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Abstract

Interactive visualization is complicated by the complexity of
the objects being visualized. Sampled or computed scientific
data is often dense, in order to capture high frequency com-
ponents in measured data or to accurately model a physical
process. Common visualization techniques such as isosur-
facing on such large meshes generate more geometric primi-
tives than can be rendered in an interactive environment. Ge-
ometric mesh reduction techniques have been developed in
order to reduce the size of a mesh with little compromise in
image quality. Similar techniques have been used for func-
tional surfaces (terrain maps) which take advantage of the
planar projection. We extend these methods to arbitrary sur-
faces in 3D and to any number of variables defined over the
mesh by developing a algorithm for mapping from a surface
mesh to a reduced representation and measuring the intro-
duced error in both the geometry and the multivariate data.
Furthermore, through error propagation, our algorithm en-
sures that the errors in both the geometric representation and
multivariate data do not exceed a user-specified upper bound.

Keywords: Visualization, Surface on Surface, Mesh Reduc-
tion, Decimation.

1 Introduction

There are many tradeoffs in visualizing scientific data. Accu-
racy of representation and display can be critically important.
This factor tends to cause scientific meshes to become very
large, in order to accurately represent the underlying data.
Interactivity in visualization can greatly enhance the user ex-
perience, however real-time interaction with large meshes
designed for accuracy is frequently not possible. It is often
the case that only a small amount of accuracy can be sac-

rificed for the sake of increased interactivity with the data,
without rendering the visualization useless for interpretation.

Isosurfacing is a common technique for visualizing surfaces
in volumetric data [9]. Large computational meshes of very
small elements can generate millions of triangles through tra-
ditional isosurfacing techniques [15]. A common technique
for dealing with the large number of triangles which cannot
be rendered interactively is to compute a reduced model in
which large triangles replace groups of small triangles which
are nearly co-planar.

Related work on planar meshes with scalar data at the nodes
aims to reduce the size of the mesh required to represent the
scalar field to a defined level of fidelity [2, 3, 4, 8, 12, 16, 17,
19]. By taking advantage of the special case presented by a
height map, various algorithms have been developed which
create triangular surface approximations while maintaining a
user-defined bound on the introduced error.

In visualizing scientific data, it is quite often not only geom-
etry that the user is interested in, but data values defined on
the surface as well [1, 10, 11]. Geometric mesh-reduction al-
gorithms may not be well suited to this consideration. Like-
wise, algorithms developed for data defined in a 2D domain
consider only errors introduced in the data, as the mesh do-
main remains the same through mesh simplification. If one
is interested in viewing how a particular variable acts on a
geometric surface or a constant surface of another variable,
mesh reduction based only on the geometry or based only on
the data can destroy the additional information present.

We present an algorithm which produces from an arbitrary
surface mesh a reduced model in which errors in both the
geometric representation and any number of scalar variables
defined at the nodes of the surface mesh are bounded by a
user-specified level. A novel method for error propagation
between various resolutions of meshes is developed which
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guarantees error bounds not only between intermediate tri-
angulations but bounds the errors incurred from all steps of
mesh simplification. Developing a mesh reduction scheme
which is driven by mesh quality, and not mesh resolution,
is a major driving factor. The error representations used al-
low intuitive user guidance of or complete automation of the
mesh reduction process. Reduced meshes may be nested, al-
lowing smooth interpolation between several levels of detail.
Results on surface meshes related to nuclear and mechanical
physics demonstrate that the algorithm provides a significant
reduction in mesh size while sacrificing little in the quality
of the display, even in the presence of multivariate data.

2 Related Work

Mesh reduction is a general category of techniques designed
to remove redundant information from a mesh. There has
been related work in areas of reduction of 2D meshes based
on data values at the vertices (height maps), as well as re-
duction of triangular meshes in 3D based on geometric con-
straints.

There has been a great deal of work by Geographical Infor-
mation Systems (GIS) researchers interested in reducing the
complexity of dense Digital Elevation Models (DEMs). A
common technique is to extract key points of data from the
originally dense set of points, and compute a Delaunay tri-
angulation [2, 3, 4, 12, 17, 19]. Silva, et. al[16] use a greedy
method for inserting points into an initially sparse mesh. A
survey by Lee [8] reviews methods for computing reduced
meshes by both point insertion and point deletion.

Geometric mesh reduction has been approached from sev-
eral directions. In reduction of polygonal models, Turk [18]
used point repulsion on the surface of a polygonal model to
generate a set of vertices for retriangulation, computed a mu-
tual tesselation as an intermediate form, and finally deleted
the original vertices to give a reduced mesh. This method
allows the user to specify how many vertices to place on the
surface, in order to reduce the model to a desired resolution.
Geometric detail was maintained by adjusting the repulsion
at regions of high curvature. Schroeder, et al. [15] decimate
dense polygonal meshes, generated by Marching Cubes[9],
by deletion of vertices based on an error criteria, followed by
local retriangulation with a goal of maintaining good aspect
ratio in the resulting triangulation. Errors incurred from lo-
cal retriangulation are not propagated to the simplified mesh,
hence there is no global error control. Rossignac, et al.[14]
uses clustering and merging of features of an object which
are geometrically close, but may not be topologically con-
nected. In this scheme, long thin objects may collapse to an
edge and small objects may collapse to a point. Hamann[5]
applies a similar technique in which triangles are considered
for deletion based on curvature estimates at the vertices. Re-

duction may be driven by mesh resolution or, in the case of
functional surfaces, root-mean-square error. He, et al. [6]
perform mesh reduction by sampling and low-pass filtering
an object. A multi-resolution triangle mesh is extracted from
the resulting multi-resolution volume buffer using traditional
isosurfacing techniques. Hoppe, et al. [7] perform time-
intensive mesh optimization based on the definition of an
energy function which balances the need for accurate geom-
etry with the desire for compactness in representation. The
level of mesh reduction is controlled by a parameter in the
energy function which penalizes meshes with large numbers
of vertices, as well as a spring constant which helps guide
the energy minimization to a desirable result.

Neither the work on 2D data decimation nor 3D geometric
decimation is directly applicable to arbitrary surface meshes
with data. In this paper we describe a method for merging
the methods of geometric mesh reduction for surfaces with
2D functional surface mesh reduction methods. The result
allows error-bounded mesh reduction of geometric surfaces
with multivariate data defined on the surface.

3 Reduction of Surfaces With Multi-
variate Data

Reduction of surface meshes with multivariate data requires
combining and extending work in several areas. Our ap-
proach combines the efforts in geometric mesh reduction and
planar reduction of meshes with data, as well as extending
the reduction to multivariate data. The primary goal of pla-
nar mesh reduction is to reduce the number of elements in a
planar mesh while maintaining an error bound on the value
of a variable at all points in the domain. The goal of surface
mesh reduction is to reduce the number of elements while
remaining as close as possible to the original geometry of
the mesh without violating the mesh topology. Combining
the goals of the two methods, we aim to control the geome-
try and topology of a surface mesh, as well as the values of
variables defined on the mesh.

3.1 Algorithm Overview

The algorithm for reduction follows the basic strategy of
other “vertex deletion” schemes. From an initially dense sur-
face mesh, vertices are considered as candidates for deletion.
A candidate vertex is deleted if a valid retriangulation of the
hole which results from deletion can be found. A valid retri-
angulation must maintain the topology of the original mesh,
and the sum of the propagated errors and errors introduced
from the deletion must be within user-specified bounds.

All vertices are candidates for removal, and may deleted so
long as their removal does not violate the user-defined con-
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straints. The error minimization scheme employed in retri-
angulation will automatically maintain edges in both the ge-
ometry and the data by choosing a retriangulation which is
close to the original data. Note that we consider only the
cases of meshes which are 2-manifold, which are common
in scientific data. For non-manifold meshes, classification
may be required in order to determine if a vertex should be
considered for deletion.

3.2 Mapping between triangulations

In planar mesh simplification, errors are computed by map-
ping deleted vertices to the reduced surface using a projec-
tion in the direction orthogonal to the plane. In the more
general case of a surface mesh, there is no identical mapping,
and so we must define a mapping from a triangulation around
a candidate vertex to a triangulation resulting from deletion
of the candidate. This mapping will allow us to quantify er-
rors in both the geometry and the data defined on the mesh.

Several criteria are important in developing a method for
mapping between triangulations. First, a desirable mapping
must not result in a triangle from the original mesh project-
ing to a degenerate line or point on the reduced triangula-
tion. Such cases are considered undesirable because multiple
points from one triangulation map to the same point in the
reduced triangulation, which amounts to a singularity in the
projection. A simple mapping which projects vertices to the
nearest vertex in the reduced triangulation is not acceptable,
as there may be many points which map to a single vertex.
Instead we look for a mapping which provides a better sense
of geometric continuity between the various triangulations.
Intuitively, we want to use projections which require as little
’stretching’ of the mesh as possible, and stretch equally in all
directions rather than performing a skewed projection.

There are two types of candidate vertices, shown in figure 1,
which are projected to the new triangulation using different
criteria.

Interior Edge

Figure 1: Types of candidate vertices

3.2.1 Interior Edges

Consider a candidate edge for retriangulation which spans
the hole being triangulated. The edge is mapped to the orig-
inal surface in the direction of the average plane of the hole.
The result is a piecewise continuous series of line segments
lying on the original surface, as shown in figure 2. The dark
edges are the projections of the retriangulation onto the orig-
inal surface. In order to ensure equal stretching, the seg-
ments, when projected back into the new triangulation, main-
tain proportional lengths.

Projection of New TriangulationInterior

Figure 2: Mapping for an interior vertex

3.2.2 Edge vertices

In the case of an edge vertex, there is a special case for the
edge which results from removal of the vertex. This edge is
projected to the boundary edge of the original triangulation.
Again, the segments along the edge and their projections in
the plane maintain proportional lengths. Shown in figure 3,
the dark edges represent the retriangulation of the hole pro-
jected onto the original surface.

Projection of New TriangulationEdge Vertex

Figure 3: Mapping for an edge vertex

3.2.3 Topological checks

Simple projection methods do not guarantee a topologically
correct retriangulation. Turk [18] and Schroeder, et al. [15]
consider two necessary topological checks. First, a projec-
tion in the direction of the average normal may cause the
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surface to fold over on itself, changing the surface topology.
This folding manifests itself by projections of edges which
intersect on the original surface or which intersect the origi-
nal surface in multiple places. Another topological problem
results in areas in which the deletion of a vertex causes a
narrow channel in the surface to close. This is another case
which is easy to detect by examining the adjacent triangles
for all vertices in the hole being triangulated. If a triangle ex-
ists with all three vertices lying on the outer edge of the hole,
deletion of the candidate vertex may result in a topological
change in the surface, and therefore the candidate vertex is
not deleted. These two cases are easily identified, preventing
a topologically incorrect mesh due to mesh simplification.

A more subtle topological error may occur when two differ-
ent lobes of the surface pass very near one another. A result-
ing local triangulation near one lobe may result in triangles
which are pierced by the other lobe. We provide a means
to ensure that this does not occur by computing a feature
size for a mesh, which is defined as the minimum distance
between two separate lobes of the surface. By limiting the
geometric error bound to be within the feature size, we guar-
antee that no piercing of the mesh will occur. For increased
mesh reduction, this method could be replaced by bounding
box computations at each vertex, in order to guarantee that
retriangulation will not generate a topological error. The last
two topological considerations are illustrated in figure 4.

V

Deletion of V causes Topology Change

V

Figure 4: Topology Considerations

3.3 Computing Error Bounds

The previously defined mapping from a triangulation around
a candidate vertex to a retriangulation permits us to compute
errors introduced over the surface. The mutual projection
segments the triangulation into pieces within which the vari-
ables and the geometry all vary linearly, as shown in figure
5. Thus, it suffices to compute errors at the intersections of
the projected edges in order to compute an upper bound on
the error in each triangle of the new mesh.

SegmentationProjection of New Triangulation

Figure 5: Segmentation of mutual projection

3.3.1 Geometric Error

Errors in the geometry are quantified by the signed distance
spanned by the mapping from one triangulation to another.
We use the convention that a displacement toward the “out-
side” (in the direction of the normal) of a mesh is a positive
displacement, while displacement toward the “inside” is a
negative displacement. In this way, we are able to compute
the introduced geometric error incurred through retriangula-
tion.

3.3.2 Data Errors

Computing the error in the variables is similarly computed
at the intersections of the projected triangulation. In order
to compute the values of the variables, linear interpolation is
used along the edges which intersect. Errors are measured as
the difference between the interpolated value in the old trian-
gulation and the interpolated value in the new triangulation.
Thus, a data value which interpolates to a lower value in the
new triangulation introduces an error of positive magnitude,
while a data value which is increased introduces an error of
negative magnitude.

3.3.3 Error Propagation

We choose a simple scheme for propagation of error from
one triangulation to the next. For the geometry and each
scalar variable, we associate two variables with each trian-
gular face. One variable is a current upper bound on the
“positive” error accumulated, the other represents “negative”
error. Given the accumulated errors on the faces surrounding
a candidate vertex, we compute and add in the errors which
are introduced through deleting the vertex. Figure 6 illus-
trates the process of computing an upper bound on the error
along an introduced edge based on propagated error from the
previous triangulation and introduced error caused by retri-
angulation.
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Error Bound Propagated to Edge from Vi to Vj

Error Bound in Original Triangulation

p
p1Vi Vj

Vi

Vj

Figure 6: Propagating error to a new triangulation

3.4 Retriangulation with Multivariate Con-
trol

Given the above methods for projecting a retriangulated sur-
face to the previous triangulation, we now present an outline
for an edge-flipping method for computing a triangulation
which introduces as little error as possible.

We begin by computing a valid retriangulation in a greedy
manner. Each edge is projected to the previous triangulation
and errors are computed both for the geometry and each of
the scalar variables on the mesh. Edges are examined in turn,
and each edge is considered as a candidate to be flipped. If
the flipping of an edge does not violate the topology of the
surface, the flipped edge is projected and errors are com-
puted. If the flipped edge has lower cost (defined below)
than the candidate edge, the candidate is removed and the
flipped edge is introduced. This process continues until no
more edges are flipped.

After all edges are flipped, errors can be determined for each
triangle in the resulting triangulation. Again, the linear defi-
nition of the mesh and variables allows us to bound the error
over a triangle by the error bound on the edges which make
up the triangle. The only exception is the triangle which
maps to the vertex being deleted. Additional error is incurred
at this point which has not yet been accounted for. We project
the candidate vertex into the triangle, and compute intro-
duced errors in a manner similar to the method described for
computing introduced errors at intersections on the surface.
The propagated error for the deleted point is the maximum of
the propagated errors for the triangles it belongs to, as there
are points from all original triangles which project to this tri-
angle. As before, the propagated and introduced error are
combined and propagated to the new triangulation.

With errors computed for each new triangle, we now deter-
mine whether the resulting triangulation exceeds any of the
error bounds specified by the user. If the triangulation is
valid, the candidate vertex and all neighboring triangles are
deleted, and the new triangulation is added to the mesh.

3.4.1 Computing Costs

As we are considering errors in multivariate data as well as
in geometry, there are many definitions of cost which may be
considered. We suggest two methods for computing the cost
between two points which project to each other:

maximum error- Using the maximum error as a measure
of cost is a logical choice. We want to avoid situations
in which error bounds for a triangle come near to the
error parameters specified by the user, as this is likely
to hinder further mesh reduction in this region.

maximum introduced error- By using the maximum intro-
duced error rather than the maximum error, we take into
consideration all error parameters rather than comput-
ing costs based only on the parameter which is nearest
the user specified bounds. Consider the case in which
the relative error in the geometry is near the limit, but
errors in the variables are very low. One valid retrian-
gulation may increase the geometric error only slightly,
while errors in other variables increase dramatically, but
remain within the limits. By computing costs using in-
troduced errors, we bias the retriangulation toward con-
figurations where all associated errors are allowed to
increase slightly, but no error increases drastically more
than the others.

4 Multiple Levels of Detail

A desirable trait for a mesh reduction algorithm is the ability
to create multiple nested levels of detail for an object, which
can be smoothly interpolated and blended. Such methods
are frequently used in real-time rendering systems such as a
flight simulator, so that objects which are far away and ap-
pear small to the user may be rendered using a coarse reso-
lution model [13]. As the object nears the user, the model
can be smoothly blended to a more detailed resolution. Such
methods would also be very useful in a navigable visualiza-
tion environment. We describe a method to generate nested
sets of models and interpolate between them.

The error control in the mesh reduction described previously
is driven by a mapping from one triangulation to another.
Using this fact, we can develop a simple method for interpo-
lating between multiple levels of triangulation.

The first step is to generate multiple nested representations
for a surface mesh. In a vertex removal mesh reduction, this
is easily accomplished by generating meshes in the order of
the most detailed to the most simplified mesh. At each stage
of the mesh reduction, we use the previous mesh as a starting
point and further reduce the mesh. We are guaranteed that
the lower resolution meshes will contain only vertices from
the higher resolutions.
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In order to properly interpolate between the representations,
we need only to store a description of the mapping which
was used to create the reduced representations. When a re-
triangulation is projected to the original surface, the surface
is segmented into linear pieces (Figure 5). When interpolat-
ing between a higher and lower resolution model, it is these
linear pieces which are interpolated from one resolution to
the other. When the interpolation reaches the higher or lower
resolution, the pieces can be replaced with the exact resolu-
tion model.

5 Conclusions

We have described a method for computing simplified
meshes for triangular surfaces with data, while maintaining
upper bounds on the error introduced to the geometry and the
multivariate data defined on the mesh. In addition, we have
described a procedure by which a nested triangulation can
be obtained, allowing smooth interpolation between meshes
of varying resolution. The user-specified error bounds for
geometry and data are intuitive, making it easy to guide or
automate the mesh reduction process resulting in a mesh of
desirable quality.

Several example surfaces illustrate the utility of the algo-
rithm. Figure 7 demonstrates the mesh reduction on a con-
stant surface of density in a pion collision simulation. The
surface was extracted through isosurfacing of a 70 x 40 x
25 volume of data. Seven variables, including density, pres-
sure, and component velocities were all interpolated to the
isosurface. Reduced meshes were computed with relative er-
ror bounds of 3% and 6%. Three pseudocolored surfaces
are shown, representing three of the variables in the mesh.
The reduced meshes are 70% - 80% smaller than the original
mesh, while maintaining the geometry and data on the mesh.

In figure 8, an isosurface was extracted from a 54 x 24 x 24
volume mesh from a projectile impact simulation. Six vari-
ables defined on the mesh were interpolated to the surface.
Meshes of reduced resolution were computed with relative
error bounds of 3% and 9%. Three pseudocolored surfaces
show the values of three of the variables on the original mesh
as well as the simplified meshes. Mesh simplification re-
duced the size of the meshes by 50% - 70%.
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(a) (b) (c)
Density surfaces from pion collision data (3450 triangles)

(d) (e) (f)
Reduced surfaces with 3% relative error bounds (1043 triangles)

(g) (h) (i)
Reduced surfaces with 6% relative error bounds (660 triangles)

(j) (k) (l)
Flat shaded surfaces of (a), (d), and (g) reveal the tesselation

Figure 7: Original surface data with two levels of mesh reduction, shown for 3 variables
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(a) (b) (c)
Density surfaces from projectile impact data (2869 triangles)

(d) (e) (f)
Reduced surfaces with 3% relative error bounds (1356 triangles)

(g) (h) (i)
Reduced surfaces with 9% relative error bounds (844 triangles)

(j) (k)
Wireframe surfaces of (a-c) and (g-i)

Figure 8: Original surface data with two levels of mesh reduction, shown for 3 variables
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