computations .asmuch .aspossible.
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The algorithm for splitting a polyhedral complex with a hy-

perplane h is divided into three phases: (i) in the iirst ph,ase,

primary numericat computations are performed to classify

vertex positions with respect to h; (ii) in the second phase,

symbolic manipulations return the topological structure of the

resulq (iii) in the final phase, secondary numerical compum-

tions are used to detail the geometric structure of the result.

It is also possible to collapse small undesired polytopes using

symbolic postprocessing.

A leadlng idea is the maintenance of a search structure.

The difference of our approach is that we do not use parti-

tioning trees [23, 26,29, 31] as search trees structure since

its optimization is lost as cascading computations ,are per-

formed. This happens both on trees optimized with respect

to the number of cells induced by the tree decomposition [26]

and for trees optimized with respect to the expected traversal

time [22]. Moreover, performing boolean set operations with

a BSP [23, 29] involves many extmneous compuL?tions since

e,ach traversal of a face in a tree requires splitting the face

at each visited node. If the leaves of the tree reached by a

face at the end of the traversal all have equal classification

then the computed subdivisions are discarded. Note that if

we intersect two complexes of convex polytopes these extra-

neous subdivisions are computed for ,all the intern,al faces of

one complex that intersect the internal (external) cells of the

other complex,

The alternative scheme we use is to define the traversal

of the search structure associated with the complex of poly -

topes as a mnge se,arch query [1, 18]. In particular, when

we intersect two polyhedra, A ,and B, we wish to limit the

computation of split cells in polyhedron A to the zones in-

tersecting the boundary facets of B. This is achieved by

performing, for each face of B, some halfspace r,ange report-

ing queries and an incremental update of the se,arch structure

(as described in [2]) when new vertices are introduced in A.

Since we intersect the boundary facets of B with the poly-

topes of A we avoid having to perform the detection [8] and

computation of intersections between Dairs of convex Doly -

tope~ [6, 7].

of a convex

The basic step of our alg&ithm is the sp~tti~g

polytope with a hyperpl.ane. This has the ad-
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vantage of simplicity ,and known topological structure in any

dimension [14].

Overview In Section 2 we outline. the approach for a

simplified context where only a single polytope is taken into

account ,and numericat computations are considered exact,

In Section 3 the method is extended for a complex of convex

polytopes. We show how to apply the algorithm locally to

only the zones where the splitting affects the complex. In

.3@v@2;:

V4

Section 4 the consistency of the method is enforced and a (a) (b)- -
postprocessing is provided to remove sm,a.11or degenerate

polytopes from the result. In Section 5 we briefl y analyze the
FIGURE 1: A complex of convex polytopes (a) composed

,asymptotic worst case complexity of the <algorithm.
of two triangles c, d (2-polytopes), five edges .f, g, }1, i, j

(1-polytopes), and four vertices u, v, w, r (0-polytopes),

and (b) the associated graph G“.

2 Polytope Splitting

Consider the (relative-closed) faces of a cell c ‘and the relation

of inclusion between pairs of such faces. We can construct

for the cell e a graph G’ with the same structure of the Hasse

diagram [30] but with oriented arcs corresponding to the

direction of the inclusion relation. Considering the set of all

the cells in a complex C we obtain ,an extended graph (~”.

Figure 1 shows the graph C;* for the complex C= {c, d}. The

set N*(N) of the nodes of (J” ((:) is partitioned into d + 1

sets N;(N, ), i = t), ..., d, where N~(Ni) contains atl the

nodes representing the i-dimensional faces of C(c).

With reference to the graph G*, we call the face ~1directly

incident to the face f, if there is a directed arc from jl to f,.

We call the two faces ~1 and f2 simply incidenl if there is

some path from fl to fz or from f, to fl. Moreover if there
is a face f~ direct incident to both f, <andfl we say that fl is

udjucenl to fz.

Definition 1 We suy thut the complex C“ is one split of the

complex C with u convex subset g of a hyperplune h if every

k-dimensional cell c of (7 intersects one and only one k-

dirnensionul cell of C unit ut most one k-dimensionulfuce of

9

For the remainder of this section we focus on the simple

c,ase C = {c} ,and g - h, that is on the problem of splitting

a single cell c with <anentire hyperpl,ane h. In the following

sections we will show how this approach c,an be generalized.

2.1 Basic Structural Properties

In this subsection we show how to use the graph G to symbol-

ically compute the splitting of a polytope c with a hyperplane

h. We first state some properties of (J relating to h.

Assume in the following that h does not contain ,any

vertex of c. The configuration with h intersecting a vertex of
c is a degenerate case. Following the SOSparadigm [10], we

ignore it. In practice this is a general position assumption

(see [21]) by which we do not consider the c,asesthat occur
with zero probability. This does not mean that they ,are

impossible but that they c,an be removed with a perturbation.

Hence if A is the line,ar form ,associated with the hyperpl,ane

h, we classify a vertex v as ❑ (positive) if A(v) z () and as

❑ (negative) if ~(v) < (1. The implicit assumption is that
the value A(v) c,an be computed with infinite precision. We

postpone the problem of making the vertices’ classification

consistent even if finite precision ,arithmetic is used until

Section 4. In the present section we continue to assume that

the compuwtions ,areexact and hence the classification of the

vertices is consistent.

Property 1 The intersection of the hyperplune h and the

polytope c of intrinsic dimension d is either empty or equul

to a polytope c’ of dimension d – 1.

Let h+ and h- be the two halfspaces separated by the

hyperplane h.

Property 2 The intersection of h+ (h-) with the polytope c

of intrinsic dimension d is either empty or equal to u polytope
c+ (c– ) of dimension d.

Note that if c+ is empty then c- = c, and if c- is empty

then r+ = c. If the hyperpkaoe h effectively intersects the

cell c we have also (see Figure 2 for c equal to a trkangle).

Property3 Let fl,..., f~ be thefacets of thepolytope c und

compute f = c n h, f%+ = f, n h+, f%: = fi n h-, with

i= o,..., It. If c+ (c– ) exists then the set of its fucets is

composed off and u1l the facets f,+ (f,-).

Property 4 Let f,,..., f~ be thefucets ofthepolytope c and

compute f = c ~ h. The set of the facets [If f is the set of the

non-empty intersections f% n IL

As a consequence of Properties 3 and 4 the structure of

the intersection c n h can be computed by simply grouping
the nonempty intersections f, n h, with f, ranging over the

set of c facets. The facets f, ,are, in turn, convex polytopes

of dimension d – 1. Hence their intersection with h can
be computed by grouping the intersections of their boundary

facets with h. This process c,an be applied recursively until
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we reach the ()-dimensional faces that we assumed cannot

intersect h.

Whut is the minimum umount of numerical cwmpututions

required to determine the structure of the result? As a con-

sequence of the earlier discussion we need only (and cannot

avoid) to determine the position of the vertices of the poly-

tope with respect to the hyperplane h. These are the primury

numericat computations needed to compute the topological

structure of the result.

Note that at first we are not required to compute the coor-

dinates of the intersections of the edges with h, since we only

need to know if such intersections exist. This information

is inferred from the vertex classification. When we know

which edges intersect h we can proceed with the symbolic

computations creating new nodes in NO. Each new node in

NO (anew vertex of G) is associated to one hyperplane~ge

intersection. The numericaJ evaluation of such intersections

can be. postponed ,assecondary computation.

Y
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2.2 The Hyperplane Splitting Algorithm

From the discussion above it is clear that we can define an

algorithm that symbolically computes the splitting of a d-

dimensional polytope c with a hyperplane h. The algorithm

iteratively performs the splitting of the k-faces of c, with k

increasing from 1 to d. The classification of the vertices of c

with respect to h is performed .asa preliminary computation.

-Split -

Begin

Step 1 (primuiy numerical) Classify all the vertices of c

either ❑ or ~. Then set k = 1.

step 2 (symbolic computation) For each c E Nk do:

If none of its facets is ~ ~ then classify c❑
“ @ and goto Step 3;

- Create a new (k – 1)-polytope f (classified as

~ ,and connect it to each (k - 2)-polytope in

c classified as ❑ . Create two polytopes c+ and

c- connected both (down) to f ,and (up) to all the

k + 1 polytopes connected with c. Connect each

(k – 1)-polytope in e classified as ❑ to c+, and

each one classified .as❑ to c-. Remove c from

Nk .

Step 3 If k z d then k = k + 1 ,and goto Step 2. Else

continue to Step 4.

Step 4 (secondary numericul) For each vertex v classified

❑ , compute its coordinates by geometrically inter-

secting the hyperpl,ane h with the edge divided in two

p<~S by V.

End

I
/

+–
h

?

f? V5 f2–

f:
c+ f ~-

f3
V4

f; VI
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+
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FIGURE 2: The structure of a triangle in three intermediate

phases of its split.

In Step 4 we need to compute the coordinates of the newly

created vertices. To make the algorithm robust we need to

compute each vertex such that (i) the computation never

fails, (ii) the resulting vertex always falls between the two

extreme vertices of the divided edge. These two conditions

must apply even if the two extremes of the divided edge

belong to the same side of h. For this minor detail see

Appendix A.

The algorithm split can be used to split all the poly-

topes that forma complex C. To avoid extraneous compu~~-

tions we can discard, during Step 1, the polytopes that have

all the vertices in the same side of h. In fact, the polytopes

that need to be processed in Step 2 ,arethe polytopes that have

at least one vertex above and one vertex below h. In Sec-
tion 3.3 a method to select such polytopes is outlined. Here,

we want to note that the symbolic and secondary numerical

computations directly lead to the construction of the result;
that is, no intermediate &ata structure needs to be constructed

‘and then discarded. The only overhead might arise in the

first step in which we need to classify all the vertices of the

complex C to discard the polytopes that ,are not split with h.

Another important issue is that the algorithm is suiwble

not only for convex polytopes represented by the set of their

geometric faces, but for ,any convex polytope whose bound-

CW is represented m a decomposition in convex polytopes of
lower dimension. In fact the only properties that tarerequired

90



are that: (i) the polytope is split in no more th(an two ptarts;
(ii) each “face” is, in turn, a convex polytope. In Section 3

we show how to take advanmge of this fact.

As final remark we should notice the similarity of this ap-

pro:ich with the beneath–beyond [9] algorithm for the com-

putmion of the convex hull of a set of points. In fact both

algorithms are based on the incremental update of the in.
cidence graph of a polytope. The present approach c,an be

viewed ,as,an application of the convex hull .atgorithm in the

dual space where faces become vertices ,and vice versa. The

extension of a polytope (convex hull) by addition of an ex-

ternal vertex is equivalent in the dual space to the reduction

of its du,al polytope by intersection with a h,atfspace. Hence

if the origin of the space is inside the positive half c+ of the

cell c by application of the beneath–beyond algorithm in the

dual spice we would have obtained r+. The only difference

with the present approach is that we consider both hatves,

c+ and c-, generated by the splitting of c with h. This, in

the dual space, implies the computation of tan “unbounded

convex hulls of points”, that requires a generalization of the

concept of a convex hull.

3 Weak Complex

In this section we introduce the definition of the &~ta structure

required to apply Sp 1 i t to a set of polytopes instead of a

single polytope. Remember that a set of convex polytopes

forms a complex C if each pair of polytopes c, g c C has

intersection e n g either empty or eqwal to a face of both c

and g (and such a face belongs to C).

We define a structure similar to the complex but less

restrictive and equally suitable for the atgonthm of Section 2.

Definition 2 A set of convex polytopes forms a weak com-

plex WC ~,for each pair ofpolytopes c and g, the iruersection

f = c fl g sutisjies one of the following two conditions:

1. cng=O;

With some abuse of terminology we call a k-face of c c

WC, <anyk-polytope f c WC such that ~ c dc.

In general, a we,ak complex need not be complex. Con-

versely every complex is atso a weak complex since it atways

satisfies condition 2 of Definition 2, with i = 1 <and~1 being

a k-face of both c and g. In Figure 3 two weak complexes of

intrinsic dimension two fii) and three (b) are depicted.

3.1 Splitting a Weak Complex

Proposition 1 If 1 polytopes {CI, cz, ..., cl}, of dimension

k < d, of a weak complex WC are split ulong a hyperplane

h then the resulting set ofpolytopesform a weak complex.

~-.__ .---- --‘“”
\

(a)

(b)

FIGURE 3: Two weak complexes that ,are not complexes.

In (a) the weak complex is composed of ii set of five

convex polygons. In (b) the we,ak complex is composed

of a set of six cubes ,and four parallelepipeds.

Prooft The proof is inductive in the growing dimension k of

the split polytopes of WC and incremental in the number of

split polytopes. In particular, assume that we ,aresplitting one

k-polytope c, a time, and that the (k – 1)-skeleton of WC h,as

been decomposed in a (k – 1)-dimensional weak complex

WC* by splitting the boundary faces of atl the polytopes

{C,, C2,... , c1}. Then we can split Ct in two halves c:, c; by

adding a (k – 1)-polytope to WC* to obtain a weak complex

Wc’= (Wc+ {e$, C;}) – {c,}.

This process holds for k = 0, 1 since the ()-polytopes

c,annot be split. Assume now (by induction) that we h:ive

the (k – 1)-dimensional we,ak complex WC*. The additionat

(k – 1)-face ~ that splits c, in two hatves is bounded by

(all and only) the (k – 2)-faces created by splitting dc atong
h. Then WC* U {f} is a weak complex. WC’ is a weak

complex because, by construction, the intersection between

,any p~air of polytopes in WL” is a weak sub-complex of

WC* U {f}. Each time we split a polytope r, we get a

new weak complex. Hence, after we split, in sequence, the

polytopes ci, for i = 1, ..., 1, we obtain a we,ak complex. o

In summary, if we have a weak complex we can split

some of its polytopes along a hyperplane h to obt,ain, again,
a weak complex. This is .an important property that does

not hold for the nonwe.ak complexes and that atlows us to

apply the splitting process locally. In fact. if we want to
maintain a complex after each splitting we must either split

all the polytopes that intersect h, or decompose the polytopes

incident to .fI, f?, . . . . fr.
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3.2 Reconstructing a Complex which are the faces of a polytope that do not correspond

We now reduce a weak complex to a complex as is required

in m,any applications. Note, however, that a weak complex is

a decomposition into convex polytopes, ,and sometimes this

is sufficient.

The problem we want to solve is: Given a weak complex

WC, construct u complex C whose polytopes are subsets of

the polytopes in WC.

Proposition 2 A k-dimensional weak complex is always a

complex f{w k < 1.

Proofi This holds because a ()-polytope c,annot be split.

Therefore the boundary of a l-polytope is always composed

of two ()-polytopes (the two extreme vertices). Hence, ,an

l-dimensional weak complex is also a complex. o

As a consequence, we can construct the complex C induc-

tively st,arting from the l-skeleton of WC and decomposing

the polytopes of increasing dimension. At each step, we as-

sume that the boundary of each polytope forms a complex

and not simply a weak complex. Such inductive procedure

can be applied if we can prove, in general, that given a weak

complex WC which (k – 1)-skeleton si a complex C we can
decompose the cells of WC such that its k-skeleton becomes

,also a complex C*.

Proposition 3 If the (k – 1)-skeleton of a weak complex

WC of dimension k is a complex C“, then we can construct

a k-dimensional complex C whose (k – 1)-skeleton contains

c’.

Proofi Take a generic convex polytope c of WC. Its

bound.my is decomposed into a complex of convex polytopes.

If such boundary polytopes ,are atl geometric faces of c then

nothing needs to be done. Otherwise, since the boundary

polytopes of c are smatler than the geometric faces, we must

divide c into a set of smaller polytopes.

T,ake a new point p inside c (e.g. the barycenter). Then

assume that the (k — 1)-skeleton of c is composed of m

polytopes ,and the (k – 2)-skeleton of n polytopes. Construct
n new (k – 1)-polytopes connecting v with each polytope of

the (k – 2)-skeleton of c. These 71 polytopes can be added

to C* to form a new complex. The polytope c can now be
replaced in WC by m new polytopes. The (k – 1)-skeleton

of each new polytope is composed of one facet ~ of c and the
(k – 1)-polytopes that are constructed by connecting u to th~

facets of j. The new polytopes (with their lower dimensional

faces) now form a complex. After all the polytopes of WC

have been divided in this way, a complex C > C* is obtained.

o

The validity of this proposition is important because it

implies that the polytopes that have not been directly affected

by the splitting process do not need to be split. Moreover,

since the input da~i was a complex, we can know directly

to a geometric face. In fact, in the beginning no face was

split. So we can give the s,ame Lag to the polytopes that

come from the same original face. Hence, the selection of

the polytopes that need to be further decomposed c,an be

performed symbolically by checking. for each polytope, if

there is a pair of its faces that have the same tag. If we

had to perform this check numerically it would have required

testing whether any pair of k-faces were embedded in the

same k-dimensional aftine subspace.

In conclusion, the price we have to pay to obtain the

complex C from WC is the introduction of some new points
in the decomposition. It is evident that this is not necessary

in dimension two.

Proposition 4 A 2-dimensional weak complex can be de-

composed into a complex without adding any new vertex.

In Figore 4, a possible decomposition of the weak com-

plex of Figore 3 is shown. This case is particularly important

FIGURE 4: A we,ak complex is shown in filled lines. A

complex is obtained by adding the d,ashed lines.

because we can use the algorithm of the previous section to

perform boole,an operations on boundary representations of

polyhedra embedded in E3 (in this c,ase the boun&~ of a

polyhedron is a 2-complex). We c,an split the boundaries

of the two operand polyhedra ,and then select some of their

polytopes to obtain the union, the intersection or the differ-

ence. The polytopes that are involved in this oper:ition .atl

have dimension d ~ 2. This means that we can perform the

complete operation without adding any auxiliary point. If the

available boundary representiition is not composed of con-

vex polytopes, then we c,an use the s,ame method to reduce

it to a set of convex polytopes. In fact, for each nonconvex

cell we c,an split ,an enveloping convex polytope (e.~. the
bounding box) with its boundary (that must be a complex).

From the result it is e,asy to select the polytopes that form a

decomposition in convex polytopes of the initial nonconvex

polygon.

The question of how to achieve a decomposition with-
out auxiliary vertices in any dimension seems to be ‘an open

problem. A possible strategy could be to maintain the non-

weak complex after the split of each single polytope c. In

this way, we can assume that the bound,ary of ,any adjacent
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polytope g has only a few decomposed faces. This implies

that at each step we divide not only c but also the polytopes

that share with c ,any face that h,asbeen split, This approach

could imply an increased number of split polytopes. ,

3.3 Polytope Classification

The first step of the algorithm spl it on page 3 requires the

classification of the positions of <allthe vertices with respect

to the hyperpl,ane h. If our aim is to split the polytopes of

WC along a convex polytope g embedded in h, and not along

the entire hyperplane h, we c,an take. advantage of the ver-

tices’ classification to reduce the number of split polytopes.

This is desirable to enhance the algorithm performance ,and

possible because we deal with a we,ak complex instead of a

complex. In fact, if we split all the pol ympes that intersect the

hyperpl.ane h, we produce more splitting in WC than strictly

required by the insertion of the polytope g. This induces two

main negative consequences: (a) the number of polytopes

of the complex increases much more than required; (b) the

time spent to compute extraneous subdivisions slows down

the method. This is a consequence of the fact that a basically

local problem is approached as if it were global. Here we

exploit the locality of the problem to improve the expected

performance of the algorithm.

Assume that the polytope g that split WC has rn facets

{.fl t..., ~~, }. The problem is to select a subset WC’ of wc
of polytopes that can be split by y. Assume that WC* I~ is

the set of polytopes intersected by h and WC- 11,is the set of

polytopes contained in the halfspace h- for ,any hyperpl,ane

h. Then we compute the set WC’ as follows:

(WC’ = WC+lh – uwqf,
.ft )

where ~~ r,anges over the boundary facets .f, of g (or. more

precisely, over the set of the hyperpl,anes in which the bound-

~W f:icets of g :~e embedded). It is e:~y to see th:~t for ~~Y
polytope c E WC the two following properties are satisfied:

Q ifcng#Othencc WU;

. ifc@WC’thencng=O.

That is, WC’ is a (hopefully small) superset of the set of

polytopes that intersect g. Then, instead of splitting all the

polytopes in WC* II,, we can split only the polytopes in WC’.

Assume that, for a given hyperpl,ane h, we c,an detect the

set V – of the vertices that belong to the h,alfspace h-. We

wish to determine the polytopes across h :md the polytopes

inside h-. For each element v E V–, we collect the inci-
dent pol ytopes that contain another vertex w @ V-. Such

polytopes are the polytopes in WC* [~. To obtain WC- [~ we

collect the polytopes that do not have any vertex w outside

V- . It is evident that the two sets can be constructed at the

s,ame time since every polytope c incident to w E V – must

be contained either in WC* 1~or in WC- ]~. Thus, the pre-

liminary step c,an be reduced to a half-space range-reportin~

problem. We use the se,arch structure described in [2]. For

a set of m points, the construction of this search structure
requires O (n~l +‘ ) time. This method performs each search

in O(rn 1-1 / ld/2~ log m) time ,and the incremental insertion

of new vertices in O (m’) time.

4 Enforcing Consistency

Strictly speaking, the algorithm described above c,annot fail,

since situations like a division by zero cannot occur. In fact,

the sequence of operations is designed so that a result is

always achieved. However a problem <arisesin gu~amnteeing

the consistency of the result if the numerical computations

are not exact. In this section we present a technique that

can be used to force the primary numerical computations to

be consistent with the symbolic structure of the input data.

The technique adopted here is, basically, an extension of

the approach introduced by Hopcroft and Kthn [13]. Our

approach will <also prevent the ~algorithm from generating

(almost) degener:ite polytopes in the result.

4.1 Consistent Classification

In Section 2, we have assumed that the numerical computa-

tions were correct and we conceptually perturbed the splitting

hyperplane h so that no vertex would belong to it. The con-

sequence w,as that the only polytopes that could belong to

h were the polytopes gener:ited by splitting a polytope of

higher dimension. Now we allow the input polytopes to lie

on h; thereby avoiding the creation of very small fe:itures.

To enforce the consistency of the classification performed in

Step 1 of spl it we apply the following property (in [13]

the property was considered only for k = 2):

Property 5 [f k + 1 uf$nely independent vertices cf a k-

polytope c lie on h then c lies on h.

The property we apply requires testing (i) whether some

vertices of c ,are on h and (ii) if such vertices are affinely

independent. The first test must be performed with tolerance

6. The second test must be based only on the topological

structure of c.
When we compute the position of a vertex v with respect

to a hyperpl,ane h we have to t,ake into account the accuracy

that the numeric,ai computations can :ichieve. In particular,

if the value of A(v) of the line,ar form associated with h is

included in the r,ange (–6, 6] we do not know if v is above or

below h. In this case v is classified ,as❑ .
Next. we start classifying the edges. If .an edge has :it

least one ❑ extreme it c,annot be split. This is the basic step

that prevents the algorithm from generating small edges. If

both vertices of one edge ,are classified ❑ then the edge is
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classified ❑ . More gener.atly, we test a k-polytope c after we

have forced all of its faces to have a consistent classification.

Property 5 tells us that if c does not lie on h then all its vertices

classified ❑ must lie on one facet of c. Hence the rule we

apply is ,asfollows:

If there area vertex w and a facet f of c that are

both classified ❑ , but v is not contained in ~,

then all the vertices of c must be classified ❑ .

The rule must be propagated to the neighboring poly-

topes. This propagation is performed consistently, because

any vertex that has been classified ❑ can become ❑ but

not ❑ (and vice versa). Furthermore, once a polytope h,as

become ❑ , it cannot be reclassified to either ❑ or ❑ .

–Reclassify–

Begin

Step 1 Set k=l. M,ark all the polytopes that have at least one

vertex classified ❑ ,asunchecked.

Step 2 For each unchecked polytope c of intrinsic dimension

k do:

●

●

M,ark c checked.

If there are one vertex v and one facet ~ of c both

classified ❑ such that v is not a vertex of ~ (or

of <anyother facet obtained with ~ by splitting the

s,ame original facet ~’) then:

– Classify ,all the vertices of c .as❑ .

– M,ark all the faces of c ,as unchecked.

– Set k=t) and continue to Step 3

Step 3 If k z d,then set k = k+ 1,and goto Step 2, otherwise

stop.

End

It is important to note that when c has both ❑ ,and❑ facets

it must not be split. The test in Step 2 of Split accounts

for this situation since, in this case, there is no ❑ facet and

so c is classified ❑ . In fact, there can never be three facets

classified ,as~, ~ and ❑ in c.

In this way, we obtain a classification that is consistent

for each polytope of the complex ,and, hence, for the whole

complex. The consistency of the result can be stated induc-
tively. We assume that the edges are consistently split. This

simply means that each edge has two distinct extremes.

Proposition 5 Let c be u Ic-polytope, split along h, using

Sp 1 it enforced by Rec lass i fy. The interiors of the two

hulves c+ and c-, generated by h, are connected.

Proofi We prove the proposition for c+. Assume, on the

contmry, that the interior of c+ is not connected and that CT,

Cl .we two of its connected components. By construction,

the facets of CT ,and c~ that ,are not classified ❑ must be

(part of) the original facets of c. Since the facets of c+ have

been consistently classified (Ret lass if y) then there exist

two vertices WI E CT ,and vz c c; such that A(VI ) >6 and

A(v2) > 6. That is, two vertices that have been correctly

classified to belong to the interior of h+. Then we can select
two points v; :md v; that belong to the interior of et and CT,

respectively, and belong to the interior of h+. A stmight line

connecting v{ with vj must intersect one facet of CT that has

been classified ❑ . But, since the interior of c is convex,

there exists a straight line in h+ that connects W; with VJ

without intersecting any facet of c. This contradicts the initial

assumption. Therefore, the interior of e+ is connected. The

proof is similar for e-. o

Proposition 5 ,assures us that Rec lass i f y will remove

all the inconsistencies that might be caused by wrong numer-

ical computations. The resulting representation is consistent

in the sense that, for each pol ytope representiition, there ex-

ists a genmetric model that h,asthe s,arne structure. To verify

that this is true, we have to esmblish what requirement the

polytope must satisfy. It is well known that a necessary and

sufficient condition for a graph to represent the edges of a

linear convex polytope in E3 is that it must be plarmr ,and

triply connected [12]. For k-dimensional polytopes it is also

known that the edges form a k-connected graph (this con-

dition is only necessary). In the case of the polytopes of a

we,ak complex, these properties are not always satisfied be-

cause their faces can be partitioned. Consider, for example,

the vertex v in Figure 3(b). In one of the karge cubes, v is

incident only to two edges (actually it splits ,an edge of the

cube). This means that the edges of that cube do not form

a triply connected graph. For this reason we use a different

kind of argument to state that each polytope is consistently

represented. In particular, we show that the boundary of each

k-polytope is homomorphic to a (k – 1)-sphere.

Proposition 6 Let c be a k-polytope split along h using

Split enforced by Reclassify. Then c+ and c– are

both homeom.orphic to a (k – 1)-sphere.

Proofi By Proposition 5, c+ is a single connected polytope

‘and, by construction. all but one of its facets are (part of)
facets of c. In fact, the only facet of C+ that does not belong

to de is the facet ~ that separates c+ from c-. Select a point

w inside c+ and a (k — 1)-sphere ,S’that contains c. From w

we can project the facets of e+ that ,are (part of) facets of c.

This projection is a one-to-one mapping that covers a certain

region S’+ of 5’. We now have to map ~ to the remaining

part S-. This can be done because 5’- is a connected region.
Furthermore, we c,an build a hypersurface ~’ with the same

topology of j by taking :i point w on h inside c and connecting

it to all the facets of ~. We can map f’ to cover all ,$– without

any overlapping. Then 13c+ is homomorphic to a (k — 1)-

sphere. For c– a similar ,argument holds. o
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4.2 Collapsing Polytopes

Even if we ,assume, ,as in [13], that the input data is an a-

representmion so th:it we obtain in output a /J-representation,

with 0 sui~~bly related to cr, we may need to remove some

small polytopes to obtain a good decomposition under certain

constraints.

The bmic operation required is the deletion of small edges

whose length is less than c. We assume that if the length of

one edge is less than c it can be collapsed to a point without

affecting the convexity of the incident polytopes. This as-

sumption, though reasonable, is important in order to allow

us to annihilate the edge without requiring a redecompositon

of the incident polytopes. We can so perform this opera-

tion simply as a symbolic operation over the incidence graph

structure of the polytopes complex. In particular, we only

need to update the polytopes that have been modified by the

edge deletion. The procedure is as follows:

-Collapse–

Begin

Step 1 M,ake the two extremes of one degenerate edge co-

incident. That is, merge its two nodes in NJ with the

relative set of directed ,arcs that connect them to the

incident edges. M,ark the incident edges and set k = 1

@l

Step 2 For each k-polytope c marked ❑ do:

● if c h,asno facet, remove c and mark all the (k+ 1)-

polytopes to which e is directly incident as ❑.

● if c h,asonly one facet ~ then remove c and mark

all the (k + 1 -polytopes to which c is directly

dincident as ? . If ~ w,as directly incident only to

c then remove ~ and check its facets recursively.

Step 3 If k < d then increment k by one ,and go to Step 2.

Otherwise Stop.

End

Figure 5 shows how the complex of Figure 2 is modified by

moving the vertex w to be coincident with the vertex us ,and

hence deleting .f, .f~, .f/ <wd v3.

If we have a k-polytope c, with k > 1, whose me(asure

is sm,all, but has no small edges, then it must have a p,air

of adjacent facets ~i ,and ~z that form .an angle close to r.

Split the polytopes with a hyperplane h that forms the same

,angle with .fl and fz ,and passes through the (k —2)-pol ytopes

that they have in common. Then apply this procedure again;
that is, either remove small edges of the resulting halves or

split them recursively. At the end of this procedure {all the

degenerate edges will have been removed.

fi-
V4 = V5 —— V2

v

c–

f; f3

(a) (b)

(d) (e)

FIGURE 5: Modification of the complex in Figure 2 in-

duced by making the vertex x coincident to y.
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FIGURE 6: The polytope in (a) is split by four facets that
have a common face (a vertex). The polytope in (b) is

split by six facets that do not have a common face.
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5 Complexity

Here we state some bounds on the efficiency of the method

and on the ,amount of splitting it induces. We concentrate our

attention on the intersection (difference) between two polyhe-

dra F’ ,and Q represented ,ascomplexes of convex polytopes.
The boolean operation is performed by splitting P with the

boundary of Q.

Assume that Q h,asn bound,wy f,acets ,and that each of the

facets intersects p convex polytopes of P on average. Under

a certain condition, the number of new polytopes induced by

the splitting is p71. The condition is that all the facets of Q

that intersect the s,ame polytope c of P have a common face.

In fact, if c is intersected by 1 facets that have a common

face then c is split in precisely i + 1 parts. Figure 6 shows

two cases in which such a condition is satisfied (a) and not

satisfied (b). Generally, the condition holds when Q does not

have features th:it are stnall with respect to the dimension of

the polytopes of P. In practice, the c,ase of Figure 6(b) is

not common and even in such a configuration, the number of

splits induced on the polytope is close to 1+ 1. We conjecture

that, in a boole,an operation performed ,asabove, the number

of newly generated polytopes is O(pn).

The algorithm iterates over two b,asic steps: (i) clas-

sification of the vertices of P to select the polytopes to
be split, (ii) the splitting of a polytope. Assume that the

number of vertices in P after the splitting has been per-

formed is fit, the me,an number of faces of a convex poly-

tope in P is O(q), ,and the me,an number of facets of each

boundary f:icet of Q is O(j). l%e preliminary step is the

construction of the se,arch structure for the vertices’ cl,as-

sifictition, which requires O(rnl ‘e ) time. This structure

must be updated (At – m) times. The update time for m

points is O(rn’ ), so the total update time c,an be bounded

by O((fi~ – m) fiz’). The search takes place O(j) times for

e:ich of the n facets of 8Q and requires O(rn 1– 1/ 1~/21log nt)

when the structure contains m points. The total se,arch
A 1–1/ 101 log fil). During the splittime will be O(j 71 m

of :i pol ytope, each of its O(q) faces is considered once for

the consistent classification and once for the actual split, so

that it will require O(q) time. The split is performed in

()(~~ q n) time. The overall time complexity will so be

O(nL1+’ + (til– m) il~’ + j n ii11-1/ld/2J log fit + p q n).

Assuming th:it ()(ik) = O(n~) it reduces to O(ntl t’ +
~ 71n~l-1/ld/2J lognl + p q n).
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APPENDIX A:

Fault immune hyperplane-edge intersec-

tion

The method used to intersect ‘an edge 1, of extreme vertices

VI ,V2, with a hyperphane h defined by the line,ar form A(r) =

O is reported here. This method is applied only when the
result has already been symbolically computed. For this

reason, we require the method to give a result even if the

input data is incorrect. The algorithm must return, in any

case, a point V* such that:

v“ belongs to the edge 1;

if the input is correct (that is, VI ,and W2,are located

on the opposite sides of h and both with a value of the

linear form A greater th,an 6) W*is the ,actual intersection

between 1,and h, within the accuracy of the available

numerical cornpumtions;

The intersection point v“ is computed with the formulz

V* = n!’ul + [hz, (1)

with a +,0 = 1 ,and a, ,d ~ O. This expression assures that

the point W* belongs to the edge 1. Now, we must compute a

and ~~without failure ,and such that v“ is / n h.
Assume, withoutlossof generality, that l~(vl )1 < IA(wz)I

(if this is not the case exch,ange v, with VZ), ,and let y =

IA(v1)l and q = IA(vZ)I - IA(vI), t.

If q > 6 or y > 6 we c,an compute the two p,ar,ameters

with the exact formula

n -f
= 27+1];

[3 = =.
27+ 1)

Since 27+ q ~ 6 the two divisions c,an be performed.

If q <6 and y <6 we will directly sec

m= [l=!
2’

(2)

and obtain a result that satisfies the above properties.
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