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Abstract

Creating acomputer model from an existing part isacommon problemin Reverse Engineering. The part might be
scanned with adevicelike thelaser range scanner, or points might be measured on its surface with amechanical probe.
Sometimes, not only the spatial location of points, but also some associated physical property can be measured. The
problem of automatically reconstructing from this data a topologically consistent and geometrically accurate model
of the object and of the sampled scalar field is the subject of this paper.

Thealgorithm proposed in this paper can deal with connected, orientable manifol ds of unrestricted topological type,
given a sufficiently dense and uniform sampling of the object’s surface. It is capable of automatically reconstructing
both the model and a scalar field over its surface. It usesDelaunay triangulations, Voronoi diagrams and alpha-shapes
for efficiency of computation and theoretical soundness. It generates arepresentation of the surfaceand thefield based
on Bernstein-Bézier polynomial implicit patches (A-patches), that are guaranteed to be smooth and single-sheeted.

1 Introduction

Computer Aided Design (CAD) and Engineering (CAE) are being extensively used in all the phases of the manufac-
turing process. However, creatinga CAD model of an existing part still requires an extremely time-consuming manual
data-entry process.

L arge scal e reverse-engineering processes are nowadays commonpl ace inthemanufacturingindustry. For example,
a company that manufactures mechanical parts might have on stock parts for which a CAD mode is not available. In
designing new parts, the company would liketo use one of the existing partsas a base model, and try toimproveit. As
another exampl e, imagine that an experiment was conducted on a prototype and data was measured at scattered points
on itssurface. For example, ajet engine was operated in variable conditionsin a wind tunnel, and the temperature at
pointson its surface sampled over time.

Several types of sensors are available to scan a 3D object and measure the location of points on its surface.
Mechanical probes, used in the manufacturing industry, are extremely accurate but slow to use. Laser range scanners
can measure the location of a large number of pointsin a relatively short time. Recent models are aso capable of
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capturing the RGB components of the color of the surface at each sample point. Less accurate (and cheaper) hand-held
devices, based on ultrasound or magnetic fields, are also being marketed. When the geometry of the scanned object
issimple, for example flat or cylindric, the points are organized into a rectangular grid, and a complete, unambiguous
model of the object is readily available. However, except for such particularly simple shapes, the scanning process
must be repeated from different points of view, and the results merged together [47]. In other cases, for example
scattered measurements with a digitizing stylus, thereis no ordering in the data.

The problem of reconstructing atopologically consistent and geometrically accurate CAD model of the object and
of the sampled physica propertiesfrom the scanned data pointsis the subject of thisresearch. The approach one might
take in solving this problem depends heavily on the assumptions that can be made about the sampled object and the
data itself. For example, the object might be assumed to be smooth or instead containing creases and corners. The
sampling might be very dense and uniform, or rather sparse.

Last-generation devices are capable of measuring 10* ~ 10° points per second, with a resolution of 10~* inches.
The problem is therefore not that of inferring a reasonable shape from a set of sparse points on the object’s surface,
but rather that of providing a compact, usable, accurate and topologically consistent representation of the object from
adense sampling of its surface.

Our research has focused on reconstruction agorithms based on piecewise algebraic surfaces [6, 5, 15]. An
algebraic surface [46] is defined as the two-dimensional agebraic variety expressed by the equation f(z,y, z) = 0,
where f isapolynomial. A piecewise agebraic surface is a collection of surface patches, pieced together with some
degree of derivative continuity. Each patchisan algebraic surface with afinite extent, usually given by abounding box
or tetrahedron. Piecewise algebraic surfaces of low degree have many attractive qualities, from the closure properties
with respect to important modeling operations such as intersection and blending, to a high design flexibility for a
relatively low algebraic degree [4]. In our reconstruction agorithm, we use barycentric Bernstein-Bézier patches that
satisfy certain smoothness conditions (A-patches, see [7]). We consider the following reconstruction problem:

Let an unorganized collection of points P = {(z;, v, z;)} C R® and associated valuesV = {v;} C R,
i=1,...,n, begiven. The points P are assumed to be sampled from adomain D in R? (the boundary
of athree-dimensiona object, that is a two-manifold without boundary) whilethe values V' are assumed
sampled from some scalar function F' on the domain D.

Construct a C'* smooth piecewise-polynomia surface SP : P (z,y, z) = 0 and aC* smooth piecewise
polynomial function (function-on-surface) ST : f¥ (z,y, z) on some domain that contains S¥ such that,
fori=1,...,n:

1P (zgy e, 2)| < €2,
2. | (i vy 25) — vi] < €F,

where e and ¥ are user-defined approximation parameters.

2 Related work

Reconstructing the domain surface SP from unorganized pointsin R® isafundamental problemin CAD and computer
vision. Techniques for piecewise-linear reconstruction from unorganized points are described in [42, 17, 18, 48, 34,
47, 20]. The reconstructed triangle mesh can be used as a starting point for a successive parametric or subdivision
surface fitting, asin [33, 24, 35].

Inthis paper we construct aC'! smooth domain surface SP using piecewise cubic, implicit Bézier patches (the zero
contour of aC* trivariate piecewise Bézier function). Theseimplicit Bézier patches are guaranteed to be single-sheeted
within each tetrahedron. Related prior work includes[2, 7, 8, 21, 22, 31, 32, 39, 37]. The surface fitting paper of [36]
issimilar to oursin that it only assumes a sufficiently dense set of input data points but differs from our approach in
the adaptive nature of refinement, in time efficiency, and in the degree of the implicit surface patches used. Paper [36]
uses an octree-like subdivision scheme and triquadratic (degree six) tensor product implicit surface patches with a
Powel|-Sabin-type split to achieve C* continuity. The Powell-Sabin split produces 64 pieces per cube. Our scheme
effectively utilizestheincremental Delaunay triangul ationfor amoreadaptivefit, thedual Voronoi diagram for efficient
point location in signed distance computations and degree three implicit surface patches. Furthermore, at the same
timeit also computes a C** smooth approximation S of the sampled scalar function.



If the surface S is given, the problem of constructing the scalar function S is known as function interpolation
on a surface, and arises in several application areas, for, eg., in modeling and visualizing the rainfall on the earth,
the pressure on the wing of an airplane, or the temperature on a human body. Note that the trivariate scalar function
S¥ isatwo dimensional surface in R*, since itsdomain isthe two dimensiona surface SP (and not al of R®). The
problem is relatively recent and was posed as an open question by Barnhill [10]. A number of methods have been
developed since then for dealing with the problem (for surveys see [11, 30, 41, 38]). Most of the solutionsinterpolate
scattered dataover planar or spherical domain surfaces. In [13] and [39], thedomain surfaceis generalized to aconvex
surface and atopol ogi cal genus zero surface, respectively. Pottmann [43] presentsa C! method which does not possess
similar restrictions on the domain surface but requires it to be at least C? differentiable. In [12] the C? restriction
is dropped, however, the interpolation surface is constructed by transfinite interpolation using nonpolynomias. A
similar nonpolynomial transfinite interpolant construction is used in [40], while in [45] at least C* is required for
interpolation. Bajaj and Xu [9] present a C? scheme using quintic polynomials to reconstruct the scalar field defined
on a smooth curved domain with the restriction that a boundary triangulation of the domain surface does not admit
coplanar adjacent faces.

3 Overview of thealgorithm

Our method is based on constructing an approximation of the zero-contour of the signed-distance function defined by
the (unknown) domain. We estimate the signed-distance and construct atrivariate approximant of it. The approximant
is piecewise polynomia, and is defined over a tetrahedralization of the space that is incrementally and adaptively
refined until the error conditions are satisfied.

The algorithm consists of the following three phases:

1. Build an approximation of the signed-distance function (see Section 4). The signed distance of a point p
from aclosed, orientable manifold D, is defined as the Euclidean distance from p to the closest point on D, with
apositivesignif p liesoutside D, and a negative sign otherwise.

We preprocess the datato define an approximate signed distance §(p), and then approximate é(p) by apiecewise
polynomial. This step can be seen as transforming the problem from a surface-data reconstruction to a volume-
dataapproximation. Noticethat this, and it requires a consi stent reconstruction of the surface orientation at each
point (see also [14, 15]). We have adopted a technique based on «-shapes [27], to define the signed-distance
function 6(p). Alternative approaches are described in [36, 34].

2. Approximate the signed-distance (and field) by piecewise polynomial functions (see Section 5). Build, in
an adaptive fashion, a piecewise polynomia approximation f2(z,y, z) of §(p). The piecewise polynomial
is built by least squares fitting of trivariate polynomials, in a 3D triangulation of a domain containing P, to
the data points within each tetrahedron and to additiona samples of the signed-distance function é defined in
phase 1 above. If the error-of-fit in a tetrahedron exceeds the given bounds, then the triangulation is locally
refined and the process is repeated in each new tetrahedron. The reconstructed domain is implicitly defined as
P (z,y,2) = 0.

Concurrently to the approximation of the signed-distance function, a piecewise polynomia approximation of
the scalar field can be computed in asimilar fashion, by least squares fitting of the scalar field data.

Barycentric Bernstein-Bézier algebraic patches of degree three are used for the datafitting.

3. Make the reconstructed surface C'-smooth (see Section 6). The surface is smoothed by applying normal
averaging and a three-dimensional Clough-Tocher type of split.

Our approach has the following characteristics:

1. Unrestricted topological genus. Our method can reconstruct arbitrary objects without prior knowledge of their
genus.

2. Approximation of the data. Since the data set is noisy and usually very dense, attempting to interpolate all
data pointswould |ead to inefficiency and to an unnecessarily large number of patches. We approximatethe data
within user-defined bounds.



3. Adaptiveness. Many objects have localized, small-scale features and large, flat or constant-curvature areas.
Thereforeit isconvenient to be able to use patches of different sizein different areas of the object’s surface. Our
algorithm can approximate large dense data setswith arelatively small number of patches.

4. Tangent-plane continuity. Often smooth objects can be modeled quite accurately with surface patches joining
so that first-order derivatives across the common boundary are continuous. The present approach cannot
automatically handle objectswith mixed continuity (i.e., objects whose surface is formed by smooth regions that
joinat acrisp edge or corner). Thiswill be the subject of futureinvestigation (see [16, 15]).

5. Reconstruction of a field over the surface. Our algorithm can reconstruct a C'*-continuous function, defined
over the object’s surface, that approximates a scalar field sampled at the data points.

4 Phase 1. Preprocessing and the Signed-Distance Function

The first step of our agorithm consists in preprocessing the data points so that an approximate signed-distance is
computable for any given query point ¢. Answering the question of whether a point lies inside or outside the
domain surface requires a globally correct orientation of the surface. This problem raises fundamental questions
on the possihility of reconstructing a shape from a set of points: What are sufficient conditions on the sampling to
guarantee a faithful reconstruction of the shape? Isit possible to avoid ambiguities in interpreting the data? What
additional informations (e.g. topological genus, smoothness, festures) are needed? In our agorithm, we use «-solids
(aregularized version of «-shapes [27]) to build an initial, piecewise-linear approximations of the unknown shape.
This approximation will be used to classify points as either interior or exterior (i.e., to decide a sign for the signed
distance function) as well as for computing an approximate distance of a point from the surface. The associated data
structures will aso be helpful in achieving efficiency in severa required geometric algorithms.

The a-shape of a set of pointsis a subcomplex of its Delaunay triangulation. Basically the a-shape, for a suitable
value of the parameter «, contains only edges, triangles and tetrahedra that connect pointsthat are closeto each other.
Long edges and large triangl es and tetrahedra have alarge associated size, so they become part of the «-shape only for
large values of «. The a-solid isthe subset of tetrahedra contained inside connected shells of «-shape triangles (more
detailsin Section 4.4).

When the sampling is suitably dense, it is not difficult to find a value of « such that the corresponding «-solid
closely approximates the boundary of the object. In fact, sampling density conditionsthat guarantee a homeomorphic
and error bounded reconstruction can be formally proved [14]. Also, weighted points can be used to take into account
a non-uniform sampling of the unknown manifold. We have devised an effective scheme for the automatic selection
of an optimal «-value, the extraction of the correspondent «-solid, and a heuristic to locally improve the ¢-solid w.r.t.
to the sample points[15].

Before describing the actual signed-distance computation, we briefly review some concepts and results from
Computational Geometry used in the algorithm. The style of this presentation isinformal. The reader can refer to the
papers in the references for more details.

4.1 Delaunay Triangulations

Given aset P of pointsin R® a tetrahedralization 7 of the convex hull of P, that is, a partition of conv(P) into
tetrahedra, can be builtin such away that the circumscribing sphere of each tetrahedron = does not contain any other
point of P than its vertices. Such a tetrahedralization is caled a (three-dimensional) Delaunay triangulation and,
under nondegeneracy assumptions (no three pointson aline, etc.) it isunique. Many different techniques have been
proposed for the computation of Delaunay triangulations (see [25, 44]). For our purposes, an incremental approach is
particularly well suited, asit can be used in both the preprocessing phase and the incremental refining of the adaptive
triangulation used as support for the piecewise polynomial s (see Section 5).

The agorithmwe useistherandomized, incremental, flipping-based al gorithm described in [28]. At the beginning
thetriangulationisinitialized as a single tetrahedron, with vertices “at infinity”, that contains all pointsof P. At each
step a point from P isinserted as a new vertex in the triangulation, the tetrahedron in which p liesis split into four
tetrahedra and the Delaunay property is reestablished by “flipping” tetrahedra. This algorithm uses a data structure,
called thehistory DAG, that maintainsthe collection of discarded tetrahedra. The DAG isused tolocatethetetrahedron
in which the point to be inserted lies. When atetrahedron is split or groups of tetrahedra are flipped, they become



internal nodes of the DAG while the newly created tetrahedra become their children in the DAG. To locate a point,
one starts at theroot of the DAG (the single tetrahedron of the initial triangulation) and followslinks down to aleaf.

The Delaunay triangulation of a set of n pointsin R can be built in O(nlogn + n?) expected time. The second
term in thisexpression is of the same order as the maximum number of possible simplices. In practice, the running
time of the algorithm is usually better than this theoretic bound.

4.2 Voronoi diagrams

Voronoi diagrams [3] are related to Delaunay triangulationsby duality. A Voronoi diagram is a partition of the space
into convex cells. Thereisacell for each point p € P, and the cell of apoint p isthe set of pointsthat are closer to p
than to any other point of P. So, al that has to be doneto answer a closest-point query isto locate the cell the query
point liesin. Efficient point-location data structures can be built on top of the Voronoi diagram. Using the randomized
approach described in [19], the point-location data-structure (called RPO-tree, for Randomized Post Office treg) is
built on top of the Voronoi diagram in O(n2*¢) expected time, for any fixed ¢ > 0, and then the closest-point query is
able to be answered in O(logn) expected time. The data structure requires O(n?*¢) space in the worst case.

In our current implementation, we use asimpler hierarchica space subdivision techniqueto speed-up closest point
queries, and we have found this approach to be efficient in practice, although theoretically suboptimal in the worst
case.

4.3 Alpha-shapes

Given the Delaunay triangulation7 of apoint set P, one can assign to each smplex o € 7 (vertices, edges, triangles
and tetrahedra) a size defined in the followingway. Let ©, be the smallest ball whose boundary contains al vertices
of o. Then the size of & will be defined to be equal totheradiusof ©,,, and o will be said to be conflict-freeif ©, does
not contain any point of P other than the vertices of o.

The subcomplex X, of simpliceso € 7 with either one of the following properties:

(@) Thesizeof o islessthan « and o is conflict-free, or
(b) cisafaceof rand r € 2,

iscalled thea-shape of P. «-Shapes[27] have been extended to higher dimensions and to wei ghted sets of points[26].
a-Shapes can be intuitively thought of as the subcomplex of 7 obtained in the following way: imagine that a ball-
shaped eraser of radius « ismoved in the space, assuming all possible positionssuch that no point of P liesinsidethe
eraser. Theeraser removesall simplicesit can passthrough, but not those whose sizeis smaller than «. The remaining
simplices (together with al their faces) form the «-shape for that val ue of the parameter o (see Figure 4.1). Noticethat
there exists only afinite number of different «-shapes. The collection of al possible «-shapes of P iscalled thefamily

@ (b) (© (d)

FIGURE 4.1: (@) Datapoints(arandom sampling of aCAD object). (b), (c) and (d) Three-dimensional
a-shapes for increasing values of the parameter «. Edges, triangles and tetrahedra are shown in
different shades. (c) corresponds to the «-value selected by our agorithm.
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FIGURE 4.2: (a) Data points (a scattered sampling of a CAD aobject). (b) Automaticaly selected
«-s0lid. (€) a-solid after heuristic improvement.

of a-shapes of P, and can be computed in time proportional to the number of simplicesin 7. We use the «-shape
computation for generating an initia piecewise-linear approximation of the domain surface D.

4.4 Alpha-solids

a-shapes alow us to reason about the “shape” of an unorganized set of pointsin a forma framework. However,
they are not completely well-suited to our purpose, as an a-shape is in general a non-connected polytope of mixed
dimensionality (it can contain tetrahedra as well as triangles, edges and isolated points). We aso need to find avalue
of the parameter o such that the corresponding «-shape 3, is a good approximation of the sampled domain D. We
define an «-solid as follows: It isthe subset of tetrahedra ~ in 7 that either belong to the «-shape, or such that they
are contained in a continuous shell of triangles belonging to the «-shape. In practice, it is quite easy to compute this
“regularized” version of the a-shape: One doesabreadth first search on the dual graph of 7, starting with atetrahedron
o that isknown to be externd (e.g. onethat has avertex at infinity) and continuing with adjacent tetrahedra. When an
adjacent tetrahedron 7 (or the face in common between o and ) belongsto =, 7 ismarked asinterna (negative sign)
and not enqueued. Other tetrahedraare marked as externa (positivesign) and put in a queue for further processing. In
thisway, the positive sign “propagates’ to all tetrahedra that can be reached from infinity without traversing atriangle
belonging to the a-shape. The set of negative tetrahedra constitutes the «-solid.

Obviousdly, for varying vaues of «, one obtains «-solids that range from the empty set to the convex hull of P.
These solids are ordered with respect to «, and form a finite family whose cardinality is polynomia in ||P]|. We
can therefore perform a binary search on possible values of «, looking for the minimum value of « such that the
corresponding a-solid is connected, and such that all the pointsof P either lie onitsboundary or initsinterior. Notice
that we use a condition weaker than requiring al the pointsof P to lie on the boundary of the a-solid, asin practice
this stronger condition is difficult to satisfy, especially in the vicinity of concave sharp features. We instead rely on a
simple postprocessing stage, which incrementally removes tetrahedra from the initial «-solid, and produces a better
approximation as output. More details on thisprocess can be foundin[15]. Figure4.2 showsan automatically selected
a-s0lid, and the same «-solid after improvement.

45 Signed Distance Computation

In the preprocessing phase the Delaunay triangulation 7 of the set of input points P is computed, and then the Voronoi
diagram and the family of «-shapes of P are constructed. During the process, the history DAG (and, optionally, the
RPO-tree) is built to allow a fast location of the tetrahedron (and Voronoi cell) a query point ¢ liesin. Note that all
these data structures are intimately related.

We then perform a binary search to select the best approximating «-solid, apply the improvement heuristic, and
classify all tetrahedraof 7 as either positive (outside the a-solid) or negative (inside the «-solid).



After this preprocessing is done, we can compute the signed distance of apoint ¢ w.r.t. the «-solid as follows:

1. Usethe history DAG to locate the tetrahedron = in which the point g lies. T has been marked as either positive
or negative by the preprocessing described above, and itssign is returned.

2. Find the face (atriangle o) belonging to the boundary of the «-solid that is closest to ¢. Compute the distance
between g and o, and returnit with the sign computed in step 1. We currently use a simpl e space-partitioning data
structure to find the closest face to a given query point. Alternatively, one can use the RPO-tree data structure
to find the closest point p in P, and return ||p — ¢|| (again, with sign) as an approximate distance.

5 Phase2: Incremental Refinement and Approximation

In Phase 2 of the algorithm a three-dimensional Delaunay triangulation 7 isinitialized and incrementally refined, and
piecewise-polynomial functions £ and f¥ are generated. For each tetrahedron 7 € 7 we compute two Bernstein-
Bézier trivariate polynomias 2 and £F, to approximate the part of domain surface and scalar field contained in
T, respectively. The coefficients of the polynomials are computed using the signed-distance function described in
Section 4.5, the sample pointsand the scalar field values.

After computing the two polynomial s, the approximation errors are estimated and, if one or both the errorsare too
large, the current triangulation 7 isrefined until the errors are within the given bounds. The triangul ation refinement
is done by adding at each step a new point to split the tetrahedron with the maximum error, and using theincremental
Delaunay triangulation algorithm to update the triangul ation.

Before describing in further details the computation of the approximating functions, we recall some facts and
terminology related to Bernstein-Bézier trivariate forms.

5.1 Bernstein-Bézier forms

Let p1, p2, p3, pa € R? be affine independent. Then the tetrahedron + with vertices p1, pz, p3, pa, iIST = [p1p2papal.
Foranyp = S5, aupi, @ = (@, aa, a3, as)T, Y5, e = 1 arethebarycentric coordinatesof p. Letp = (z,y, 2)7,
p; = (24,9, 2:)T. The barycentric coordinatesrelate to the Cartesian coordinates via the following relation:

Y L1 X2 T3 L4 (s %1}

Yy _ Y Y2 Ys Ya (23] (5.1)
2 21 22 23 24 a3 ’

1 1 1 1 1 aq

FIGURE 5.1: The splitting of atetrahedron (left) into four sub-tetrahedra (right). Only the weights of
one of the resulting sub-tetrahedra are shown.
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FIGURE 5.2: The layers of Bézier ordinates in a tetrahedron. (left) Three-sided patch. (right)
Four-sided patch.

Any polynomial f(p) of degree n can be expressed as a Bernstein-Bézier (BB) form over  as

f®) = > b Bi(a), A€ Z}
|Al=n

where '
n _ n. AL Az Az A
BY(a) = Malaing ¢ @2 a3 ay
is a Bernstein polynomial, [A| = S22, A with A = (Mg, Az, As, Aa)T, @ = (@, @z, a3, aq)T are the barycentric
coordinates of p W.r.t. 7, by = b, x,x,x, (8sasubscript, we simply write A; AaAz A4 for (Aq, Az, A3, Ae)T) are caled
Bézier ordinates, and 2} standsfor the set of all four dimensional vectors with non-negativeinteger components.
The points
A A A
Pr= o+ pr+ ps 4+ Sipa, [A =1
n n n n
are called the regular pointsof 7. The points (pa, bx) € R* are called Bézier points, and the regular lattice of lines
connecting them Bézier net.

Thefollowinglemmagivesnecessary and sufficient conditionsfor continuity between adjacent polynomial patches:

Lemma5.1 (see[29]). Let f(p) = 32|y, @aBX(e) andg(p) = 32}, baBY(e) betwo polynomialsdefined on
the tetrahedra [p1p2pspa) and [p)p2pspa], respectively. Then

(i) fandg are C° continuous at the common face [pspspa] if and only if

a) = b}\, forall A = 0)\2)\3)\4, |)\| =n (52)

(ii) f and g are C* continuous at the common face [papspa4] if and only if (5.2) holdsand, for all A = 0XzA3)4,
Al =n -1,
bates = B1axye; +B2ax1e, + B30rte, + Baarye, (5.3

where 8 = (81, B2, 53, 34)T are the barycentric coordinates of p’ with respect to [p1pspspa], defined by the
followingrelation

P = B1p1 + Bap2 + Baps + Paps, 18] =1

Relation (5.3) is called the coplanar condition.

A-patches are guaranteed to be single-sheeted when the conditions described in two followinglemmas are satisfied.
In particular, A-patches can be classified as three-sided when a segment connecting a vertex of the tetrahedron to a
point on the oppositeface intersectsthe patch a most once, and four-sided when the same property holdsfor asegment
connecting two points on two opposite edges.



Lemmab.2 Let 7 = [pipapspa). Theregular pointsof = can be thought of as organized in triangular layers, that we
can number from 0 to n going from p; to the opposite face [papspa] (see Figure 5.2). If the Bézier ordinates are all
positive (negative) on layers 0, ...,k — 1 and all negative (positive) on layersk + 1,...,n (0 < k < n), then the
patch is single-sheeted (i.e., any line throughp; and p € [papspa] intersects the patch only once).

Lemmab5.3 Let 7 = [p1p2pspa]. Theregular pointsof = can be thought of as organized in quadrilateral layers, that
we can number from0 to n going from edge [p1p2] to the oppositeedge [psp4] (see Figure 5.2). If the Bézier ordinates
are all positive (negative) on layers o0, ...,k — 1 and all negative (positive) on layersk + 1,...,n (0 < k& < n), then
the patch is single-sheeted (i.e., any linethrough p € [p1p2] and g € [psp4] intersects the patch only once).

IntheLemmas above, the Bézier ordinatesonlayer k can haveany sign. Patches satisfyingthe conditionsof Lemma5.2
will be called three-sided; those satisfying the conditions of Lemma 5.3 will be called four-sided. See [7] for proofs
and further details.

The following two lemmas are used in Section 6.

Lemma5.4 (see[31]). If f(p) = >2)5 =, baBY(a), then

1
b(n—l)e1+ej = bnel + ;(p] - Pz)TVf(Pz)a
fori,7 =1,2,3,4; j # ¢, where
€; = (61762763764)76i = 17€j = 07] 7£ .
Lemmab.5 Let f(p) = F(a) = X252, baBY(a) where a are the barycentric coordinates of p. For any given
pointsp(1) and p(?), let «(1) and «(?) be their barycentric coordinates. Then
V)" " - p?)
= VF(a)T (M - a®)
= n Y bi(e® - a®)Br (o)

|Al=n—-1

where
Bh(a® — a®) = 3 by Bl - o)
lul=1

Thefirst equality of thelemma can be easily proved applying equation (5.1). The second equality can befoundin[29].

5.2 Outlineof thelncremental Approximation Phase
We are now ready to present in details the steps required to compute the approximant functions f2 and f¥.
1. Buildan initial bounding tetrahedron v, such that P C 7. St 7 = {r}. Mark  as new.

2. For each new tetrahedron r € 7, compute the signed-distance at all itsregular pointsp, . If thevaluesof é(p,),
|6| = n, do not satisfy either Lemma 5.2 or Lemma 5.3, then set domain and field errors 92 = 9F = oo.
Otherwise, compute local approximants f2 and f for the domain surface D and scalar field F asfollows:

o) = Y BN, (5.4)
|Al=n

Fp) = Y B« (55)
|Al=n

The coefficients b2 are computed by first interpol ating the computed val ues of the signed-distance function:

P(2)=6m), [M=n (5.6)



The tetrahedron r is then split into four sub-tetrahedra 7, . . ., 74 (See Figure 5.1) by joining the barycenter of
7 with its four vertices (73 is the sub-tetrahedron opposite to vertex pi). The regular points on the faces of
the sub-tetrahedra coincide with those of the original tetrahedron r. For these points we use the coefficients
computed from (5.6). Noticethat on the shared face of two adjacent tetrahedrathese coefficients will coincide,
as fP, restricted to that face, interpolates the signed distance at a number of points equal to the number of
its coefficients. All interior coefficients (atota of 15) of the sub-tetrahedra are computed by solving the least
squares problem

P (p) =0, pEPNTLE=1,...,4
(5.7)

f}z(p)\)z(s(pk), |)\|:n,)\k7$0,k:1,...,4

where we use the values of the signed-distance at regular points (of each sub-tetrahedron ) in addition to the
data points contained in 7. The signed-distance data helps in avoiding multiple sheets in the approximating
patch.

For the scalar field approximant we compute a least squares approximation of the field values at data points
within r:
fF)=v, mePnr (5.8)

Notice that the field approximant is not globally continuous. Continuity will be achieved by averaging and
interpolating val ues of the approximant at the vertices of 7 in a subsequent phase, described in Section 6.

. If the coefficients computed in the step above do not satisfy the conditionsof either Lemma 5.2 or Lemma 5.3,
sat 9P = 9F = oo. Otherwise, compute the approximation error for both functions:

D _ \/E:I1 Z:zrneprmc ffi (pi)?

197'
I[Pl
EpmePrw (ff(pl) - vi)z
9F =
7 I[Pl

(if TN P =0, thenset 92 = 0 and 9" = 0), and keep track of the following two quantities:

D _ D

dgr = max{dr} (5.9
F _ F

9o = rTneaTx{ﬂT 1 (5.10)

. 1f both 92, < P and 9%, < £F then the agorithm stops the incremental refinement phase and begins the
smoothing phase. Otherwise, either o' or o’ is selected for further refinement (according to a user-definable
strategy, e.g., dways choose ¢’ first, assigning priority to the surface, or choose the one with the largest error.
The circumcenter ¢ of the selected tetrahedron is computed and added to the set of vertices of the triangulation,
g isinserted in 7 and 7 is updated with splits and flippings to accommodate the new vertex and restore the
Delaunay property (adding the center of the circumscribing sphere generally yields good aspect ratio tetrahedra
in the find triangulation [23]). At the same time the subset P N 7 of points that lie within each modified
tetrahedron 7 is updated. Thisis done by considering the points originally within the modified simplex, and
reclassifying them with respect to the splitting/fli pping planes.

Then mark all split/flipped tetrahedra as old and all newly created ones as new and go back to step 2.

6 Phase3: Smoothing

Thefunctions f2 (p) and f¥ (p) computedin phase 2 of thealgorithmare not G'* continuous. To achieve C* continuity,
we apply asubdivision scheme to thetetrahedraof 7, and compute C'*-smooth Bernstein-Bézier patches on therefined
triangulation.

We base our trivariate scheme on the n-dimensional Clough-Tocher scheme given by Worsey and Farin [49, 29].

In this scheme, for each vertex in the original triangulation an average of the values of the functions f and f¥ and

10



FIGURE 6.1: Clough-Tocher 12-way split. From left to right: Cubic, quadratic, linear and constant shells.

their gradients, for all incident patches iscomputed. The surface approximant isalready C°, so only the gradient needs
to be averaged. In addition, the average gradient at the middle point of each edge is computed. Each tetrahedron is
then splitinto 12 subtetrahedra by inserting the incenter of each tetrahedron and a point on each face (the point on the
face shared by two adjacent tetrahedra must be collinear with their incenters [49]), and joining these points with the
origina vertices. A cubic trivariate polynomial is built on each subtetrahedron. The coefficients of the 12 resulting
patches are computed based on the value of the function at each vertex, the average gradient at vertices and midedge
points, and the continuity constraints. The resulting patches are C' and interpolate the averaged values and gradient
of the functions.

We call the outer faces of the tetrahedron a cubic shell. If we ped off the cubic shell, we are left with a
quadratic shell. If we repeat this peeling what remainsis alinear shell and at the end a center point (see Figure 6.1).
The coefficients of the cubic trivariate interpolant are determined in this manner, from the outer shell to the center.
Coefficients numbered 0 are set equal to the value of the function at the corresponding vertex. Coefficients number 1
are computed from the value of the function and of the gradient at the adjacent number 0 vertex, using Lemma 5.4.
Coefficients number 2 are computed from the average gradient at the middle point of the corresponding edge, using
Lemma 5.5. All other coefficients are computed using Lemma 5.1 and the continuity constraint.

Another trivariate Clough-Tocher scheme (see [1]) splits each tetrahedron into four subtetrahedra. However the
interpolants in each subtetrahedron are now of quintic degree and furthermore require C? data at the vertices of the
main tetrahedron. Since our dataat the vertices of the tetrahedral mesh comes from the averaging of locally computed
low-degree approximants, the higher-order derivativestend to be unreliable in general. We therefore prefer to use the
lower degree cubic scheme that uses only first order derivatives at the vertices. An alternative approach to build aC?
interpolant with cubic patches isdescribed in [9].

7 Implementation and Results

Some results are summarized in Table 7.1, and the reconstructed models are shown in Figures 7.1, 7.2 and 7.3.
Figures 7.3 (c) and 7.3 (d) also show the reconstructed scalar field. We can visualize the graph of the reconstructed
function f¥ on the domain surface fP either by projecting its iso-contours onto the surface £, or by directly
displaying the surface graph of the function ¥ as a height map over the domain. Such visualization schemes based
on central or normal projectionsare well known and details can be found for examplein [39, 43, 9].

We have implemented all steps of the reconstruction algorithmin C++, using Open Inventor for visualization, and
X/Moatif for the graphical interface. The front-end of the reconstruction toolkit is shown in Figure 7.4.
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FIGURE 7.1: (&) and (b) Reconstruction from points extracted via marching cubes from CT data (CT
scan courtesy of the Visible Human Project, National Library of Medicine). (a) Reconstruction of
the lower part of the femur. The wireframe shows the tetrahedral mesh that acts as support for the
A-patches. Different shades are used to highlight the subdivision of the surface into patches. (b)
Reconstruction of the four knee bones. (¢) Reconstruction of a high-genus object (data courtesy of

Jorg Peters, Purdue University).
(b) (©

FIGURE 7.2: Reconstruction from range data. (a) Automatically selected «-solid. (b) Smooth recon-
struction after 100 refinement steps (233 patches) (c) Smooth reconstruction after 500 refinement
steps (735 patches). Data courtesy of Stanford University Computer Graphics Laboratory.
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FIGURE 7.3: Visudization of a reconstructed jet engine and an associated scalar field: (a) Data
points. (b) Reconstructed domain. (c) Iso-pressure contours of a pressure field displayed on the
surface of thejet engine. (d) The reconstructed engine surface and visualization of the pressurefield
on the jet engine using the normal projection method.

Number | Alpha-Solid | Number of || Fitting | Number of | Error
Object of Points Time | Triangles Time Patches
Femur 9807 15 19610 19 672 | < 1%
Tibia 9200 14 18396 17 516 | < 1%
Fibula 8146 11 16288 17 536 | < 1%
Patella 2050 0.3 4096 8.1 269 | < 1%
3 Tori 10833 22 21692 25 812 | < 1%
Jet Engine 9800 14 18121 16 382 | < 1%
Bunny 15134 25 36545 31 535 | < 1%

TABLE 7.1: Results of the reconstruction algorithm. The table shows for each object, from left to
right: (1) The number of pointsin the sampling; (2) The time, in minutes, required by the «-solid
computation (including 3D Deaunay triangulation, computation of family of «-shapes, automatic
selection of « vaue, improvement by loca sculpturing). All computations were carried out on a
SGI Indigo2, with a250MHz MIPS 4400 CPU; (3) The number of trianglesin the boundary of the
a-s0lid; (4) The time, in minutes, required by the fitting phase; (5) The number of patches in the
smooth reconstruction; (6) The error, as percentage of the diameter of the object.
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FIGURE 7.4: Graphical User Interface of the surface reconstruction application. The picture shows
an intermediate step of the incremental approximation phase.
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