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ABSTRACT 
We introduce the contour spectrum, a user interface compo- 
nent that improves qualitative user interaction and provides 
real-time exact quantification in the visualization of isocon- 
tours. The contour spectrum is a signature consisting of a 
variety of scalar data and contour attributes, computed over 
the range of scalar values w E 3. We explore the use of sur- 
face area, volume, and gradient integral of the contour that 
are shown to be univariate B-spline functions of the scalar 
value w for multi-dimensional unstructured triangular grids. 
These quantitative properties are calculated in real-time and 
presented to the user as a collection of signature graphs (plots 
of functions of w) to assist in selecting relevant isovalues wo 
for informative visualization. For time-varying data, these 
quantitative properties can also be computed over time, and 
displayed using a 2D interface, giving the user an overview 
of the time-varying function, and allowing interaction in both 
isovalue and timestep. The effectiveness of the current sys- 
tem and potential extensions are discussed. 

Keywords: Visualization, Scalar Data, User Interfaces, 
Real-time Quantitative Query 

1 Introduction 
Exploratory visualization is an iterative process, with many 
visualization parameters to control. Without effective user- 
interface tools, the visualization user must rely on a-priori 
knowledge about the data of interest in choosing effective 
parameters. Informative and effective visualizations often 
mask the amount of time and effort which was required to 
create such a successful visualization. Recent approaches in 
user interfaces for controlling visualization parameters have 
aspired to provide the user with the tools to more rapidly 
choose parameters which result in an effective visualization. 
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Isocontouring is an example of particular interest with a rela- 
tively simple parameter, the isovalue. Because an isocontour 
effectively shows only a subset of the data, modification of 
the isovalue and interactive display of one or more isocon- 
tours is often necessary to infer global structure of the scalar 
field from the display of contours. With the increasing size of 
typical datasets competing against the improved algorithms 
for computing contours [l, 4, 9, 11, 141, enhanced user in- 
terfaces for assisting in isovalue selection can dramatically 
decrease the cycle from data acquisition to effective visual- 
ization. 

We present a user interface for isocontouring which presents 
the user with a collection of data characteristics to aid in 
the selection of significant isovalues. Characteristics such 
as surface area, volume, and gradient integral are shown to 
be univariate B-spline functions of the scalar value w E % 
and are computed in real time. Presented with overlapping 
signature graphs, the user simply clicks in the scalar value 
dimension to select an isocontour level. Upon selecting an 
isovalue wg, the interface displays the exact values of the 
characteristic measures (limited, of course, by the accuracy 
of the given sampled data), giving immediate quantification. 
For time-varying data, the user may interact in 1D with the 
scalar value dimension, or in 2D with both scalar value (w) 
and time (t) dimensions. In the 2D interface, a single bi- 
variate characteristic function of w and t is displayed as a 
colormap, allowing the user to select significant wo and to 
parameters. Through the display of data characteristics over 
the entire range of w, the user gains a sense of the global 
characteristics of the scalar field, and uses domain-specific 
knowledge to select isocontours of interest. We also suggest 
methods in which the computed metric properties can be used 
to automatically generate a set of significant isovalues ZUO. 

2 Related Work 
Effective visualization interfaces and knowledge-based sys- 
tems are increasingly important for rapidly creating useful vi- 
sualizations from a constantly growing supply of data, which 
is also growing in size and complexity. A related example 
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in scalar field visualization is that of selection of a transfer 
function, or colormap. He et al. introducemanual techniques 
for selecting transfer functions based on selective user refine- 
ment from an initial palette of functions, as well as automated 
techniques based on desired characteristics of the resulting 
images [8]. Characteristics explored include image entropy, 
image variance, and edge content. Bergman et al. developed 
rule-based criteria for selecting colormaps, based the spatial 
frequency of the image and a user specified representation 
task to determine the type of colormap which would most 
effectively present the data [3]. 

In visualization of isocontours, a simple and common ap- 
proach is to select a set of isovalues UJO which are evenly 
spaced throughout the range w of the function. It is clear 
that such a technique is prone to miss features which may 
be considered important. The ability to select wa and view 
isocontours in real-time allows the user to browse the scalar 
field for interesting features, however in the absence of addi- 
tional guidance, the user may only use their prior knowledge 
of what they expect to see in the data, and query for isocon- 
tours in a trial-and-error loop. In the following sections, we 
introduce a user interface which presents the user with quan- 
titative information defined over the entire range of isovalues. 
The interface serves the dual purpose of aiding the interac- 
tive selection of isovalues and providing real-time feedback 
of quantitative information about the selected isocontour. 

3 The Contour Spectrum 
The contour spectrum consists of computed metrics over 
the scalar field. On the basis of such metrics we define a 
set of functions which provide a useful tool to enhance the 
interactive query of the dataset. One primary advantage of the 
the contour spectrum interface is that it allows one to display 
in a 2D image a “global” view of the examined scalar field, 
independent of its dimension. For example, in the display 
of a 3D isosurface, one contour component maybe be hidden 
inside another. If we associate the isocontour display with 
the contour tree (details follow) it becomes immediately clear 
that the current isosurface is composed of two components 
and hence we might need a clipping plane to look inside the 
current isosurface. 

Below we report on several examples of contour measures of 
general utility. Additional measures may be easily defined 
to enhance the approach both in general and for application 
dependent contour features. 

3.1 Isoline Length and Isosurface Area 

In this section we introduce the methodology used for efh- 
cient exact quantitative queries over the scalar field. In partic- 
ular we determine a simple B-spline-based algorithm which 
allows the exact length (area) computation of an isocontour. 
The spline approach makes the computed data suitable for 

direct display in the contour spectrum. 

Given a 2D (3D) scalar field we determine the exact length 
(area) value of any isocontour of height (scalar value) w. 
For unstructured triangular meshes these signature univariate 
functions are B-splines. Splinefunctions are easily displayed 
in the contour spectrum without introducing additional ap- 
proximations (with respect to the given sampled data), and 
at the same time is used to perform interactive quantitative 
queries. The method generalizes to meshes of higher dimen- 
sions, providing a means for analyzing (with the spectrum) 
and interactively perform quantitative queries on datasets 
of any dimension, independently from the ability to display 
them. 

3.1.1 2D Contour Length 

The two-dimensional scalar field case is particularly simple 
and is treated in detail to introduce the general methodology 
which becomes increasingly useful for field dimensions three 
or higher. 

Consider a 2D scalar field composed of triangles ti and ver- 
tices ‘ui such as the terrain in Figure 1. We build (and display) 
the spline function L(w) whose value L(wa) is the length of 
the isocontour of height 200. L(w) can be computed as the 
sum of all the contributions Li(w) given by each cell ci to 
the length of the contours: 

Figure 1: (left) A 2D scalar field displayed as a terrain. (right) 
The portion of an isocontour contained in a single triangle. 

Thus, we can concentrate on the computation of the generic 
term Li (w) associated with the triangle ti, as illustrated 
in Figure 1. Triangle ti has vertices VI, v2 and us with 
height values F(vt) 5 F(v2) 5 IF(q). Given the equation 
f(z,y,w)=Ooftheplanecontainingti,thevalueL~(wa)is 
the length of the intersection between t{ (projection of ti onto 
the mesh space) and the 2D line of equation f( 2, y, wa) = 0 
(see figure 1). As we change the value of wa we obtain the 
measure of all the slices parallel to the line f(z, y, 0) = 0. In 
general it is know from spline theory that given a d-simplex 
in ?Rd the function that gives the measure of all the parallel 
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slices of such simplex (that is the measure of the intersection 
with a set of parallel hyperplanes) is a degree d - 1, CdT2 
continuous, polynomial B-spline function [5]. Scalar fields 
of arbitrary topology meshes can of course be handled by 
first generating simplicial approximation of them. Note that 
in constructing a simplicial approximation for structured and 
convex cell topology meshes, no new data values are needed 
for the scalar field. 

In the 2D case the B-spline is simply a piecewise linear Co 
function. Hence we need only compute the length of the 
segment for w = F(v2) and connect it with the other two 
extremes for which the length is 0. 

Note that the B-spline formulation of the length is also useful 
to automatically handle the eventual degenerate cases. For 
example a portion of the terrain .at height w can be a flat 
parallel to the z, y plane (a lake). In this case there occurs a 
definition problem, in determining the length of an isocontour 
which is partially a l-dimensional curve and partially a 2D 
surface. The natural solution is to remove the flat region to 
regularize the dimension of the contour. The consequence 
is that the function that computes the contour length is only 
C-’ at the height 20. Using the B-spline approach no special 
care must be taken for this case since the knot vectors of 
the flat triangles are .T(vt ) = .T(v~) = F(vs) resulting in 
“valid” splines which shrink to a point (as they should be). 

3.1.2 3D Contour Area 

As already pointed out, the above spline function can be 
computed for simplices of any dimension. For the 3D case 
of a tetrahedron (vt,v2, us, ~4) with scalar function values 
(F(q) 5 F(Q) 5 F(vg) 5 F(Q)) we have a degree 
two, C’ polynamial B-spline (see Figure 2). In this case the 
determination of the control polygon is as follows: 

l First the area L(v2) of the section of height F(Q) is 
computed. 

l A straight line from the point ( T(vl)~F(vz), 0) passes 
through the point (F(Q), L(q)) and continues up to 
the point P of abscissa ~(VZ)~7(w3~. The point P is 
then connected with the point ( ~(“3)~7(V4~, 0) 

Again for each cell we obtain a spline function, as illustrated 
in Figure 2. The sum of the splines associated to each cell is 
a single spline that gives the contour area for any isovalue. 

3.2 Inside Area/Volume Computation 

Once the length/area function of the isocontours is given the 
Area/Volume of the region “below” (“above”) the isocontour 
can be determined by exact integration of the length/area 

Figure 2: Area computation for the continuous range of iso- 
contours contained in a single tetrahedron. 

polynomial B-spline function. This gives as a result a new B- 
spline function in which degree and continuity are increased 
by one. In this way we can easily plot the area/volume spec- 
trum. The case for the 2D contour is illustrated in Figure 3. 

3.3 Gradient Integral 

While length and area are important metrics to report, in many 
cases they are not sufficient to guide the user in choosing ap- 
propriate isovalues. In many situations the user is interested 
in finding and displaying prominent surfaces in the data. To- 
ward this end we have designed a metric which is based on 
the slope or gradient of the function. The difficulty with the 
gradient measure is to define it properly, since along a par- 
ticular contour the gradient of the scalar field is not (usually) 
constant. To compute a consistent (single valued) gradient 
function we resort to the spline decomposition of the contour 
length/area function. For each triangle/tetrahedron of the 
mesh we have a spline function which gives the length of any 
contour within that triangle/tetrahedron. Moreover, by piece- 
wise linear approximation, within each triangle/tetrahedron 
the gradient of the scalar field is constant. Hence to deter- 
mine the contribution to the gradient function of the con- 
tours within a single triangle we just need to multiply the 
length function by the absolute value of the (constant) gra- 
dient. Again the sum of the splines defined in each trian- 
gle/tetrahedron gives a single global spline function which 
defines the gradient integral of any isocontour in the scalar 
field. Figure 4 shows an MFU scan of a human heart. The 
maximum of the gradient (marked function plot on bottom 
figure) corresponds to the isocontour (isocontour on top fig- 
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Figure 3: 2D area computation by integration of the length 
function L(w). The shaded region conesponds to the area 
less than or below the isovalue. The area above the isovalue 
is computed symmetrically. 

ure) bounding the relevant portion of the data. Note how 
the maximum of the contour surface (red function plot) is 
attained for a lower height value of the field. It captures the 
noisy part of the data that has a large contour length due to 
the numerous components. 

3.4 Real Time Quantitative Queries 

The 2D plot of each of the above metrics provides a qual- 
itative understanding of their trend. Once an isocontour is 
selected the user is usually interested in the exact value of 
each of such metrics. This can be accomplished using the 
same B-spline representation. Since the B-spline defined 
above are exact representations of the relative metrics for the 
given piecewise scalar field we only need to search in the knot 
vector for the interval in which the selected isovalue lies and 
evaluate the related portion of spline. This takes, in the worst 
case, 0( log n) (the evaluation can be considered 0( 1)) time 
where n is the number of different scalar values at the mesh 
vertices. Note that for the MRI data we have n = 256. In the 
general case, if n is too large we can apply any error bounded 
reduction scheme to keep n within an acceptable value. In 
such cases we will not get exact but error bounded results. 

Figure 4: Top: MRI cross section of a human torso displaying 
the heart. Bottom: the corresponding contour spectrum with 
isovalue selected at the maximum of the gradient integral. 

3.5 Contour Tree 

While the display of contour metrics is both helpful and infor- 
mative, there is clearly a lack of global structural information 
in the metrics described. For example, there is no indication 
of features such as local maxima and minima of the field. 
For this purpose we introduce the use of the contour tree 
as a tool for assisting the user in interaction with complex 
scalar fields. A contour tree captures the global changes in 
contour topology of the scalar field defined on the input the 
mesh. It has been used before in image processing and GIS 
research [6,7, IO, 12, 13 1. Another name in use is the topo- 
graphic change tree, and it is related to the Reeb graph used 
in Morse Theory [ 131. Note the difference from the topology 
graph [2], which remains embedded in the mesh space and 
hence for 3D meshes is not displayed as a 2D graph. 

Figure 5 shows a 2D scalar field along with its associated 
contour tree. For each edge in the contour tree there is a 
connected component of an isocontour in the scalar field. If, 
while varying the isovalue, two contour components merge 
together we have in the contour tree two edges that join. Sim- 
ilarly, if an isocontour splits in two or more components we 
will have in the contour tree an edge that splits in two or more 
edges. Moreover the comparison between the contour tree 

170 

Proceedings of the 8th IEEE Visualization '97 Conference 
1070-2385/97 $10.00 © 1997 IEEE 



Figure 5: A 2D scalar field (top) with the associated contour 
spectrum with superimposed contour tree (bottom). 

and the spectrum may aid in the selection of interesting con- 
tours. Typically an isovalue that has a contour tree with many 
edges but a relatively small overall contour IengthIareacorre- 
sponds to a noisy region. Symmetrically a single component 
of large length/area correspond to a well defined featured of 
the scalar field. Computation of the contour tree is discussed 
in greater detail in [14]. 

4 User Interface 

The user interface for presenting the contour spectrum takes 
on two forms. For static data, a window presents a selected 
subset of the plots of the computed signature functions. The 
horizontal axis represents the isovalue dimension. The ver- 
tical axis represents the range of each function, all of which 
are normalized for overlapping display. See Figure 6 for an 
example. The user may select a subrange of the isovahres for 
display in order to enhance the local detail in the computed 
metrics. Vertical bars represent the current isovalues, which 
the user may change with a familiar click-and-drag operation. 

With time-varying data, it is desirable that the user have the 
ability to quickly browse all parameters of the visualization. 

In this case we use the vertical dimension of the interface as 
an index into the timestep of the data. Of course, while we 
use time here as an example, other parameters may be varied 
similarly, such as input parameters to a numerical simulation. 
Using this interface, each point in the 2D display maps to a 
number of functions. We selectively display one function at 
a time by pseudocoloring of the function values over the 2D 
grid, as shown in Figure 7. 

5 Rule-based Contouring 

An interesting and promising pursuit is to develop techniques 
which strategicaliy choose a set of key isovahres which con- 
vey the data most clearly. 

An important caveat to rule-based contouring is that users 
familiar with a particular isovalue selection mechanism, such 
as the selection of n evenly spaced isovahres, may easily 
misinterpret the display of a number of contours which are 
irregularly scattered throughout the range of the function. 

The contour spectrum allows the development of an adaptive 
ability to capture the “interesting” features of a dataset. Fig- 
ure 8 shows the scalar field obtained as CT scan of an engine. 
The main component of the engine can be easily determined 
by selecting the maximum of the gradient integral. Of course 
this remains simply an aid in the interactive querying stage of 
the dataset, as the concept of “interesting” feature of a scalar 
field remains highly dependent on the type of dataset we are 
dealing with. 

6 Conclusions 

In addition to increasing user interaction, quantitative inter- 
faces for visualization are a first step to developing the ability 
to automatically select visualization parameters for effective 
visualizations. While certain general isovalue selection tech- 
niques are discussed here, we propose that application spe- 
cific rules for isovalue selection based on metric properties 
be developed. in particular we are exploring the use of 2D 
vector field displays of vector signature functions as well as 
automatic generation of significant parameter values of the 
underlying dataset. 

The measure of visualization effectiveness is the amount of 
insight gained by the user. For automated visualization and 
parameter selection to become viable and effective, it will be 
necessary for visualization users to understand the implica- 
tions of the parameter selection techniques which have been 
applied. 
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Figure 6: Contour Spectrum Interface showing univariate Quantitative Signature functions. 
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Figure 7: Contour Spectrum Interface showing Bivariate Signature functions via color maps. 
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Figure 8: Isocontour of a CTscan of an engine (top) automat- 
ically selected at the isovalue corresponding to the maximum 
of the weighted gradient spectrum (bottom). 
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