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ments are usually obtained one slice at a time, where each
slice is a 2D array of scalar values corresponding to mea-In computed tomography, magnetic resonance imaging and

ultrasound imaging, reconstruction of the 3D object from the surements distributed over a plane passing through the
2D scalar-valued slices obtained by the imaging system is diffi- object. The set of planes generating the slices are usually
cult because of the large spacings between the 2D slices. The parallel to each other and equispaced along some axis
aliasing that results from this undersampling in the direction through the object.
orthogonal to the slices leads to two problems, known as the Once these measurement slices have been obtained, the
correspondence problem and the tiling problem. A third prob-

goal is to enable a human to easily visualize, in 3D, thislem, known as the branching problem, arises because of the
large collection of data. Many algorithms have been devel-structure of the objects being imaged in these applications.
oped for this purpose, but they can all be classified intoExisting reconstruction algorithms typically address only one
two categories [8]: volume rendering methods and surfaceor two of these problems. In this paper, we approach all three
reconstruction methods.of these problems simultaneously. This is accomplished by im-

posing a set of three constraints on the reconstructed surface This paper concentrates on surface reconstruction meth-
and then deriving precise correspondence and tiling rules from ods, all of which proceed by extracting the isosurfaces
these constraints. The constraints ensure that the regions tiled corresponding to a specified image intensity. Each isosur-
by these rules obey physical constructs and have a natural face is represented as an assembly of simple surface primi-
appearance. Regions which cannot be tiled by these rules with- tives, such as triangles or other polygons. Once these sur-
out breaking one or more constraints are tiled with their medial face primitives are calculated, they can be quickly rendered
axis (edge Voronoi diagram). Our implementation of the above

from different viewpoints using widely available graphicsapproach generates triangles of 3D isosurfaces from input
hardware. This allows the user to quickly examine manywhich is either a set of contour data or a volume of image
different viewing spaces.slices. Results obtained with synthetic and actual medical data

This paper presents a surface-based algorithm whichare presented. There are still specific cases in which our new
achieves both faster rendering and lower likelihood of re-approach can generate distorted results, but these cases are

much less likely to occur than those which cause distortions construction error than previous surface reconstruction al-
in other tiling approaches.  1996 Academic Press, Inc. gorithms. These improvements are obtained by taking a

unified approach to the three problems inherent in all
surface-based approaches [20]: the correspondence prob-

1. INTRODUCTION lem, the tiling problem, and, the contour branching prob-
lem. These problems and their previous solutions are dis-

Technologies such as magnetic resonance imaging cussed in the following subsections.
(MRI), computed tomography (CT), and ultrasound im-
aging allow measurements of internal properties of objects

2. OVERVIEW OF PREVIOUS APPROACHESto be obtained in a nondestructive fashion. These measure-

The three fundamental problems in surface-based recon-
struction—the correspondence problem, the tiling prob-E-mail: hbajaj@cs, coyle@ecn, klin@csj.purdue.edu.
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bottlenecks and improve the speed of Fuchs’ algorithm
by a constant factor. Shinagawa et al. [24] generalize the
discrete toroidal graph into a continuous one. Homotopy
is used for reconstructing smooth surfaces from the toroidal
graph. Homotopy is similar to metamorphosis (morphing)

FIG. 1. The correspondence problem: (a) cross section contours; (b)- in which one contour is gradually changed into another
(e) different topologies with the same cross sections as in (a). contour. Kehtarnavaz et al. [14] represent the search prob-

lem as a Levenshtein graph and use dynamic programming
to find its minimum cost path. Wang et al. [28] present a

lem, and the branching problem—have motivated many method which first assigns an initial merit to each triangle.
research efforts. It then uses relaxation to iteratively refine these weights,

and it finishes by utilizing the A* search algorithm to find
2.1. The Correspondence Problem a triangulation with minimum weight.

Some fast heuristic methods have also been developedThe correspondence problem involves finding the cor-
for tiling. The strategy of Christiansen et al. [4] is basedrect connections between the contours of adjacent slices.
on selection of shortest slice chords. Ganapathy et al. [11]Figure 1 shows an example with four different joint topolo-
use the concept of least tension as a heuristic guideline togies (b)–(e) resulting from the same cross sections as in (a).
tiling. These heuristic methods [4, 11] usually work quicklyIf the distance between slices is large, a priori knowledge or
and work well when the contours being matched haveglobal information is required to determine the correct
similar shapes. Ekoule et al. [7] develop an approach tocorrespondence. Bresler et al. [3] use domain knowledge
tile two dissimilar contours which have similar convexto constrain the problem. Meyers et al. [20] and Soroka
hulls. The two convex hulls of corresponding contours are[26] approximate the contours by ellipses and then assem-
first heuristically tiled using shortest slice chord metric.ble them into cylinders to determine the correspondence.
Thereafter, their method maps the concave portions of aWang et al. [28] check the overlapping area as the criterion
contour onto its convex hull to look up the tiling pair fromfor the correspondence.
the convex hull tiling. This method avoids some abnormali-
ties produced by Christiansen’s algorithm. After compar-2.2. The Tiling Problem
ing different algorithms, Meyers [19] points out that the

Tiling means using slice chords to triangulate the strip minimum surface area optimization approach produces
lying between contours of two adjacent slices into tiling fewer abnormalities.
triangles (Fig. 2). A slice chord connects a vertex of a given When two corresponding contours are very different, it
contour to a vertex of contour in an adjacent slice. Each is difficult to obtain a topologically correct and natural
tiling triangle consists of exactly two slice chords and one tiling. Gitlin et al. [13] show one example in which two
contour segment. There are two related issues. One is how polygons cannot be tiled to form a polyhedron. Their exam-
to accomplish optimal tiling in terms of certain metrics ple is a pair of extremely different contours. Even in a
such as surface area and enclosed volume. The other is moderately dissimilar contour pair in which a polyhedron
the topological correctness of the tiling. can be formed, the tiling algorithm may result in a non-

The problem of mating points between contours into polyhedron. For the example in Fig. 17a, the minimum
triangles is formalized by Keppel [15] into a graph search surface optimizing algorithm generates the non-polyhedral
problem. Fuchs et al. [10] provide an efficient algorithm surfaces shown in Fig. 17c even though there exist many
based on an Euler tour of a toroidal graph to obtain an polyhedral solutions ((e) is one example). The arrow in
optimal solution. Their algorithm has a time complexity Fig. 17c shows the self intersecting portions of the surface.
of O(n2 log n), where n is the total number of vertices on Even when the tiling result is a polyhedron, it might be
the contours bounding the triangles. Sloan et al. [25] locate physically unlikely. For example, Fig. 3a shows two cross

section contours. Figure 3c shows a vertical cross section
of a reconstruction that tiles the interior of the top contour
to the bottom contour (see Fig. 3b). The scalar data along
the vertical line L of (c) flips its sign twice between two
adjacent slices. This is an unlikely topology, especially
when the distance between the two slices is small. Figure 3d
shows another tiling in which the vertices of the dissimilar
portion tile to the medial axis of the dissimilar portion.
The medial axis is placed at between two slices. Figure 3e

FIG. 2. An example of tiling. shows a cross section of (d). It shows that Fig. 3d is a highly
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FIG. 3. Tiling of dissimilar contours: (a) the contours of two adjacent slices; (b) a tiling in which all vertices of the top contours tile to vertices
of the bottom contour; (c) the vertical section passing through the point P of the solid in (b); (d) a tiling in which the dissimilar portion of the top
contour tiles to its medial axis located at between two slices; (e) a vertical section through the solid shown in (d).

likely topology. All solid surfaces should be single sheeted; One or more line segments are added to form a composite
that is, the scalar data along a vertical line changes its sign contour as in (d); thereafter the tiling between the compos-
at most once, between two adjacent silices if the distance ite contour and C3 becomes one-to-one. Figure 4e also
between slices is fine enough. The tiling method shown in forms a composite contour, which is the convex hull of the
Fig. 3b violates this claim. branching contours, in order to have one-to-one tiling.

Algorithms [4, 6, 7, 10, 11, 14, 15, 25, 28] which attempt The branching region between C1 and C2 is filled up by
to tile all contour vertices to the adjacent slice produce an horizontal triangles. In terms of topological correctness,
unlikely topology, as shown in Fig. 3b. Boissonnat [2] and the best branching handling is (b) because it corresponds
Barequet et al. [1] produce horizontal triangles which lie to the expected physical object better than the others do.
on the slice, thus avoiding tilings like those in Fig. 3b. This Christiansen et al. [4], Shantz [23], and Shinagawa et al.
generates a result better than Fig. 3b without adding any [24] use the method in Fig. 4d. They dip down the middle
intermediate vertices. of the bridge to model the saddle point of the branching

region. This approach works well only in simple branching
2.3. The Branching Problem cases. Ekoule et al. [7] form an intermediate contour, simi-

lar to a composite contour, between two slices for the caseA branching problem occurs when a contour in one slice
of one-to-many branching. The intermediate contour iscan correspond to more than one contour in an adjacent
tiled to the merging contour as well as to the branchingslice. Figure 4a shows that contour C3 of slice S2 branches
contours. This produces less distortion than the methodinto C1 and C2 of slice S1. A contour in one slice having
of Fig. 4d. Meyers et al. [20] use the scheme in Fig. 4e.no corresponding contour in an adjacent slice forms either
They improve the horizontal triangle problem associateda hole or the beginning/end of a vertical feature. The possi-
with this approach by feeding the triangulation mesh intobility of branching significantly complicates the task of
a surface fitting program to regenerate the surface. Bare-tiling. It creates the problem of branching surface recon-
quet et al. [1] first match and tile similar portions betweenstruction. Lin et al. [17] model branching regions by inter-
corresponding contours. Then, the clefts, which are thepolating many intermediate contours. This method gener-
polygons formed by the untiled portions, are triangulated.ates a smooth surface at the cost of a large number of
If the XY projections of clefts are nested, bridges are addedtriangles. Other branch processing approaches can be clas-
to break the nesting. Their bridge adding scheme solvessified into the four methods shown in Figs. 4b–4e. Figure
the problem of the possible conflict between a bridge in4b shows that a curve L or a point is added between two
one slice and the geometry of the other slice. In the caseslices to model the valley or saddle point formed by the

branching. The added curve L is placed at slice S2 in (c). of Fig. 4a, the contour portions along the branching area

FIG. 4. Different reconstructions for branching contours: (a) branching contours on adjacent slices; (b)–(e) different surface reconstructions.
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are unmatched, and the triangulation result is similar to
Figs. 4d or 4e, depending on whether bridges are added
or not.

Boissonnat [2] uses a different approach than tiling. He
applies 3D Delaunay triangulation to contour vertices of
two adjacent slices. The surface of the polyhedron formed
by the union of tetrahedra is the desired surface. He re-
duces the problem of tetrahedralization of the object de-
limited by the two slices into building tetrahedra from two

FIG. 5. Examples of oriented contours on parallel slices. The shaded2D Delaunay triangulations of two adjacent slices. Geiger
regions are the solid regions.[12] improves Boissonnat’s approach so it can handle com-

plicated branching and dissimilar contours. He projects the
external Voronoi skeleton (EVS) from one slice to the
adjacent slice and adds the projection in the 2D Delaunay to that of Barequet et al. [1]—we will discuss the similarities
triangulation. Thus, the triangles of a merging contour and differences in the implementation section. Our post-
are split into several regions corresponding to each of the processing of the untiled region is similar to adding the
branching contours. Tetrahedra can be constructed be- EVS from one slice to the adjacent slice, as in Geiger’s
tween these corresponding regions. His branching hand- approach [12].
ling is as in Fig. 4c. In the case of dissimilar contours such We present the theory behind our algorithm in Section
as in Fig. 3a, his algorithm tiles the dissimilar area (i.e., 3, the implementation in Section 4, and the results in Sec-
the interior) of the top contour to its EVS projection on tion 5. We discuss our contributions and their limitations
the adjacent slice. This results in a topology similar to in Section 6, and conclude in Section 7. Finally, the proofs
Fig. 3d. of Section 3 are listed in the Appendix.

An analysis of the algorithms summarized above shows
that they each violate at least one of the following guide- 3. CORRESPONDENCE AND TILING RULES
lines:

As discussed in Section 2, any surface-based approach
1. As explained in Fig. 3, one should not enforce con- must address the correspondence problem, the tiling prob-

necting every vertex of one contour to another contour if lem and the branching problem. The tiling problem itself
these two contours are very dissimilar. has two aspects: (1) obtaining an optimal tiling in terms of

certain metrics and (2) the detection and tiling of dissimilar2. The re-sampling of the reconstructed surface should
yield the original contours. The branching methods shown portions of contours.

In this section, we address all of these problems simulta-in Figs. 4c, 4d, and 4e violate this guideline.
neously by first defining a set of criteria for the desired3. Composite contours should not be formed (e.g., as
reconstructed surface. The criteria chosen can constrainshown on the top slice of Figs. 4d and 4e) because they
the shape reconstruction problem so that the surfaces pro-do not correspond well to the actual physical object.
duced correspond well with expected physical models.

These criteria are then used to derive correspondenceFrom the above discussion, it is clear that the problem
of shape reconstruction is underconstrained, which implies and tiling rules. The correspondence rules that are derived

are local; they rely only on data in adjacent slices to deter-that there are many feasible solutions. Our goal is to define
surface crieria which, by imposing reasonable constraints mine the correspondence between contours. The tiling

rules prohibit those tilings which result in undesired oron the problem, lead to an algorithm that generates the
most likely object. These criteria must therefore lead nonsensical surfaces, and allow detection of branching re-

gions and dissimilar portions of contours.through derivation to explicit correspondence and tiling
rules. Holes, branching regions and dissimilar portions of Section 4.1 will discuss how to use these rules to obtain

a near-optimal tiling and to detect and process branchingcontours will be detected because they cannot tile to other
vertices based on the derived rules. Unlike many other and dissimilar regions.

We define the input before presenting the surface recon-algorithms which treat holes, one-to-many branching,
many-to-many branching and dissimilar contours as differ- struction criteria. The input consists of two sets of contours,

one set on each of two adjacent slices (Fig. 5). Each setent special cases, our postprocessing algorithm treats them
all in the same manner. contains zero or more contours which are simple polygons.

A single contour divides the slicing plane into a solid regionThe algorithm we derive from a set of surface criteria
does not violate any of the three guidelines listed above. (shown as the shaded region of Fig. 5) and a void region.

Like isocontours, contours are simple polygons and theyThe overall procedure followed by our algorithm is similar
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FIG. 6. Criterion 2: The shaded regions are the solid regions of two
slices, and the reconstructed surface is the surface covering the space
between two solid regions. (a) A vertical line between two slices intersects FIG. 7. (a) Examples of projection. (b) A shadow region LS (q) of
the reconstructed surface at zero points (e.g., L1 and L3), one point (e.g., a vertex q.
L2), or one line segment (e.g., L4). (b) The reconstructed surface shown
is not allowed because the vertical line L5 intersects the reconstructed
surface at two points, D and E.

From these three criteria, we derive explicit tiling and
correspondence rules. The theorems stated in this section

can be inside other contours. They cannot, however, inter- are directly used in our reconstruction algorithm; the lem-
sect each other on the same slice. A contour does not mas are only used to prove these theorems. Theorems 1–5
contain its interior. It is oriented so the solid region is are related to the tiling rules, while Theorems 6 and 7
on its left side. The solid region is thus inside a CCW describe the correspondence rules. Based on Theorems 6
(counterclockwise) contour and is outside a CW (clock- and 7, the correspondence relationship is unique if the
wise) contour. For the example in Fig. 5, contour C1 is reconstructed surface satisfies Criteria 1–3.
CW and contour C2 is CCW. In the presence of looped The following lemmas and theorems hold for any pair
contours, the solid region is inside a CCW contour and is of adjacent slices. Their proofs are given in the Appendix.
outside zero or more CW contours. For simplicity, we as-

LEMMA 1. If a vertical line L not intersecting any con-sume that a solid region does not intersect the image
tour does intersect the reconstructed surface, then L inter-boundary. A vertex is one endpoint of a linear contour
sects exactly one solid region.segment. We define it to have the same CCW or CW

direction as the contour.
Please recall that a contour does not contain its interior.We now define the surface reconstruction criteria:

For the example of Fig. 6a, all vertical lines except L4 do
Criterion 1. The reconstructed surface and solid re- not intersect any contour.

gions form piecewise closed surfaces of polyhedra.
LEMMA 2. Let L be a vertical line not intersecting any

Criterion 2. Any vertical line (a line perpendicular to contour. Suppose it has M (M 5 0, 1, or 2) intersections
the slice) between two slices intersects the reconstructed with the solid regions on the two adjacent slices, and it has
surface at zero points, one point, or along one line segment N (N 5 0 or 1) intersections with the reconstructed surface.
(Fig. 6a). Then, M and N have the same parity, that is,

Criterion 3. Resampling of the reconstructed surface 1. M 5 1 ⇔ N 5 1
on the slice should produce the original contours.

2. M 5 0 or M 5 2 ⇔ N 5 0.
Criterion 1, which requires that surfaces be composed

DEFINITION 1. Cross: Two line segments that intersect,of polyhedra, prohibits such incorrect structures as self-
but not at their endpoints.intersecting surfaces. Criterion 2 is used to avoid the gener-

ation of unlikely topologies. This criterion is inspired from DEFINITION 2. Projection: The projection of an object
the unlikely topology of Fig. 3c, in which a vertical line is denoted by appending a prime sign (9). For the example
L intersects the reconstructed surface twice between two shown in Fig. 7a, C 9, U 9, V 9, and T 9s are the projections
slices. This criterion may not be enforceable if the distance of contour C, vertex U, vertex V and line segment T (which
between two adjacent slices is large, or if the sampling is UV), respectively. Because T lies between two slices, it
plane is nearly tangent to the surface of a long, thin object. has projections, the two T 9s, on two slices. Unless stated
For example, the desired surface in Fig. 6b is not allowed otherwise, any projection is onto an adjacent slice.
because there exists a vertical line L5 intersecting the re-
constructed surface at two points. Suggestions to handle LEMMA 3. If the projection of one contour segment

crosses any other contour segment, then these two contourthese cases are presented in Section 6.2. The motivation
behind Criterion 3 is obvious. segments cannot be tiled.
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DEFINITION 3. Augmented contours: New vertices are
embedded in contours at those points where the projection
of that contour would cross another contour. This breaking
of contour segments ensures that any intersection between
a contour and a contour projection is either a contour
vertex or a contour segment.

Because of Lemma 3, augmented contours are formed FIG. 8. Theorem 4: The thick line segments denoted by T 9 ’s are slice
chord projections. T 91 , T 92 , and T 93 satisfy Theorem 4, while T 94 and T 95to allow the tiling of contour segments whose projections
violate Theorem 4.cross each other. They are achieved by adding the intersec-

tion to these two contour segments as a new vertex. From
this point on, all contours are assumed to be augmented
contours. THEOREM 3. Suppose nV1V2V3 is a tiling triangle de-

fined by vertices V1 , V2 , and V3 . Let V1 and V2 be twoDEFINITION 4. NEC is the nearest enclosing contour of
ordered adjacent contour vertices. Let LS (V1V2) anda point or a contour. Note that NEC (C), where C denotes
RS (V1V2), respectively, denote the left side and right sidea point or a contour, cannot intersect C. In Fig. 5,
of the line passing through V1 and V2 .C1 5 NEC (V 9).

1. If either V1 or V2 is not an overlapping vertex and itsDEFINITION 5. Positive/negative vertex and overlap-
projection has a CW NEC, then V 93 Ó RS (V1V2).ping vertex: Let V be a vertex (see Fig. 5). If its projection

V 9 lies on a contour, then V is an overlapping vertex. An 2. If either V1 or V2 is not an overlapping vertex and its
overlapping vertex pair represents the vertex pair (V1 , V2) projection has a CCW NEC, then V 93 Ó LS (V1V2).
where V1 5 V 92 . If V is not an overlapping vertex, then V

(Because all contours are augmented contours, it is im-is said to be a positive or negative vertex if V and NEC (V 9)
possible for one of V1 or V2 to satisfy Case 1 while thehave opposite or identical orientations, respectively. For
other satisfies Case 2.)example, the vertex V of Fig. 5 is CCW and NEC (V 9)

Theorem 3 is required in addition to Theorem 2 because(contour C1) is CW, so V is a positive vertex.
some invalid slice chords can satisfy Theorem 2.

THEOREM 1. Any overlapping vertex must tile to its pro-
DEFINITION 7. I (C) and O (C) denote the inside andjection.

outside regions of a simple polygon C, respectively. Neither
(Note: This theorem does not mean an overlapping ver- I (C) nor O (C) contains C.

tex cannot tile to any vertex other than its projection. A
THEOREM 4. Let T be a slice chord, and C be any con-vertex can have more than one slice chord.)

tour. Then T 9 cannot have intersections with both I (C)
DEFINITION 6. LS (q) and RS (q) are the left side and and O (C).

the right side of a vertex q, respectively. Suppose pq and
Theorem 4 does not imply that T 9 cannot have anyqr of Fig. 7b are two ordered contour segments. The two

intersection with contours. Figure 8 shows some valid andhalf lines qpR and qrR divide the slice into two regions. Then
invalid slice chord projections.LS (q) is the shadow region which contains the left side

of pqr
`

. Neither LS (q) nor RS (q) contains qpR or qrR. THEOREM 5. Let T2 be any existing slice chord, and T1

be the newly proposed slice chord.THEOREM 2. Let T be a slice chord that is incident with
a contour vertex V, and let S be the slice. 1. If T 91 crosses T 92 , then T1 cannot be a slice chord.

1. Suppose V is not an overlapping vertex: 2. If T 91 intersects, but does not cross, T 92 , and T1 crosses
T2 (in 3D), then T1 cannot be a slice chord.

if NEC (V 9) is CW ⇒ T 9 , (S 2 RS (V)), or
LEMMA 4. Suppose UiUj and VkVl are two contour seg-

if NEC (V 9) is CCW ⇒ T 9 , (S 2 LS (V)). ments of two corresponding contours, and there exist two
slice chords UiVk and UjVl as shown in Fig. 9, then
i 2 j 5 k 2 l 5 1 or 21. Here i, j, k and l are the sequence2. If V is an overlapping vertex, its projection V 9 is also
indices of vertices.a vertex because all contours are augmented contours. Then

T 9 , (S 2 ((LS (V) > LS (V 9)) < (RS (V) > RS (V 9)))).
This lemma implies that the tiling sequence cannot be

increasing for one contour and be decreasing for its corre-Theorem 2 defines the region in which the projection of
a slice chord must be located. sponding contour.
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4. IMPLEMENTATION

Implementation of the correspondence and tiling rules
of the preceding section are discussed in Section 4.1. This
implementation guarantees that the reconstructed surfaces
satisfies the three criteria stated in Section 3. It does not,
however, guarantee numerical stability. Two minor modi-
fications, which are discussed in Section 4.2, do make theFIG. 9. If UiVk and UjVl are two slice chords, then i 2 j 5 k 2 l.
implementation stable.Here i, j, k, and l are the sequence indices of vertices.

4.1. General Implementation

Section 3 provides precise rules to determine correspon-LEMMA 5. Let T be a slice chord incident with a vertex
dences between contours on adjacent slices. The tiling rulesV on a contour C. If V is a positive vertex, then T 9 ,
on the other hand only prohibit bad tilings—they do not(I (C) < C). If V is a negative vertex, then T 9 , (O (C)
suggest good tilings. It was thus necessary to develop a< C).
multipass tiling algorithm to achieve reasonably good til-

Lemma 5 simply restates Theorem 2 in a different way. ing. It first constructs tilings for any regions not violating
any of the tiling rules. Regions that violate these rulesTHEOREM 6. If a tiling triangle can be placed between
correspond to holes, branching regions and dissimilar por-two contours C1 and C2, then one of the following is true
tions of contours. They are processed by tiling to their(see Fig. 10).
medial axes.

1. C19 intersects C2. In addition to the notation in Section 3, we define OTV
to be an optimal tiling vertex. V1 5 OTV(V2) if V1V2 is2. If C19 and C2 are disjoint, then they have different
the shortest among all slice chords incident with V2 thatorientations, each has at least one negative vertex, and their
satisfy Theorems 2 and 4. An OTV pair (U, V) impliesNECs do not insulate C19 and C2. In other words, there
OTV(V) 5 U and OTV(U) 5 V.exist non-overlapping vertices V1 [ C1 and V2 [ C2 such

Our implementation has the following major steps:that NEC (V 91) 5 NEC (C2), and NEC (V 92) 5 NEC (C1).

3. If one contour’s (C1) projection is inside the other Step 1: form closed contours from image slices.
(C2), then they have the same orientation, C1 has at least

Step 2: create any required augmented contours (Defi-
one negative vertex, C2 has at least one positive vertex, and

nition 3).
there is no contour insulating C19 and C2. In other words,

Step 3: find correspondences between contours.there exists a nonoverlapping vertex V2 [ C2 such that
NEC (V 92) 5 NEC (C1), and C2 5 NEC (C19). Step 4: form the tiling region (Theorem 2) of each

vertex.
THEOREM 7. If any of the three conditions of Theorem

Step 5: form the OTV table.6 holds, then there exists a path on the reconstructed surface
Step 6: construct the tiling.linking these two contours. This does not imply that a tiling

triangle always exists in between. Step 7: collect the boundaries of untiled regions.

Step 8: form triangles to cover untiled regions based onTheorems 6 and 7 state the necessary and sufficient con-
their edge Voronoi diagram (EVD).ditions for the correspondence of two contours in adja-

cent slices. As mentioned in Section 2, the overall procedure of our
algorithm is very similar to the approach of Barequet et
al. [1]. The effect of our Step 2 is equivalent to enforcing
short matches at the intersection of the contour projections
in their algorithm. Our Step 5 is similar to the norm dis-
tance calculation between the consistently oriented con-
tour portions of their approach. We employ a multipass
tiling algorithm to collect pieces of tiling triangles while
their algorithm uses voting to find a long match between
contours. Our tiling algorithm gives much smaller untiled
regions than their approach because of the dependence of
their approach on the tolerance used in the matching. The

FIG. 10. (a) C9 and C2 are disjoint; (b) C19 is inside C2. use of a small tolerance in their approach results in large
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unmatched regions, while a large tolerance could result in
multiply matched regions. We use Theorem 2 to avoid
incorrect tiling while they rely on a tolerance selection.
The procedure we use in Step 7, which collects the bound-
aries of untiled regions, is similar to Barequet’s algorithm.
The major difference between our approach and theirs is
that we have theoretical foundation to justify our approach.
Our postprocessing of untiled regions is similar to Geiger’s
approach [12]. The primry difference is that the EVD
added in our postprocessing is a subset of the added exter-
nal Voronoi skeleton (EVS) in the preprocessing of Gei- FIG. 11. Projection of contour segment c1 onto slice S2 containing

contour segment c2: (a) intersection; (b) overlap.ger’s approach.
Our program can have as input either image slices or

contour data. In the case of contour data, Step 1 is skipped.
Step 2 is required because our theorems are based on 4) of a vertex V or a contour C. Another table stores

the contour relationships (intersection, disjointedness, oraugmented contours. Step 3 finds the correspondences re-
quired by the calculation of the OTV table and tiling. enclosure) between adjacent slices. The NEC of every ver-

tex projection is searched on the projection slice. Once theStep 4 produces the data structure for the verification of
Theorem 2. Step 5 precalculates the OTVs of every vertex. NEC of a vertex projection is available, whether the vertex

is positive or negative can be determined by Definition 5.The OTV table is required for determining the optimality
of a proposed slice chord during Step 6, which generates Finally, Theorem 6 determines the correspondence be-

tween contours of adjacent slices. This takes O(n2) timetiling triangles. Holes, branching regions, and dissimilar
portions of contours cannot be tiled, so they are detected because checking a point inside a contour is an O(n) time

algorithm and there are O(n) vertices.in Step 7 and postprocessed in Step 8. The detailed imple-
mentation of each step is described in the following para- The tiling region of each vertex is defined in Theorem

2. Two line equations and an AND–OR flag define thegraphs.
The 2D marching cubes algorithm [18] is used to gener- tiling region described by Theorem 2.1. In the example of

Fig. 7b, the tiling region of the vertex q is on the left sideate contour segment from an image slice. We assume that
the image objects do not intersect the slice boundary. of line pq or line qr. If V is an overlapping vertex, then

(V, V 9) is an OTV pair. So V 9 can be indexed from theTherefore, all generated contour segments can be linked
to form simple polygons. Each contour segment from the OTV table formed in Step 5, and no extra data structure

is needed to verify Theorem 2.2.2D marching cubes algorithm is miniscule, so the contours
are approximated by fewer contour segments under an The OTV table stores the OTVs of all vertices. The

optimality is in terms of the shortest slice chord, as usederror tolerance [9]. Choosing a half-pixel as the approxima-
tion tolerance effectively eliminates 75–90% of contour by Christiansen et al. [4]. The OTV on the adjacent slice

is searched for each vertex V. The current implementationsegments. If the approximation causes intersections be-
tween contours of the same slice, the approximation pro- sorts the candidate vertices based on their distance to V.

Then the candidate vertices, starting from the closest ver-cess for the intersecting contours is repeated with a
smaller tolerance. tex, are checked until one satisfies Theorems 2 and 4.

Usually, the closest candidate is qualified. So the averageBased on Lemma 3, augmented contours are formed.
For the example in Fig. 11a, c 91 > c2 5 V 91 , so V 91 is added time complexity is O(n2 log n). But in the worst case of

no qualified vertex, all vertices on the corresponding con-to c2 as an overlapping vertex. Similarly, V1 is added to
c1 . Although Lemma 3 does not require the insertion of tour are tested. This implementation therefore has an

O(n3) worst case time complexity. (There are O(n) verti-any new vertices if the intersection of one contour segment
projection with another contour segment is one line seg- ces. Checking Theorems 2 and 4 requires O(1) and O(n)

time, respectively, and there are O(n) checks for eachment (e.g., Fig. 11b), we still insert new vertices (V 91 and
V 92) so that the overlapping part is a contour segment in V in the worst case.) This step is usually the most time

consuming part of the whole process. Our method can beboth slices. This allows the tiling algorithm to guarantee
that the overlapping part in both slices will be used. An sped up by presorting all vertices into an RPO tree [5] so

the closest-point query can be done in O(log n) time.untiled region will thus not cross itself.
Theorem 6 judges the correspondence between contours Furthermore, the O(log n) algorithm described by Prepar-

ata [22] can be used to check Theorem 4. The time com-on different slices. One table for each slice stores the con-
tour relationships (disjointedness or enclosure) of that plexity of this approach is O(n log n) average case and

O(n2 log n) worst case.slice. These tables are used to derive the NEC (Definition
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There are four passes in tiling: The first pass handles
Cases 1–3, the second pass handles Case 4, and so on.

In the first pass, the OTV table is scanned to look up
an optimal tiling pair. Lemma 4 states that there are only
two spanning directions for tiling. If Case 1 is encountered,
then the quadrilateral U2V2V3U3 is divided into two trian-
gles using the shorter slice chord. In Cases 2 or 3, only one
triangle (nU2V2U3 or nU2V2V3) is chosen in one span
direction. The selection is based on the shorter of U2V3

and V2U3 if both triangles satisfy Cases 2 or 3. Tiling trian-
FIG. 12. (a) Only the boundary slice chords T1 and Tn are needed

gles are tested and may be formed on both sides ofto verify Theorem 5; (b) the optimality of forming nU2V2U3 can be
U2V2 . The boundary slice chords and their directionsclassified into six cases.
(spanning right or left) are put into a boundary slice chord
array. If the to-be-stored boundary slice chord is already
in the array, it is already shared by two tiling triangles,

During the tiling, the legality of each slice chord is and thus it is deleted from the boundary slice chord array.
checked frequently for compliance with Theorems 2–5. Cases 4–6 are handled in the three subsequent passes.
Verifying Theorems 2 and 3 for a proposed slice chord One starting tiling pair with its direction is popped out
takes O(1) time. Theorem 4 takes O(n) or O(log n) time from the boundary slice chord array, and the tiling spans
depending on the implementation. Verifying Theorem 5 one direction until no satisfying case is available. The start-
takes O(n) time because the number of existing slice chords ing tiling pairs of the second pass also come from the OTV
is always increasing and they cannot be preprocessed. For- table. As in the first pass, the boundary slice chords are
tunately, it is not necessary to check for intersections of stored in an alternative boundary slice chord array. The
proposed slice chords with all existing slice chords. Only tiling takes O(n2) time because checking Theorem 5 takes
the boundary slice chords of tiled regions need to be veri- O(n) time, and there are O(n) proposed slice chords. Com-
fied. For the example in Fig. 12a, only the two boundary pared to making only one pass to do all tiling, our multipass
slice chords T1 and Tn need to be checked. The existing approach does not significantly increase the number of
slice chords T2 to Tn21 are bounded by T1 , Tn and contours, proposed tiling pairs, which is proportional to the pro-
so it is impossible for the projection of the proposed slice cessing time.
chord to cross any of T2 to Tn21 without crossing T1 , Tn , Figure 13 shows a rather complicated many-to-many
or any contour. branching tiling. Fig. 13a shows the top view of contours

There are four passes in tiling. The tiling sequence is of two slices. Two bottom contours (C 1
2 and C 2

2) branch
based on the optimality of the tiling pair, with optimality into five top contours (C 1

1 2 C 5
1). In addition to this compli-

defined in terms of the shortest slice chord. Suppose cated branching, a very dissimilar contour C 4
1 and a hole

U2U3 and V2V3 are two contour segments of two corre- C 2
1 are involved. The tiling result after the first pass is

sponding contours, as shown in Fig. 12b. We are going to shown in (b); only good tiling triangles are formed. As
form a tiling triangle nU2V2V3 or nU2V2U3 . Suppose slice each pass proceeds, the algorithm loosens the optimality
chords U2V2 and U2U3 and legal, and U2U3 has not been requirements in order to form more tiling triangles. The
used. Considering only one triangle nU2V2U3 , we can clas- last pass uses any legal triangle. The result after the last
sify it into six cases in decreasing order of degree of opti- pass is shown in (c).
mality. After all four passes, there may be untiled regions in

dissimilar contours, holes or branching regions. The pro-Case 1: (U2 , V2) is an OTV pair, and so is (U3 , V3).
cessing of untiled regions is illustrated in Figs. 13c–13f.Case 2: (U2 , V2) is an overlapping vertex pair.
The untiled regions can be traced from the unused contour

Case 3: (U2 , V2) is an OTV pair, and V2 5 OTV(U3). segments (the dotted lines in (c)) and the boundary slice
Case 4: (U2 , V2) is an OTV pair, V2 ? OTV(U3), and chord array. The boundary slice chord is assigned a direc-

V2 and OTV(U3) are on the same contour. tion from the bottom slice to the top slice if it spans left,
or from top to bottom if it spans right. The directionsCase 5: (U2 , V2) in not an OTV pair, and V2 OTV(U2)
of the top unused contour segments are reversed. Theseand OTV(U3) are on the same contour.
directions are required to trace a closed untiled polygonCase 6: All other cases.
when more than two untiled contour segments or slice
chords share the same vertex. Figure 13d shows the topCases 1–3 are all considered to be optimal. Cases 4, 5, and

6 are not optimal and their degree of optimality decreases view of the traced untiled polygons.
If the projection of an untiled region is convex, it iswith increasing case index.
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FIG. 13. (a) Two slices of contours. Thicker contours are from the top slice. The small circles denote vertices. (b) Result of the first tiling pass.
Only good tiling triangles are formed. (c) The result of all tiling passes. (d) Top view of untiled regions. (e) Top view of untiled region triangulation
by edge Voronoi diagram. (f) The perspective view of (e) with hidden lines removed. (g) The final result. (h) and (i) Two different shaded views
of the tiled surface shown in (g).

triangulated with its center of gravity. Otherwise, we trian- In the case of one untiled region’s projection enclosing
the projection of another untiled region, one can use thegulate using its medial axis. We use Lee’s algorithm [16]

to find the EVD (edge Voronoi diagram or medial axis). EVD algorithm of Srinivasan et al. [27] to calculate the
medial axis of nested polygons. Because our algorithm triesThe EVD is approximated by a smaller number of line

segments so fewer triangles are required to cover the un- to do as much tiling as possible during the last tiling pass,
the number of untiled regions left is near minimum. Thetiled region. The Z values of the EVD are set to the middle

of two slices so the reconstructed model corresponds to case of nested untiled regions rarely happens; in fact, we
have never encountered it in real image data.our expectations of the physical object. The result is shown

in Fig. 13e. The perspective view of the triangulated untiled
regions is shown in Fig. 13f in which the contours are

4.2. Numerically Stable Implementation
plotted as dotted line segments. Figure 13g shows all train-
gles from tiling and the EVD. Two different perspective Two minor modifications of the algorithm sketched

in Section 4 help avoid numerical instability. The firstviews of the shaded result are presented in (h) and (i).
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moification abolishes some augmented contours, and the 5. RESULTS
second develops an algorithm to find the rough medial

The algorithm has been implemented in C, and runs onaxis.
Sun Sparc and Silicon Graphics Indigo2 workstations. ItThe augmented contours are required because of
has also been ported to an Intel Paragon. Both the syntheticLemma 3. Augmenting a contour may add vertices which
and real cases used to test these implementations are pre-are very close to existing vertices. This results in numerical
sented in this section.instability in programming because it is difficult to consis-

Figure 13 illustrates the capabilities of our algorithmtently treat two very close vertices as one vertex or two
when many-to-many branching, dissimilar contours andseparated vertices. Besides, this results in very sharp
holes are present. As can be seen from Fig. 13, C 2

1 istriangles. These problems can be solved by not requiring
reconstructed as a shallow hole since it has no correspond-Criterion 2 at crossed contour segments. This minor
ing contour on the bottom slice. The dissimilar portion ofmodification affects the reconstructed surface only at
C 4

1 does not tile to the bottom contour C 1
2 . It tiles to itscrossed contour segments; the overall shape is not

medial axis and forms a shallow hole with a link to C 1
2 .changed.

This is a highly likely topology. The handling of branchingLemma 3 shows that two crossed contour segments can-
is shown in Fig. 13f and in Fig. 16. The added curve couldnot be tiled because of Criterion 2, so augmented contours
be a point to model the saddle point, as in Fig. 16b, if theare formed so there are no crossed contour segments. If we
branching region is not complicated, or it could be linewaive the Criterion 2 requirement only at crossed contour
segments to model canyons between contours, as shownsegments and directly tile crossed contour segments, there
in Fig. 16d.is no need to form augmented contours. The non-planar

Figure 17 shows a dissimilar contour case which causesquadrilateral formed by two crossed contour segments c1
many tiling algorithms to fail. Figure 17a illustrates theand c2 in Fig. 11a is divided into two triangles. In the case
top view. The wire frame result of the minimum surfaceof overlapping projection contour segments (e.g., Fig. 11b),
area optimizing algorithm is shown in (b). The result isthe quadrilateral is planar and is triangulated. This is done
redisplayed in (c) with hidden lines removed. The arrowbefore the first tiling pass, and then the same four-pass
points to the abnormality. Figure 17d is the result of thetiling algorithm applies. If a contour segment has n inter-
shortest slice chord heuristic algorithm. It is much worsesections (counting multiplicities) with the projections of
than (c). Figure 17e shows at least one polyhedron solution.other contours of the adjacent slice, then n 2 1 new vertices
The result of our algorithm is shown in (f). Heuristic meth-are inserted to break this contour segment into n contour
ods fail badly because (1) they do not check the limitedsegments. A new vertex is placed at the middle of every
region associated with a slice chord (Theorem 2), and (2)two adjacent intersections. This step is necessary to ensure
they cannot change any previous improper slice chord se-that one contour segment can cross at most one contour
lection. The first drawback is also associated with the opti-segment projection.
mal algorithm, but the optimal algorithm can recover fromBecause the added vertices of this implementation are
this drawback because it selects the optimal one from aat the middle of two intersections of one contour segment,
large set of possible solutions. Our algorithm guaranteesthey are rarely close to any existing vertex. This also adds
that the results are polyhedra because of Criterion 1. Itmany fewer new vertices compared to the general imple-
forms a natural shape in the dissimilar region because ofmentation because most intersected contour segments
Criterion 2.have only one intersection and no vertex is added. The lack

For a test with real data, we used the tiling algorithmof Criterion 2 in the numerically stable implementation is
to reconstruct different parts of the human body in orderlimited to crossed segments, and it does not affect the
to build a database for a human body walkthrough. Theformation of other regions. It has few effects on the overall
algorithm worked very well in dense data, as will be seenshape, and the problems of very close vertices are solved.
with results from three sets of medical data.Figure 14 shows the results of the general implementation

The rendering tool (see Acknowledgments) is based onand the numerically stable implementation.
the hardware platform independent graphic library XS de-It is difficult to implement a numerically stable EVD
veloped at the Shastra laboratory at the Computer Sciencesalgorithm for different situations. So we developed a pro-
Department, Purdue University. Figure 18 shows thegram to find the rough medial axis. A polygon is decom-
Gouraud shading and the wire frame of the reconstructedposed into two polygons by adding a cutting edge (the
surface of a brain hemisphere. It was generated from a setdahsed line in Fig. 15). The decomposition is repeated until
of contour data that was manually traced from 52 MRIall generated polygons are convex. The rough medial axis
image slices. Figure 19a shows a reconstructed skull. The(shown as the darker line segments in Fig. 15) is formed
noise around the teeth was present in the original imageby linking the centers of the convex polygons and the

middle points of the cutting edges. slices. The surface was automatically generated from 112
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FIG. 14. Results of the general implementation and the numerically stable implementation: (a) Top view of contours. Top contours are drawn
in thick line segments. (b) The general implementation: it results in a very sharp triangle if the added vertex is very close to an existing vertex. (c)
The numerically stable implementation: it does not generate very sharp triangles, but surfaces may be distorted (indicated by the arrow) because
of not satisfying Criterion 2.

256 3 256 CT slices. The image slices were first enhanced approach generated significantly fewer (54,071 and 285,349,
respectively) triangles than the marching cubes approach.by processing with a 3 3 3 median filter before automatic

contour segmentation. Table 1 summarizes our results. The CPU time in the table
is based on SGI Indigo2 HIIMPACT workstations and doesFigures 19b–d show two adjacent slices around the nasal

area and the tiling between them. As can be seen from not include the image segmentation time.
(b) and (c), there are numerous holes, dissimilar areas,
and branching between two adjacent slices. Figure 20 6. CONTRIBUTIONS AND LIMITATIONS
shows three different views of the skeleton reconstruction

The theoretical approach and the algorithms developedof the human cadaver Freddy. The tiling of some cross
in this paper differ significantly from those currently avail-sections is shown in Fig. 21. The image volume consisted
able. It is thus important to clearly describe the benefitsof 920 256 3 256 slices. The resolution was 2.16 mm in
they provide to both the theory and practice of surfaceall dimensions. Each image slice was first enhanced by
reconstruction. It is equally important to describe the limi-processing with a Gaussian weighted low pass filter before

automatic contour segmentation. The global thresholding
scheme employed in the 2D marching cubes approach did
not work well in regions which were barely visible, such
as at the shoulder bones. However, our tiling algorithm
takes whatever contours are generated and produces sur-
faces based on those contours. Therefore, these three ex-
amples show the capability of our algorithm to handle
complicated topologies.

The error tolerance during the approximation of the skull
and Freddy contours was 0.5 pixel. The marching cubes ap-
proach generated 554,500 triangles from the skull data and
1.4 million triangles from the Freddy data, respectively. Our

FIG. 16. Tiling in the presence of branching: (a) and (c) Top view
of two different cases of branching contours. The thicker line segments
are top contours and small circles represent vertices. (b) and (d) OurFIG. 15. Finding the rough medial axis by repeatedly decomposing

a polygon into two polygons. results with hidden lines removed.
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FIG. 17. Tiling of two dissimilar contours: (a) Top view of two contours. The thicker contour is the top contour and small circles represent
vertices. (b) Result of minimum surface area tiling. (c) Same as (b) with hidden lines removed. The arrow points to the abnormality where triangles
intersect non-adjacent triangles. (d) Result of shortest slice chord heuristic algorithm. (e) Existence of a nonselfintersecting surface. (f) Our result.

tations of these results, both to ensure that the algorithms reconstructed surface and the derivation of precise corre-
spondence and tiling rules that satisfy them. This con-are used appropriately, and to clarify issues that should

motivate future work. straint-based approach produces a reconstruction algo-
rithm which can generate an expected physical surface

6.1. Contributions
from any topology that is encountered. This is not the case,
for example, with algorithms based on heuristic methodsThe primary contribution of this paper is the theoretical

foundation supporting our surface reconstruction algo- for tiling and reconstruction. Such algorithms often fail on
topologies that were not directly anticipated (see Section 2).rithm. It consists of the three constraints imposed on the

FIG. 18. Visualization of a reconstructed brain hemisphere: (a) Gouraud shading; (b) wire frame.
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FIG. 19. Visualization of a reconstructed skull: (a) Gouraud shading; (b) and (c) two sample slices; (d) the tiling of (b) and (c).

The importance of these constraints is also made clear by The third major contribution of our research is our
multipass tiling algorithm. Traditional tiling algorithmsthe abnormal surface, shown in Fig. 17c, generated by a

minimum-surface-area algorithm. have problems in branching regions because it is difficult
to know exactly when to switch from tiling rules based onThe second major contribution is the development of a

robust algorithm whose reconstructed surfaces correspond the assumption of a one-to-one correspondence of con-
tours to rules based on the assumption that a region iswell with the surfaces of the actual object. The aspects of

our approach which make this possible are: (a) the data branched. Many papers try to avoid this problem by identi-
fying branching regions and then inserting composite con-of our reconstructed model cannot flip its sign more than

once along a perpendicular line between adjacent slices; tours or intermediate contours in order to reduce the tiling
of the branched topology to that of tiling uniquely paried(b) the resampling of our reconstructed surfaces is guaran-

teed to produce the original contours; (c) our method of contours. As discussed in Section 2, such approaches have
drawbacks. We have avoided them by designing a tilinghandling branching method works well on very complex

branchings; and (d) a region which cannot be tiled using algorithm that makes several passes. Successive passes tile
according to progressively weaker optimality rules—butour explicit rules is tiled with its medial axis.
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FIG. 20. Tiling based visualization of an entire human skeleton (Freddy). The tilings of the numbered portions are shown in the next figure.

in all cases satisfying the surface reconstruction constraints. 6.2. Limitations
At the end of these passes, branching regions, holes and As discussed above, one strength of our algorithm is
dissimilar areas of contours are left untiled. We then tile that we know exactly what type of surfaces it will construct
these well-defined remaining regions. As discussed in Sec- because of the constraints imposed on them.
tion 5, this new tiling algorithm produces very reasonable One of these constraints, though, is actually a require-
tilings for very complicated branching structures. The most ment on the sampling rate used when imaging an object.
probable reason for the success of this new approach is Specifically, Criterion 2—which states that the recon-
that it tiles ‘‘difficult’’ regions only after it has tiled as much structed surface between adjacent slices can have at most
of the rest of the surface as possible. It thus has as much one intersection with any line perpendicular to the slices—
surface information as possible when it has finally reached requires that the inner-slice spacing of the data be fine

enough that certain topologies are unlikely. Examples ofthe point when it must tile the ‘‘difficult’’ regions.
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TABLE 1
Results

CPU
Segment. # of # of time Step 3 Step 5 Step 6 Marching
method slices n’s (s) time time time cubes n’s

Brain Manually 52 37,992 90 27% 60% 10% N/A
Skull Auto. 112 54,071 104 31% 51% 15% 554,500
Freddy Auto. 920 285,349 248 43% 32% 20% 1,416,584

would enable our algorithm to reconstruct the actual sur-
face. For example, the surface in Fig. 22a can be generated
if we apply our algorithm only to those contours with the
same number of enclosing contours (see Definition 4). This
function has been implemented in our program. The sur-
faces in Figs. 22b and 22c could be correctly generated
by translating and scaling the contours until Theorem 6
generates the actual correspondence, and then translating
and scaling back the tiling results. O’Rourke [21] points
out a potential flaw in scaling and suggests using a uniform
scaling (with the same amount in both x and y). In this
latter case, though, a significant amount of side informtion
must be present in order to determine that the actual object
must be as shown in the figure.

No amount of preprocessing would enable our algorithm
to correctly reconstruct the surface of Fig. 22d. In such
badly undersampled data, the aliasing is severe enough
that it is completely unclear what to do. The best way to
handle this case would be to acquire additional data in
order to decrease the interslice distance.

7. CONCLUSION

This paper presented a robust algorithm for recon-
structing surfaces from a set of planar contours or image
slices. The theoretical derivation of the correspondence
and tiling rules allowed our algorithm, given any input
data, to generate a unique topology satisfying the desired
surface criteria. This new, unified approach led to recon-
structed surfaces which correspond well with the surface
of the physical objects that were imaged.

Our algorithm is not guaranteed to produce an optimal
solution, but it does achieve the following improvements

FIG. 21. Multiple contours with tiling for different horizontal cross
over previous surface-based techniques:sections through the human skeleton model.

topologies which violate Criterion 2 because of undersam-
pling in a given direction are provided in Fig. 22. In each
case, the true surface of the object cannot be reconstructed
by our algorithm because the surface it produces must
satisfy Criterion 2. Our algorithm will still finish, but the FIG. 22. Some examples of topologies that cannot be processed be-
surfaces produced in these cases will be incorrect. cause they violate Criterion 2 by having two points of intersection with

a line perpendicular to the slices.In cases (a) through (c) in Fig. 22, a preprocessing stage
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• It avoids such major drawbacks of general heuristic
tiling procedures as the generation of twisted surfaces be-
cause of lack of global information.

• Unlike other tiling approaches which may generate
self-intersecting surfaces, it guarantees that the tiling result
is a polyhedron surface.

• It produces appropriate tilings in branching regions.
• It generates significantly fewer triangles than the FIG. 23. Crossed contour segments cannot be tiled.

marching cubes approach.

These improvements were all demonstrated with both
real and synthetic medical data. and R4 . The solid regions are shown as the shadow regions.

The strength of our approach is its ability to handle Based on Lemma 2, the projection of the S URF is in
dissimilar contours and complicated branching. Its primary R1 < R3 , and not in R2 < R4 . However the projection of
drawback is one faced by any surface-based algorithm— the reconstructed triangle containing c1 should either be
when the interslice distance is too large, it becomes very in R1 < R4 or in R2 < R3 . Hence c1 cannot be tiled. A
difficult to solve the correspondence problem without addi- similar argument applies to c2 . n
tional algorithms or human intervention. In our case, this

Proof of Theorem 1. Let V be an overlapping vertex.problem manifests itself as a violation of Criterion 2. The
A vertical line passing through V has two point intersec-probability that these violations occur increases as the in-
tions with contours. In order to satisfy Criterion 2, theterslice distance increases.
intersection with S URF must be one line segment con-
taining V and V 9. V 9 is also a vertex due to augmentedAPPENDIX
contours. Hence V tiles to V 9. n

In addition to the definitions in Section 3, we further Proof of Theorem 2. 1. Suppose NEC (V 9) is CW as
define DISK (P) as the disk region on a slice centered at shown in Fig. 24a. Then DISK (V 9) does not intersect
a point P. The radius is arbitrarily small. We use S URF any solid region. There exists a point V1 [ (DISK (V) >
to represent any reconstructed surface satisfying criteria RS (V)) such that V1 and V 91 are not on any contour. Let
1–3. We consider the scalar data to be positive, neutral or L be the vertical line passing through V1 . L does not
negative if it is inside, on the boundary of, or outside the intersect any solid region because the solid region incident
polyhedra stated in Criterion 1, respectively. with V is on LS (V) (see Definition 6). So, L does not

intersect S URF according to Lemma 2. This impliesProof of Lemma 1. Suppose L does not intersect any
T 9 ,y RS (V). Hence T 9 , (S 2 RS (V)). The case ofsolid region but intersects S URF. Because of Criterion 2,
CCW NEC (V 9) is proven in a similar way.this intersection must be exactly one line segment or one

2. If T 91 , (LS (V) > LS (V 9)) as shown in Fig. 24b,point. The scalar data along L is negative at both ends and
there eixsts a vertical line L1 passing through the non-is neutral at one line segment or one point between two
vertex points on (T 91 > DISK (V)) such that L1 does notslices. This means that S URF would need to curve back
intersect with any contour segment. Hence L1 has twoat L. Thus there exists a vertical line L1 very close to L such
intersections with solid regions on both slices. Besides, L1that L1 intersects S URF twice. This violates Criterion 2.
has one intersection with S URF because it passes throughSo L must intersect at least one solid region.
T1 . This also contradicts Lemma 2. In the case of T 92 ,Suppose L intersects two solid regions. We can apply

the same argument to the complement (dual) of the solid
to contradict this assumption. So L must intersect exactly
one solid region. n

Proof of Lemma 2. N 5 1 ⇒ M 5 1 (Lemma 1). If
M 5 1, then the scalar data at the intersection end of L
is positive, and that of the other end is negative. This
implies that there is a zero crossing (intersection) in be-
tween. So M 5 1 ⇒ N 5 1, thus M 5 1 ⇔ N 5 1. Lemma
2.2 is proved by inverting both sides of Lemma 2.1. n

Proof of Lemma 3. As shown in Fig. 23, c1 and c2 are
two contour segments on different slices. Suppose c 91 FIG. 24. Shadow regions represent solid regions. Both figures are

used in the proof of Theorem 2.crosses c2 at p9, then DISK ( p9) is divided into R1 , R2 , R3 ,
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FIG. 27. The projections of two slice chords T1 and T2 cross each
other at point P.

FIG. 25. nV1V2V3 is a tiling triangle. V1V2 is a contour segment, and
V3 is on the adjacent slice. one solid region (Lemma 1). Hence P1 and P 91 have oppo-

site orientations. The same argument applies to P2 [ (t3 >
DISK (V2)). Furthermore P1 and P2 have opposite orienta-

(RS (V) > RS (V 9)) as shown in Fig. 24b, L2 has no inter- tions because P1 [ I (C) and P2 [ O (C). Hence P 91 and
ection with solid regions on both slices but one intersection P 92 have opposite orientations. The radius of DISK is
with S URF. This contradicts Lemma 2. n arbitrary small, so P 91 and P 92 have the same orientations

as V 91 and V 92 , respectively. Hence V 91 and V 91 have oppositeProof of Theorem 3. Referring to Fig. 25, suppose V1
orientations. This implies that there is a contour inter-is not an overlapping vertex and V 91 has a CW NEC. From
secting V 91V 92 . Thus there is at least one overlapping vertexDefinition 6, the solid region is on LS (V1V2). Because
in V 91V 92 . However, there cannot be any overlapping vertexNEC (V 91) is CW, there is no solid region within
on T2 , otherwise T intersects the vertical slice chord inci-DISK (V 91). Suppose V 93 [ RS (V1V2) and let P be any
dent with this overlapping vertex (Theorem 1), and thuspoint in I (nV 91V 92V3) > DISK (V 91). The vertical line pass-
violates the polyhedron surface. ning through P doesn’t intersect any solid region of the slice

containing V1 and V2 because P9 [ RS (V1V2). Further- Proof of Theorem 5. 1. Let T 91 and T 92 cross each other
more, it does not intersect any solid region of the other at P (see Fig. 27). P and P9 should not be on any contour,
slice either because P [ DISK (V 91), but does have one otherwise at least one of T1 and T2 will violate Theorem
intersection with nV1V2V3 . This violates Lemma 2. So 4, T 91 and T 92 divide DISK (P) into four regions. Similar
Case 1 is proved. Case 2 is proven in a similar way. n to the proof of Lemma 3, we can have one region R that

any vertical line passing through R has two intersectionsProof of Theorem 4. This is proved by contradiction.
with S URF. However, this violates Criterion 2.Suppose T 9 > I (C) ? f and T 9 > O (C) ? f. T 9 has

2. If T1 crosses T2 (in 3D), their point intersection is notthree ordered sections t1 , t2 and t3 as shown in Fig. 26 such
a contour vertex. Then the tiling triangle containing T1 andthat t1 , I (C), t2 , C, t3 , O (C), and t1 < t2 < t3 is a
T2 intersect at a nonvertex. Thus it violates the polyhedronline segment. Note, t2 could be a line segment or a point,
surface property. nand both t1 and t3 are line segments. Suppose C is on slice

S1, and the adjacent slice is denoted S2 and let V1 and V2 Proof of Lemma 4. The solid is on only one side of
be the two endpoints of t2 , and V1 is closer to t1 . (In the the surface represented by polygon ViVjUlUk of Fig. 9. So
case that t2 is a point, V1 and V2 are the same point.) Let the solid is on the same side of ViVj and UlUk . This implies
L1 be a vertical line passing through P1 [ (t1 > i 2 j 5 k 2 l 5 1 or 21. n
DISK (V1)). L1 does not intersect with any contour, and

Proof of Lemma 5. From Definition 5, there are twoL1 intersects with T , S URF. So L1 must intersect with
cases to form a positive vertex V.

Case 1: V is CCW, and NEC (V 9) is CW.

Case 2: V is CW, and NEC (V 9) is CCW.

In Case 1, T 9 , (S 2 RS (V)) according to Theorem 2.
T 9 , (I (C) < C) because the RS of a CCW vertex is
outside the contour.

In Case 2, T9 , (S 2 LS (P)) according to Theorem 2.
T 9 , (I (C) < C) because the LS of a CW vertex is
outside the contour.

FIG. 26. Used in the proof of Theorem 4. The second part of this lemma is proven similarly. n
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Proof of Theorem 6. Condition 1: It is obvious based
on Theorem 1.

Condition 2: Suppose C1 and C2 are disjoint, and T is
a legal slice chord incident with V1 of C1 and V2 of C2
as shown in Fig. 10a. T 9 , (O (C1) < C1), and T 9 ,
(O (C2) < C2). Hence V1 and V2 are negative vertices
(Lemma 5). Furthermore, there is no contour intersecting
the open line segments (V1 , V 92) or (V 91 , V2) (Theorem 4).
If a contour contains V 91, then V1 is an overlapping vertex

FIG. 28. There exists a path on S URF linking C1 and C2,
and there exists a slice chord V1V 91 (Theorem 1). Also,
there must be three surfaces sharing the contour segment
incident with V1 . One contains V1V 91, one contains V1V2

S URF. If we encounter a contour, then we walk along
and the other is on a solid region, but this violates the

that contour. It either leads to C2, or comes back to L. If
polyhedron surface. Hence no contour contains V 91 . The

it leads to C2, then we are done. If it comes back to L,
same argument applies V 92 . Hence no contour except C1

we again walk along the projection of L on S URF. Because
and C2 intersects V1V 92 or V 91V2 . Thus NEC (V 91) 5

C2 or a contour having an intersection with C 92 is within
NEC (C2) and NEC (V 92) 5 NEC (C1). A vertical line

the (2n)th and (2n 1 1)th crossing of L, we can always
segment L intersecting the open line segment (V1 , V2) reach C2. So there exists a path between C1 to C2.
has one intersection with the solid region based on Lemma

The case of condition 3 is proven in the similar way. n
2. Hence the scalar data at both ends of L must have
different signs. C1 has a different orientation from the
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