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Abstract

For 2D or 3D meshes that represent a continuous function to
the reals, the contours—or isosurfaces—of a specified value
are an important way to visualize it. To find such contours,
a seed set can be used for the starting points from which
the traversal of the contours can start. This paper gives the
first methods to obtain seed sets that are provably small in
size. They are based on a variant of the contour tree (or
topographic change tree). We give a new, simple algorithm
to compute such a tree in regular and irregular meshes that
requires O(nlog n} time in 2D for meshes with n elements,
and in O(n?) time in higher dimensions. The additional
storage overhead is proportial to the maximum size of any
contour (linear in the worst case, but typically less). Given
the contour tree, a minimum size seed set can be computed
in polynomial time and storage. Since in practice at most
linear storage is allowed, we develop a simple approximation
algorithm giving a seed set of size at most twice the size of
the minimum. It requires O(n log® n} time in 2D and O(n?)
time otherwise, and requires linear storage. We also give
experimental results, showing the size of the seed sets and
supporting the claim that sublinear storage is used.

1 introduction

Scalar data defined over the plane or 3-space is quite com-
mon in fields like medical imaging, scientific visualization,
and geographic information systems. Such data can be visu-
alized after interpolation by showing one or more contours
or isosurfaces: the sets of points having a specified scalar
value. For example, scalar data over the plane are used to
model elevation in the landscape, and a contour is just an
isoline of elevation. In atmospheric pressure modelling, a
contour is a surface in the atmosphere where the air pres-
sure is constant, an isobar. In medical imaging, isosurfaces
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are used to show reconstructed scans of the brain or parts of
the body. The scalar data can be seen as a sample of some
real-valued function, which is called a terrain or elevation
model in GIS, and a scalar field in imaging.

A real-valued function over 2D or 3D can be represented
in a computer using a 2D or 3D mesh, which can be regular
(all cells have the same size and shape) or irregular. A ter-
rain (mountain landscape) in GIS is commonly represented
by regular square grid or an irregular triangulation. The
elements of the grid, or vertices of the triangulation, have
a scalar function value associated to them. The function
value of non-vertex points in the 2D mesh can be obtained
by interpolation. An easy form of interpolation for irregu-
lar triangulations is linear interpolation over each triangle.
The resuiting model is known as the TIN model for terrains
(Triangulated Irregular Network) in GIS. In computational
geometry, it is known as a polyhedral terrain. In this paper
we will consider the interpolation issues only as long as may
they affect the isocontour computation. In particular in Sec-
tion 2 we will state briefly the properties we assume for the
interpolating function (satisfied by the most commonly used
linear interpolation over simplicial complexes or multi-linear
interpolation over regular grids). More on interpolation of
spatial data and references to the literature can be found in
the book by Watson [24].

One can expect that the complexity of the contours with
a single function value in a mesh with n elements is roughly
proportional to /7 in the 2D case and to n?/? in the 3D case
[15]. Therefore, it is worthwhile to have a search structure
to find the mesh elements through which the contours pass.
This will be more efficient than retrieving the contours of a
single function value by inspecting all mesh elements.

There are basically two approaches to find the contours
more efficiently. Firstly, one could store the 2D or 3D do-
main of the mesh in a hierarchical structure and associate
the minimum and maximum occurring scalar values at the
subdomains to prune the search. For example, octrees have
been used this way for regular 3D meshes [25].

The second approach is to store the scalar range, also
called span, of all the mesh elements in a search structure.
Kd-trees [15], segment trees [3], and interval trees [5, 23]
have been suggested as the search structure, leading to a
contour retrieval time of O(y/n + k) or O(log n + k), where
n is the number of mesh elements and k is the size of the
output. A problem with this approach is that the search
structure can be a serious storage overhead, even though
an interval tree needs only linear storage. Still, one doesn’t
want to store a tree with a few hundred million intervals
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that would arise from regular 3D meshes. [t is possible to
reduce the storage requirements of the search structures by
observing that a whole contour can be traced directly in
the mesh if one mesh element through which the contour
passes is known. Such a starting element of the mesh is also
called a seed. Instead of storing the scalar range of all mesh
elements, we need only store the scalar range of the seeds
as intervals in the tree, and a pointer into the mesh. There
are a few papers that take this approach [3, 13, 23]. The
tracing algorithms to extract a contour have been developed
before, and they require time linear in the size of the output
[2, 12, 13].

The objective of this paper is to present new methods
for seed set computation. Of a seed set, we require that any
possible connected component of any contour in the mesh
pass through at least one seed. Otherwise we could miss
a (portion of a) contour. To construct such a small size
seed set, we use a variation of the contour tree, a tree that
captures the contour topology of the function represented by
the mesh. It has been used before in image processing and
GIS research [9, 10, 14, 21, 22]. Another name in use is the
topographic change tree, and it is related to the Reeb graph
used in Morse Theory [18, 19, 20, 22]. It can be computed
in O(nlog n) time for piecewise linear functions over 2D [6].

This paper includes the following results.

s We give a new, simple algorithm that constructs the
contour tree. For 2D meshes with n elements, it runs
in O(n log n) time like a previous algorithm [6], but the
new method is much simpler and needs less additional
storage. For meshes with n faces in d-space, it runs in
O(n?) time. In typical cases, less than linear tempo-
rary storage is needed during the construction, which
is important in practice. Also, the higher-dimensional
algorithm requires subquadratic time in typical cases.

We show that the contour tree is the appropriate struc-
ture to use when selecting seed sets. We give a poly-
nomial time and storage algorithm for minimum size
seed sets by using min-cost flow in a DAG [1].

In practice one can use at most linear storage when
computing seed sets. We give a simple approxima-
tion algorithm that requires O(nlog® n) time and lin-
ear storage, and gives at most twice as many seeds as
the minimum size seed set. In d-space, the algorithm
takes O(n?) time.

The approximation algorithm has been implementated,
and we supply test results of various kind.

Previous methods to find small size seed sets didn’t give any
guarantee on their size [3, 13, 23].

2 Preliminaries on scalar functions and the contour tree

On a function F from d-space to the reals, the criticali-
ties can be identified. These are the local maxima, the lo-
cal minima, and the saddles (or passes). If we consider all
contours of a specific function value, we have a collection
of lower-dimensional regions in d-space (typically, (d — 1)-
dimensional surfaces of arbitrary topology). If we let the
function value take on the values from +oco to —oo, a num-
ber of things may happen to the contours. Contour shapes
deform continuously, with changes in topology only when a
criticality is met (i.e., its function value is passed). A new
contour component starts to form whenever the function
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value is equivalent to a locally maximal value of F. An ex-
isting contour component disappears whenever the function
value is equivalent to a locally minimal value.

At saddle points, various different things can happen. It
may be that two (or more) contour components adjoin, or
one contour component splits into two (or more} compo-
nents, or that a contour component gets a different topo-
logical structure (e.g., from a sphere to a torus in 3D). The
changes that can occur have been documented well in texts
on Morse theory or differential topology [11, 16]. They can
be described by a structure called the contour tree, which
we describe shortly.

For example, consider 2D triangular meshes with linear
interpolation and note how the contour tree relates to such
meshes. For simplicity, we assume that all vertices have a
distinct function value. If we draw the contours of all critical
vertices of the mesh, then we get a subdivision of the 2D
domain into regions (see Figure 1). Since all saddle points
must be vertices in our setting, one can show that every
region between contours is bounded by exactly two contours.
We let every contour in this subdivision correspond to a
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Figure 1: 2D triangular mesh with the contours of the sad-
dles, and the contour tree.

node in a graph, and two nodes are connected (from max
to min) if there is a region bounded by their corresponding
contours. This graph is a tree, which is easy to show [6,
23], and it is called the contour tree. All nodes in the tree
have degree 1 (corresponding to local extrema), degree 2
(normal vertices), or at least 3 (saddles). In other words,
every contour of a saddle vertex splits the domain into at
least three regions. For each vertex in the triangulation, one
can test locally whether it is a saddle. This is the case if
and only if it has neighboring vertices around it that are
higher, lower, higher, and lower, in cyclic order around it.
If one would take the approach outlined above to construct
the contour tree, 2(n?) time may be necessary in the worst
case, because the total complexity of all contours through
saddles may be quadratic [6]. An O(nlogn) time divide-
and-conquer algorithm exists, however [6].

In a general framework, we define the contour tree with-
out assumptions on the type of mesh, interpolant, and di-
mension of the space over which function F is defined. The
input data is assumed to be:

e a mesh M of size n embedded in R%;

e a continuous real-valued function F defined over all

cells of M.

We define the contour tree 7 as follows.



o Take each maximal connected contour component which

contains a criticality.

These components correspond to the supernodes of
T (the tree will be augmented later with additional
nodes, hence we use the term supernodes here). Each
supernode is labeled with the function value of its con-
tour.

For each region bounded by two contour components,
we add a superarc between the corresponding supern-
odes in 7, oriented from the the higher to the lower
function value.

The contour tree is well defined, because each region is
bounded by two and only two contour components which
correspond to supernodes. In fact, it is easy to see that the
contour tree is a special case of the more general Reeb graph
in the (d + 1)-dimensional space obtained from the domain
(the mesh) extended with the function image space [18, 19,
20, 22). Furthermore, one can show that the contour tree is
indeed a tree.

For 2D meshes, all criticalities correspond to supernodes
of degree 1, or degree 3 or higher. For higher-dimensional
meshes there are also criticalities that correspond to a super-
node of degree 2. This occurs for instance in 3D when the
genus of a surface changes, for instance when the surface of
a ball changes topologically to a torus (Figure 2(b)).

Superarcs are directed from higher scalar values to lower
scalar values. Thus, supernodes corresponding to the local
maxima are the sources and the supernodes corresponding
to the local minima are the sinks.

Since the type of the mesh and the function used to inter-
polate the associated discrete data may have some impact
on the the seed cells selection and contour tree computa-
tion we define the weakest conditions required to apply the
present approach. Note that such conditions are satisfied
by the most common simplicial decompositions with linear
interpolant and regular grids with multi-linear interpolant.

To be able to compute the contour tree, we make the
following assumptions:

e Inside any face of any dimension of M, all criticalities
and their function values can be determined.

o Inside any face of any dimension of M, the range (min, maz)

of the function values taken inside the face can be de-
termined.

We assume that in facets and edges of 2D meshes, the items
above can be computed in O(1) time. For vertices, we as-
sume that the first item takes time linear in its degree. Sim-
ilarly, in 3D meshes we assume that both items take O(1) to
compute in cells and on facets, and time linear in the degree
on edges and at vertices.

In 3D, a saddle point p is a point such that for any suf-
ficiently small e-sphere around p, the contour of p’s value
intersects the e-sphere in at least two components. Possible
criticalities are shown in Figure 2. When sweeping the func-
tion value from oo to —co, they correspond to (a) two con-
tours merging or splitting, but not containing the other,
(b) an increment or decrement of the genus of one contour
surface, and {c) two contours merging or splitting, and one
containing the other. More cases can occur when a criti-
cality causes several of these changes at once, or when the
contour ends at the boundary of the mesh.
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Figure 2: Citicalities in 3D.

3 Contour tree algorithms

In this section we assume for simplicity that the mesh M is
a simplicial decomposition with n cells, and linear interpola-
tion is used. As a consequence, all critical points are vertices
of the mesh M. Instead of computing the contour tree as
defined in the previous section, we compute a variation that
includes nodes for all the vertices of M, alsoc the non-critical
ones. So supernodes correspond to critical vertices and nor-
mal nodes correspond to other vertices. Superarcs are now
sequences of arcs, and connect two supernodes. It is easy to
determine the contour tree with only the supernodes using
the same technique. From now on, we call the contour tree
with nodes for all vertices the contour tree 7. We’ll need
this augmented tree for seed selection in the next section.

The critical nodes of 7 that have in-degree 1 and out-
degree greater than 1 are called bifurcations, and the nodes
with in-degree greater than 1 and out-degree 1 are called
junctions. We’ll assume that all bifurcations and junctions
have degree exactly 3, that is, out-degree 2 for bifurcations
and in-degree 2 for junctions. This assumption can be re-
moved, but it facilitates the following descriptions consider-
ably. Basically, other critical nodes can be seen as clusters
of critical nodes of degree 3. For example, a node with in-
degree 2 and out-degree 2 can be treated as a junction and
a bifurcation, with a directed arc from the junction to the
bifurcation.

3.1 The general approach

To construct the contour tree T for a given mesh in d-space,
we let the function value take on the values from +oo to
—oo and we keep track of the contours for these values. In
other words, we sweep the scalar value. For 2D meshes, one
can image sweeping a polyhedral terrain embedded in 3D
and moving down a horizontal plane. The sweep stops at
certain event points: the vertices of the mesh. During the
sweep, we keep track of the contour components in the mesh
at the value of the sweep function, and the set of cells of the
mesh that cross these components. The cells that contain
a point with value equivalent to the present function value
are called active. The tree 7 under construction during
the sweep will be growing at the bottom at several places
simultaneously. Each such part of 7 that is still growing
corresponds to a unique contour component at the current
sweep value. We group the cells into contour components
by storing a pointer at each active cell in the mesh to the
corresponding superarc in 7. The contours can only change
structurally at the event points, and the possible changes
are the following:



¢ Atalocal maximum of the mesh (more correctly: func-
tion), a new contour appears. This is reflected in 7 by
creating a new supernode and a new arc incident to it.
This arc is also the start of a new superarc, which will
be represented. Each cell incident to the maximum
becomes active, and we set their pointer to the new
superarc of 7. At this stage of the algorithm, the new
superarc has no lower node attached to it yet.

At a local minimum of the mesh, a contour disappears;
a new supernodenode of T is created, and the arc cor-
responding to the disappearing component at the cur-
rent value of the sweep is attached to the new supern-
ode. It is also the end of a superarc. The cells of
the mesh incident to the local minimum are no longer
active.

At a non-critical vertex of the mesh, a new node of 7
1s created, the arc corresponding to the contour con-
taining the vertex is made incident to the node, and a
new arc incident to the node is created (there is no new
superarc). Some cells stop being active, while others
incident to the vertex start being active. Their point-
ers are set to the current superarc of the contour. For
the cells that remain active, nothing changes: their
pointer keeps pointing to the same superarc.

At a saddle of the mesh, there is some change in topol-
ogy in the collection of contours. It may be that two
or more contours merge into one, one contour splits
into two or more, or one contour changes its topolog-
ical structure. A combination of these is also possible
in general. The first thing to do is to determine what
type of saddle we are dealing with. This can be de-
cided by traversing the whole contour on which the
saddle lies.

If two contours merge, a new supernode (junction) is
created in 7 for the saddle, and the superarcs corre-
sponding to the two merging contours are made inci-
dent to this supernode. Furthermore, a new arc and
superarc are created for the contour that results from
the merge. The new arc is attached to the new su-
pernode. All cells that are active in the contour after
the merge set their pointer to the new superarc in 7.

If a contour splits, then similar actions are taken. If
the saddle is because of a change in topology of one
single contour, a new supernode is made for one exist-
ing superarc, and a new arc and superarc are created
in 7. All active cells of the contour set their pointers
to the new superarc.

For the sweep algorithm, we need an event queue and a
status structure. The event queue can be implemented with
a standard heap structure, such that insertions and extrac-
tions take logarithmic time per operation. The status struc-
ture is implicitly present in the mesh with the additional
pointers from the cells to the superarcs in the contour tree.

Theorem 1 Let M be a mesh tn d-space with n faces in
total, representing a continuous, ptecewise linear function
over the mesh elements. The contour tree of M can be con-
structed in O(n?) time and O(n) storage.

Proof: The algorithm clearly takes time O(nlogn) for all
heap operations. If the mesh is given in an adjacency struc-
ture, then the traversal of any contour takes time linear in
the combinatorial complexity of the contour. Any saddle of
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the function is a vertex, and any contour can pass through
any mesh cell only once. Therefore, the total time for traver-
sal is O(n?) in the worst case, and the same amount of time
is needed for setting the pointers of the active cells. o

The quadratic running time shown above is somewhat
pessimistic, since it applies only when there are a linear
number of saddles for which the contour through them has
linear complexity. We can also state that the running time is
O(nlogn+3_ " |Ci|), where the m saddles lie on contours
Ci,...,Cn with complexities |C1),...,|Cm|. Also, besides
the mesh (input) and the contour tree (output), the addi-
tional storage required can be made linear in the maximum
number of active cells and the number of local maxima. So
this is O([no. maxima] + max;<i<m |C:]) additional storage.
We can avoid the pointers from the mesh cells to the super-
arcs by copying the active part of the mesh into a separate,
temporary structure. Then these pointers don’t form a per-
manent storage overhead.

3.2 The two-dimensional case

In the 2D case, the time bound can be improved to O(nlog n)
time in the worst case by a few simple adaptations. First, a
crucial observation: for 2D meshes representing continuous
functions, all saddles correspond to nodes of degree at least 3
in 7. Hence, at any saddle two or more contours merge, or
one contour splits into at least two contours, or both. The
main idea is to implement a merge in time linear in the size
of the smaller of the two contours, and similarly, to imple-
ment a split in time linear in the size of the smaller resulting
contour. We also show how to maintain the pointers with
the active cells efficiently.

In the structure, each active cell has a pointer to a name
of a contour, and the name has a pointer to the correspond-
ing superarc in 7. Maintaining pointers now comes down
to changing names. We consider the active cells and names
as a union-find like structure that allows the following oper-
ations:

e Merge: given two contours about to merge, combine
them into a single one by renaming them to a single
pame,

e Split: given one contour about to split, split it into
two separate contours by renaming one subset of the
contour cells to a new name.

e Find: given one active cell, report the name of the
contour it is in.

Like in the simplest union-find structure, a Find takes
O(1) time since we have a pointer to the name explicitly. A
Merge is best implemented by changing the name of the cells
in smaller contour to the name of the larger contour. Lets’
say that contour C; and C; are about to merge. Determin-
ing which of them is the smallest takes O(min(|Ci|,|C;|))
time if we traverse both contours simultaneously. We alter-
natingly take one “step” in C; and one “step” in C;. After
a number of steps twice the size of the smaller contour, we
have traversed the whole smaller contour. This technique is
sometimes called a tandem search. To rename for a Merge,
we traverse this smaller contour again and rename the cells
in it, again taking O(min(|C:|,|C,|)) time.

The Split operation is analogous: if a contour Cj splits
into C; and Cj;, the name of Cj is preserved for the largest
of Ci and C;, and by tandem search starting at the saddle in



two opposite directions we find out which of C, and C; will
be the smaller one. This will take O(min(|C;|,|C;])) time.
Note that we cannot keep track of the size in an integer for
each contour instead of doing tandem search, because a Split
cannot be supported efficiently.

Theorem 2 Let M be a mesh in 2D with n faces in to-
tal, representing a continuous, piecewise linear scalar func-
tion. The contour tree of this function can be computed in
O(nlogn) time and linear storage.

Sketch of the proof for the claimed time bound:

o Determining for each vertex of what type it is (min,
max, saddle, normal) takes O(n) in total.

s The operations on the event queue take O(nlogn) in
total.

o Creating the nodes and arcs of 7, and setting the in-
cidence relationships takes O(n) time in total.

¢ When a cell becomes active for the first time, the name
of the contour it belongs to is stored with it; this can
be done on O(1) time, and since there are O(n) such
events, it takes O(n) time in total.

e At the saddles of the mesh, contours merge or split.
Updating the names of the contours stored with the
cells takes O(min(|C:|,|C;|)), where C; and C; are the
contours merging into one, or resulting from a split,
respectively. It remains to show that summing these
costs over all saddles yields a total of O(nlog n) time.

We prove the bound on the summed cost for renaming by
transforming 7 in two steps into another tree 7' for which
the construction is at least as time-expensive as for 7, and
showing that the cost at the saddles in 7' are O(nlogn) in
total.

Consider the cells to be additional segmentsin 7 as fol-
lows. Any cell becomes active at a vertex and stops being
active at another vertex. These vertices are nodes in 7, and
the cell is represented by a segment connecting these nodes.
Note that any segment connects two nodes one of which is
ancestor of the other. A segment can be seen as a shortcut
of a directed path in 7, where it may pass over several nodes
and supernodes.

The number of cells involved in a merge or split at a
saddle is equivalent to the number segments that pass over
the saddle node in 7'; the size of the smallest set at this node
determines the costs for processing the saddle (since we do
tandem search).

The first transformation step is to stretch all segments;
we simply assume that a segment starts at some source node
that is an ancestor of the original start node, and ends at
a sink that is a descendant of the original end node. It is
easy to see that the number passing segments at all saddles
cannot decrease by the stretch.

The second transformation step is to repeatedly swap
superarcs, until no supernode arising from a split (bifurca-
tion) is an ancestor of a supernode arising from a merge
(junction). Swapping a superarc from a bifurcation to a
junction is illustrated in Figure 4; the integers a,b, ¢ rep-
resent the number of segments passing over the superarcs
shown. Before the swap, the time spent in the merge at u
and the split at v, is O(min(ae,b) + min(b, c)) where a,b, ¢
denote the number of segments passing these superarcs. Af-
ter the swap, this becomes O{min(a,& + ¢) + min(a + &, c)),
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Figure 3: Stretching two segments (dashed) in 7.

Figure 4: Swapping a superarc.

which is at least as much. No segment ends, because all of
them were stretched.

It can easily be verified that by repeatedly swapping su-
perarcs, 7' can be derived such that no junction in 7' has
a bifurcation as an ancestor.

Now, every segment can pass O(n) junctions and bifur-
cations, but no segment can be more than O(logn) times
in the smallest set. Summing this over the O(n) segments,
this results in a total of O(nlog n) time for all renaming of
the cells.

4 Seed set selection

A seed set is a subset of the cells (triangles or tetrahedra)
the mesh. A seed set is complete if every possible contour
passes through at least one seed. Since we assume linear
interpolation over the cells, the function values occurring in
one cell is exactly the range between the lowest and the high-
est valued vertices. This range is simply a one-dimensional
interval, and is also called the span. For each cell, its span
can be located in the contour tree, where it is represented
by two nodes. We add the span to the contour tree as a
directed arc, which we call a segment to distinguish it from
the arcs of the contour tree. Let 7 denote the contour tree,
and let G denote the DAG that is the contour tree extended
with the segments of all mesh elements. Observe that each
segment is a shortcut in 7 for one or more arcs on a directed



path. We say that the segment passes, or covers, these arcs
of T (see Figure 4.1(a)). The small seed set problem now
is the following graph problem: find a small subset of the
segments such that each arc of 7 is passed by some segment
of the subset.

In this section we give two methods to obtain complete
seed sets. The first gives a seed set of minimum size, but it
requires polynomial time and storage. The second method
requires O(n log® ) time and linear storage in 2D, and gives
a seed set at most twice the size of the minimum. In d-space,
this approximation algorithm takes O(n?) time and linear
storage.

4.1 Minimum seed sets in polynomial time and storage

We define a bipartite graph B = (U UV, A) as follows. The
set U of nodes corresponds to the set of segments of the
mesh cells, and the set V corresponds to the set of arcs of
7. An arc (u,v) € A if the segment corresponding tou € U
passes the arc corresponding to v € V {{see Figure 4.1(b))).
A complete seed set corresponds to a subset of U that dom-
inates all nodes in V, that is, each node in V should have
a neighbor in the chosen subset. The smallest cardinality
subset U’ C U corresponds to a minimum seed set. The
graph B can have a number of arcs quadratic in the size of

g.

{a) (b)

Figure 5: (2} A DAG G with the segments shown dashed.
(b} The bipartite graph B assiciated with G.

Observe that B is strongly chordal: every cycle of even
length exceeding 5 has an odd chord. This is for the fol-
lowing reason. Since the nodes in U represent segments in
G, and three segments in G cannot have pairwise overlap of
an arc in 7 (or G) without having a triple overlap as well,
every cycle of even length exceeding 5 has a node in U and
in V that are connected but aren’t in the cycle (a chord).
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We can augment B by turning U into a clique; B remains
strongly chordal. A minimum dominating clique on strongly
chordal graphs can be computed in linear time, because the
same result holds for the superclass of dually chordal graphs
(4, 8]. This gives a minimum seed set.

Theorem 3 Given a contour tree T for a continuous func-
tion defined by a mesh with n cells, an optimum size seed
set can be computed in polynomial time and storage.

4.2 Approximation of small seed sets in linear storage

The excessive time and storage requirements for optimal
seed sets makes it nearly useless in practical applications.
We therefore developed an approximation algorithm to com-
pute a seed set using linear storage and O(nlog? %) time in
the 2D case. It yields a seed set of size no more than twice
the size of the smallest seed set. In higher dimensions, the
running time is O(n?).

Our approximation algorithm is a simple greedy method
that operates quite similarly to the contour tree construc-
tion algorithm. We first construct the contour tree 7 as
shown before. We add the segments to form the graph G.
Then we sweep again, now in the mesh and in the graph ¢
simultaneously. During the sweep, greedy choices are made
in the set of segments in G; these segments correspond to
cells that will be seeds. The greedily chosen segments are
stored in a data structure D that allows for insertions of
newly chosen segments and for queries. A query specifies a
node v of 7, and asks whether some chosen segment in D
ends at v, and whether v is passed by some chosen segment
in D. The segments are grouped by superarc they pass as
usual, corresponding to cells intersected by the same con-
tour. To make the greedy choice at any superarc, we store
all active segments at a superarc sorted by function value of
the lower node of G in a binary search tree. The following
events can occur:

¢ Source: Choose the segment leaving it with the lowest
value at the other end node, the greedy choice. Initial-
ize a set of active segments for this superarc of 7.

¢ Normal node: Update the currently active segments.

Query with the node in D to decide if any chosen seg-
ment passes it. If not, it must be the end node of a
chosen segment. Choose a new segment greedily and

add it to D.
e Sink: Remove the group of active segments.

¢ Junction: Update the active segments, merge the two
groups of active segments into one, and merge the cor-
responding two binary search trees.

Query with the node as for a normal node.

e Bifurcation: Split the group of active segments into
two, and update them.

For each highest node v below the bifurcation, test
by querying in D if any chosen segment ends at it or
passes it. If neither is true, choose a segment active
at the bifurcation and into this superarc greedily. Add
the chosen segments (zero or more) to D.

Lemma 1 The greedy strategy has an approzrimation factor
of 2.



We give a sketch of the proof. Note that if 7 only contains
junctions, then a greedy strategy is optimal. At a bifur-
cation, some segment leading into one superarc may be the
chosen one, whereas the greedy choice for the other superarc
would have been optimal. We can bound the number of seg-
ments chosen by the greedy strategy from above by assuming
that for both superarcs the greedy choice was taken. Then
we continue on both parts of the tree below these superarcs
in the same way. We can bound the minimum number from
below by assuming that only one segment was taken, and
we continue the argument on the same two subtrees as in
the greedy algorithm. So the subtrees are the same, and the
greedy method chooses at most twice minimum.

We treat junctions and bifurcations efficiently as before,
by tandem search in the contours on the mesh. We can tra-
verse in time linear in the size of the smaller group to decide
how to merge or split the segments efficiently. A merge or
split of components C: and C; takes O(min(|C:|, |C;})log n)
time, because it involves merging two binary search trees, or
splitting one. So we need O(n log® n) time for manipulating
the binary search trees.

To define the data structure D, we first need a transfor-
mation of 7 and its segments. Give T some fixed, left-to-
right order of the children and parents of each supernode.
Then perform a left-to-right topological sort to number all
nodes. Then perform a right-to-left topological sort to give
each node a second number. The numbers are such that

(9,11) split line

(8,10)

(10,9)

(7.8)
(6,7) {11,4)
(2,6) (5,3) left /
(1,5) (4,2) envelope
(3,1) (dotted)

Figure 6: Left, the numbering of 7. Right, the left envelope
of the rectangles intersecting a split line.

one node u is an ancestor of another node v if and only if
the first number and the second number of u is smaller than
the corresponding numbers of v (see Figure 6). These num-
bers can be seen as coordinates in the plane. Any segment
from a start node u to an end node v in 7 transforms to a
rectangle by using the numbers as coordinates. The lower
left corner of the rectangle has the coordinates of v, and the
upper right corner has the coordinates of u. The greedily
chosen segments are stored as such rectangles in the data
structure D. A query with a node of T asks if the point is
contained in some rectangle; this corresponds to some cho-
sen segment passing the node. D is an interval tree with
associated structures [17}. The main tree is defined on the
intervals of the first coordinate. Each node stores a vertical
split ine and two segment trees, one for query points to the
left of the split line and one for query points to the right. We
store the rectangles that intersect the vertical split line in
the left segment tree by storing the left envelope of the rect-
angles only (see Figure 6). This segment tree requires only
linear storage, and queries and insertions take logarithmic
time. For the whole interval tree with associated structures,
the storage is still linear, the query time is O(log® n) and
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insertions take O(logn) time. The number of queries and
insertions is linear in the number of nodes in the contour
tree. Therefore, all operations on D also take O(nlog® n)
time together. More details are in the full paper.

Theorem 4 Let M be a 2D mesh with n cells representing a
real function. A seed set of size at most twice the optimum
can be determined in O(nlog? n) time and linear storage.
For a mesh in d-space, the running time is O(n®).

5 Test results

In this section we present empirical results for generation
of seed sets within bounds of optimality. Given in Table 1
are results collected from six datasets, both 2d and 3d. Pre-
sented are the total number of cells in the mesh, in addi-
tion to seed extraction statistics and comparisons to previ-
ously known efficient approximation methods. The methods
presented here, shown to be within a factor of 2 of opti-
mal, represent an improvement of 2 to 20 times over the
method of [3], which had no claim on the seed set size. The
presented storage statistics account only for the number of
stored items, and not the size of each storage item (a con-
stant). Note that the bounded seed set method presented
here has, in general, greater storage demands, though stor-
age remains sublinear in practice. Such tradeoffs are consid-
ered acceptable for the benefit of seed sets within guaranteed
bounds of optimality. Sample images from the test function
and LAMP datasets are given in the Appendix.

6 Further research

This paper presented the first methods to obtain seed sets
for contour retrieval that are provably small in size. We gave
a polynomial time and storage algorithm to determine the
smallest seed set, and we also gave a factor two approxima-
tion algorithm that takes O(n log® n) time for functions over
2D and O(n?) time for functions over 3D. In typical cases,
the worst case quadratic time bound seems too pessimistic.
The algorithms make use of new methods to compute the
so-called contour tree.

Test results indicate that seed sets resulting from the
methods described improve on previous methods by greater
than an order of magnitude in seed set size for some cases.
Storage requirements in the seed set computation remain
sublinear, as evidenced by the test results.

Our work can be extended in the following directions.
Firstly, it may be possible to give worst case subquadratic
time algorithms for higher-dimensional meshes. Secondly,
it is important to study what properties an interpolation
scheme on the mesh should have to allow for efficient contour
tree construction and seed set selection. We are currently
studying these extensions.
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Data total | #seeds | storage | time (s) #seeds by storage | time (s)
cells method of [3] | req of [3]
Heart 65025 5631 30651 32.68 12214 255 0.87
Function 3969 80 664 1.23 230 63 0.15
Bullet 20000 8 964 2.74 47 1000 0.30
LAMP 3d || 19040 172 9267 6.82 576 1360 0.33
LAMP 2d || 2720 73 473 0.69 n/a n/a n/a
Terrain 95911 188 2078 13.67 n/a n/a n/a

Table 1: Seed cell statistics for regular (top) and irregular (bottom) data
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(b)
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Figure 7: Seed sets from 2d scalar data
{a) seed set from a synthetic smooth function

{b} seed set for a slice of wind speed data (LAMP)
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