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1. INTRODUCTION

Low degree real algebraic surfaces (quadrics, cubics, and quartics) play a
significant role in constructing accurate computer models of physical ob-
jects and environments for simulation and prototyping [Bajaj 1993]. While
quadrics such as spheres, cones, hyperboloids, and paraboloids prove
sufficient for constructing restricted classes of models, cubic algebraic
surface patches are sufficient to model the boundary of objects with
arbitrary topology in a C1 piecewise smooth manner [Bajaj et al. 1995].

Real cubic algebraic surfaces are the real zeros of a polynomial equation
f( x, y, z) 5 0 of degree three. In this representation the cubic surface is
said to be in implicit form. The irreducible cubic surface, which is not a
cylinder or cone of a nonsingular cubic curve, can alternatively be described
explicitly by rational functions of parameters u and v:

x 5
f1~u, v!

f4~u, v!
, y 5

f2~u, v!

f4~u, v!
, z 5

f3~u, v!

f4~u, v!
, (1)

where fi, i 5 1 . . . 4 are polynomials. In this case the cubic surface is said
to be in rational parametric form.

Real cubic algebraic surfaces thus possess dual implicit-parametric rep-
resentations, and this property proves important for the efficiency of a
number of geometric modeling and computer graphics display operations
[Bajaj 1993]. For example, with dual available representations the intersec-
tion of two surfaces or surface patches reduces simply to the sampling of an
algebraic curve in the planar parameter domain [Bajaj 1988]. Similarly,
point-surface patch incidence classification, a prerequisite for boolean set
operations and ray casting for graphics display, is greatly simplified when
both the implicit and parametric representations are available [Bajaj
1988]. Additional examples in the computer graphics domain that benefit
from dual implicit-parametric representations are the rapid triangulation
for curved surface display [Bajaj and Royappa 1994] and image texture
mapping on curved surface patches [Foley et al. 1993].

Deriving the rational parametric form from the implicit representation of
algebraic surfaces is known as rational parametrization. Algorithms for the
rational parametrization of cubic algebraic surfaces have been given in
Abhyankar and Bajaj [1987b] and Sederberg and Snively [1987], based on
the classical theory of skew straight lines and rational curves on the cubic
surface [Blythe 1905; Henderson 1911; Segre 1942]. Finite rational param-
etrizations, possibly in Bernstein-Bézier or B-spline bases, also provide
dual representations useful in computer aided geometric design applica-
tions [Bajaj and Royappa 1995; Farin 1993; Lodha and Warren 1992]. One
of our main results is to constructively address the parametrization of cubic
surfaces based on the reality of the straight lines on the real cubic surface.
In doing so, we provide an algorithm to construct all 27 straight lines (real
and complex) on the real nonsingular cubic surface. Given a pair of real
skew lines on the cubic surface, one can easily generate a rational biqua-
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dratic Bézier representation for cubic surface patches [Lodha and Warren
1992]. We demonstrate this in the subsequent section.

A singular cubic surface f( x, y, z) 5 0 is one on which there exists a
point p such that ¹f(p) 5 0; a nonsingular cubic surface is one with no such
points. We prove that the parametrizations of the real cubic surface
components are constructed using a pair of real skew lines for the three
families that have them, and, remarkably, using a complex conjugate pair
of skew lines, in a fourth family. In each of these four families, the
components ( x, y, z) are given as the quotient of a quartic and a cubic
polynomial in two parameters. There does not appear to be a similar
rational parametrization for the fifth family that covers all or almost all of
the surface, so we use two disjoint parametrizations that involve one
square root each instead. A rational parametrization is described in Seder-
berg and Snively [1987], but that covering is in general two-to-one instead
of one-to-one. All of the parametrizations described in this paper are
one-to-one, meaning that for any point on the cubic surface there can be
just one set of values (u, v) that gives rise to that point.

We also analyze the image of the derived rational parametrization for
both real and complex parameter values, together with “base” points where
the parametrizations are ill-defined. These base points cause a finite
number (at most five) of lines and points, and possibly two conic sections
lying on the surface, to be missed by the parametrizations. One of these
conics can be attained by letting u 3 6` and the other separately with
v 3 6`.

2. PRELIMINARIES

One of the gems of classical algebraic geometry is the theorem that 27
distinct straight lines lie completely on a nonsingular cubic surface [Sal-
mon 1914], see Figure 1. Schläfli’s double-six notation elegantly captures
the complicated and manyfold symmetry of the configurations of the 27
lines [Schläfli 1963]. He also partitions all nonsingular cubic surfaces
f( x, y, z) 5 0 into five families F1, . . . , F5 based on the reality of the 27
lines. Family F1 contains 27 real straight lines, family F2 contains 15 real
lines, and family F3 contains 7 real lines, while families F4 and F5 contain
3 real lines each. What distinguishes F4 from F5 is that while 6 of the 12
conjugate complex line pairs of F4 are skew (and 6 pairs are coplanar), each
of the 12 conjugate pairs of complex line pairs of F5 is coplanar. When a
nonsingular cubic surface F tends to a singular cubic surface G with an
isolated double point, 12 of F ’s straight lines (constituting a double six)
tend to 6 lines through the double point of G [Segre 1942]. Hence singular
cubic surfaces have only 21 distinct straight lines.

Alternatively, a classification of cubic surfaces can be obtained from
computing all “base” points of its parametric representation,

x 5
f1~u, v!

f4~u, v!
, y 5

f2~u, v!

f4~u, v!
, z 5

f3~u, v!

f4~u, v!
.
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Base points of a surface parametrization are those isolated parameter
values that simultaneously satisfy f1 5 f2 5 f3 5 f4 5 0. It is known that
any nonsingular cubic surface can be expressed as a rational parametric
cubic with 6 base points. The classification of nonsingular real cubic
surfaces then follows:

(1) If all 6 base points are real, then all 27 lines are real, i.e., the F1 case.
(2) If 2 of the base points are a complex conjugate pair, then 15 of the

straight lines are real, i.e., the F2 case.
(3) If 4 of the base points are 2 complex conjugate pairs, then 7 of the

straight lines are real, i.e., the F3 case.
(4) If all base points are complex, then 3 of the straight lines are real. In

this case the 3 real lines are all coplanar, i.e., the F4 and F5 cases.

3. REAL AND RATIONAL POINTS ON CUBIC SURFACES

We first begin by computing a simple real point (with a predefined bit
precision) on a given real cubic surface f( x, y, z) 5 0. For reasons of exact
calculation with bounded precision, it is obviously very desirable that the
simple point have rational coordinates. Mordell [1969] in his book mentions
that no method is known for determining whether rational points exist on a
general cubic surface f( x, y, z) 5 0, or for finding all of them if any exist.
We are unaware that a general criterion or method now exists or whether
Mordell’s conjecture, given below, has been resolved.

The following theorems and conjecture show the difficulty of this prob-
lem.

THEOREM [Mordell 1969, ch. 11]. All rational points on a cubic surface
can be found if it contains two lines whose equations are defined by

Fig. 1. A configuration of twenty-seven real lines of a cubic surface shown with and without
the surface. Intersections of the coplanar straight lines are also shown.
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conjugate numbers of a quadratic field, and in particular by rational
numbers.

THEOREM [Mordell 1969, ch. 11]. The general cubic equation (irreducible
cubic and not a function of two independent variables nor a homogeneous
polynomial in linear functions of its variables) has either none or an infinity
of rational solutions.

CONJECTURE [Mordell 1969, ch. 11]. The cubic equation F(X, Y, Z,
W) 5 0 is solvable if and only if the congruence F(X, Y, Z, W) [ 0 (mod
pr) is solvable for all primes p and integers r . 0 with (X, Y, Z, W, p) 5 1.

We present a straightforward search procedure to determine a real point
on f( x, y, z) 5 0, and if lucky, one with rational coordinates. First,
homogenize the cubic polynomial with a new variable w, so that we have
the homogeneous cubic F(w, x, y, z) 5 0. Set each of {w, x, y, z} in turn to
zero to obtain a homogeneous cubic. For z 5 0, for example, we obtain
F3(w, x, y), representing the component at infinity in the z direction.
Recursively determine if F3(w, x, y) 5 0 has a real/rational point (other
than (0, 0, 0)). Being homogeneous, one only needs to check for F3(w, x,
1) 5 0 and F3(w, x, 0) 5 0, which are both polynomials in one less
variable, and hence the recursion is in dimension. Now for a univariate
polynomial equation g( x) 5 0, we use the technique of Loos [1983] to
determine the existence and coordinates of a rational root. If not, one
computes a real root having the desired bit precision [Canny 1987; Jenkins
and Traub 1970].

Additionally, if no rational points are found for F(w, x, y, z) 5 0 when
any one of {w, x, y, z} is zero, we search for an extreme real/rational point
on a closed component of the surface. We can compute the resultant and
linear subresultants of f and fx (extreme points in the x direction),
eliminating x to yield new polynomials f1( ỹ, z̃) and x̃f2( ỹ, z̃) 1 f3( ỹ, z̃),
where x̃, ỹ, and z̃ are linearly related to x, y, and z (see Bajaj [1990] for
details of this computation). One then computes the rational points of
f1( ỹ, z̃) 5 0 and uses the equation x̃f2( ỹ, z̃) 1 f3( ỹ, z̃) 5 0 to determine
the rational x̃ coordinate, given rational ỹ and z̃ coordinates of the point, if
rational ỹ, z̃ satisfying f1( ỹ, z̃) 5 0 are found and x̃, ỹ, and z̃ are rationally
linearly related to x, y, and z. Otherwise, one computes a real point with
the desired bit precision. The variables x, y, and z may of course be
permuted throughout these operations, and are easily recovered from x̃, ỹ,
and z̃.

In the general case, we are forced to take a real simple point on the cubic
surface. We can bound the required precision of this real simple point so
that comparisons between algebraic numbers (or the signs of algebraic
numbers) in the cubic surface parametrization algorithm (of the next
section) are performed correctly. The lower bound of this value can be
estimated using bit approximations and the gap theorem in Canny [1987].
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4. ALGEBRAIC REDUCTION

Given two skew lines

11~u! 5 3 x1~u!

y1~u!

z1~u!
4

and

l2~v! 5 3 x2~v!

y2~v!

z2~v!
4

on the cubic surface f( x, y, z) 5 0, the cubic parametrization formula for a
point p(u, v) on the surface is

p~u, v! 5 3 x~u, v!

y~u, v!

z~u, v!
4 5

al1 1 bl2

a 1 b
5

a~u, v!l1~u! 1 b~u, v!l2~v!

a~u, v! 1 b~u, v!
(2)

where

a 5 a~u, v! 5 ¹f~l2~v!! z @l1~u! 2 l2~v!#

b 5 b~u, v! 5 ¹f~l1~u!! z @l1~u! 2 l2~v!#.

The total degree of the numerator of the parametrization formula in {u, v}
is 4, while the denominator total degree is 3. Note that if the lines are
coplanar, Formula (2) can only produce points on the plane of the lines,
hence the search for skew lines on the cubic surface. Similar parameter
representations from skew lines on cubic surfaces for Bernstein-Bézier
polynomial representations are given in Lodha and Warren [1992].

Following the notation of Abhyankar and Bajaj [1987b], a real cubic
surface has an implicit representation of the form

f~ x, y, z! 5 Ax3 1 By3 1 Cz3 1 Dx2y 1 Ex2z 1 Fxy2

1 Gy2z 1 Hxz2 1 Iyz2 1 Jxyz 1 Kx2 1 Ly2

1 Mz2 1 Nxy 1 Oxz 1 Pyz 1 Qx 1 Ry 1 Sz 1 T 5 0.

Compute a simple (nonsingular) point ( x0, y0, z0) on the surface. We can
move the simple point to the origin by a translation x 5 x9 1 x0, y 5 y9 1
y0, z 5 z9 1 z0, producing f9( x9, y9, z9) 5 Q9x9 1 R9y9 1 S9z9 1 . . .
terms of higher degree. Next, we wish to rotate the tangent plane to f( x9,
y9, z9) at the origin to the plane z0 5 0. This can be done by the
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transformation

x9 5 x0, y9 5 y0, z9 5 ~ z0 2 Q9x0 2 R9y0!/S9 if S9 Þ 0

x9 5 x0, y9 5 ~ z0 2 Q9x0!/R9, z9 5 y0 if S9 5 0 and R Þ 0

x9 5 z0/Q9, y9 5 x0, z9 5 y0 if S9 5 0, R9 5 0, and Q9 Þ 0.

Fortunately Q9, R9, and S9 cannot all be zero, because then the selected
point ( x0, y0, z0) would be a singular point on the cubic surface.

The transformed surface can be put in the form

f0~ x0, y0, z0! 5 z0 1 @ f2~ x0, y0! 1 f1~ x0, y0! z0 1 f0z02#

1 @ g3~ x0, y0! 1 g2~ x0, y0! z0 1 g1~ x0, y0! z02 1 g0z03#,

where fj( x0, y0) and gj( x0, y0) are terms of degree j in x0 and y0. In general,
this surface intersects the tangent plane z0 5 0 in a cubic curve with a
double point at the origin (as its lowest degree terms are quadratic). This
curve can be rationally parametrized as

x0 5 K~t! 5 2
L0t2 1 N0t 1 K0

B0t3 1 F0t2 1 D0t 1 A0

y0 5 L~t! 5 tK~t! 5 2
L0t3 1 N0t2 1 K0t

B0t3 1 F0t2 1 D0t 1 A0
(3)

z0 5 0,

where A0, B0, . . . are the coefficients in f 0( x0, y0, z0) that are analogous to
A, B, . . . in f( x, y, z). In the special case where the singular cubic curve is
reducible (a conic and a line or three lines), a parametrization of the conic
is taken instead.

We transform the surface again to bring a general point on the paramet-
ric curve specified by t to the origin by the translation

x0 5 x# 1 K~t!, y0 5 y# 1 L~t!, z0 5 z# .

The cubic surface can now be expressed by f#( x# , y# , z# ) 5 Q# (t) x# 1 R# (t) y# 1
S# (t) z# 1 . . . terms of higher degree. We make the tangent plane of the
surface at the origin coincide with the plane ẑ 5 0 by applying the
transformation

x# 5 x̂, y# 5 ŷ, z# 5 2
Q# ~t!

S# ~t!
x̂ 2

R# ~t!

S# ~t!
ŷ 1

1

S# ~t!
ẑ.
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The equation of the surface now has the form

f~ x̂, ŷ, ẑ! 5 ẑ 1 @ f̂2~ x̂, ŷ! 1 f̂1~ x̂, ŷ! ẑ 1 f̂0ẑ2#

1 @ĝ3~ x̂, ŷ! 1 ĝ2~ x̂, ŷ! ẑ 1 ĝ1~ x̂, ŷ! ẑ2 1 ĝ0ẑ3#.

The intersection of this surface with ẑ 5 0 gives

f̂2~ x̂, ŷ! 1 ĝ3~ x̂, ŷ! 5 0. (4)

Recall that x̂ and ŷ, and hence f̂2 and ĝ3, are functions of t. As shown in
Abhyankar and Bajaj [1987b], Eq. (4) is reducible, and hence contains a
linear factor for those values of t for which f̂2( x̂, ŷ) and ĝ3( x̂, ŷ) have a
linear or quadratic factor in common. These factors correspond to lines on
the cubic surface, and our goal is to find the values of t that produce these
lines.

The way in which a common factor of f̂2( x̂, ŷ) and ĝ3( x̂, ŷ) corresponds to
a line on the cubic surface is as follows. A linear factor is of the form c1x̂ 1
c2ŷ, and a quadratic factor is of the form c1x̂2 1 c2x̂ ŷ 1 c3ŷ2 and can be
split into two such linear factors, possibly with complex coefficients. Since
c1x̂ 1 c2ŷ was obtained by intersecting the plane ẑ 5 0 with the surface,
this implies that the line c1x̂ 1 c2ŷ 5 0, ẑ 5 0 lies on the surface. The
substitutions described earlier in this section may be traced backwards in
order to obtain the line in the original ( x, y, z) coordinates. Thus each
value of t for which f̂2( x̂(t), ŷ(t)) and ĝ3( x̂(t), ŷ(t)) have a common factor
gives rise to a line on the surface.

The values of t may be obtained by taking the resultant of f̂2( x̂, ŷ, t) and
ĝ3( x̂, ŷ, t) by eliminating either x̂ or ŷ. Since f̂2 and ĝ3 are homogeneous in
{ x̂, ŷ}, it does not matter with respect to which variable the resultant is
taken [Walker 1978], the result will have the other variable raised to the
sixth power as a factor. Apart from the factor of x̂6 or ŷ6, the resultant
consists of an 81st degree polynomial P81(t) in t. At first glance it would
appear that there could be 81 values of t for which a line on the cubic
surface is produced, but this is not the case:

THEOREM 1. The polynomial P81(t) obtained by taking the resultant of f̂2

and ĝ3 factors as P81(t) 5 P27(t)[P3(t)]6[P6(t)]6, where P3(t) 5 B0t3 1
F0t2 1 D0t 1 A0, the denominator of K(t) and L(t), and P6(t) is the
numerator of S# (t) (P6(t) 5 S# (t)[P3(t)2]).

SKETCH OF PROOF. This proof was performed through the use of the
symbolic manipulation program Maple [Char et al. 1990]. When expanded
in full, P81(t) contains hundreds of thousands of terms, so a direct ap-

8 • C. L. Bajaj et al.

ACM Transactions on Graphics, Vol. 17, No. 1, January 1998.



proach was not possible. Instead, P81(t) was shown to be divisible by both
[P3(t)]6 and [P6(t)]6.

When f̂2 and ĝ3 were expressed in terms of the numerators of Q# (t), R# (t),
and S# (t), it was possible to take the resultant without overflowing the
memory of the machine. The resultant could be factored, and [P6(t)]6 was
found to be one of the factors.

The factor [P3(t)]6 proved to be more difficult to obtain. After the factor
[P6(t)]6 was removed, the remaining factor was split into several pieces,
according to which powers of Q# (t), R# (t), and S# (t) they contained. These
pieces were each divided by [P3(t)]6, and the remainders taken. The
remainders were expressed as certain polynomials times various powers of
P3(t), as in a0(t) 1 a1(t) P3(t) 1 a2(t)[P3(t)]2 1 a3(t)[P3(t)]3 1
a4(t)[P3(t)]4 1 a5(t)[P3(t)]5. We were able to show that a0(t) is in fact
divisible by P3(t). We could then show that a0(t)/P3(t) 1 a1(t) is also
divisible by P3(t), and so on up the line until we could show the whole
remaining factor is divisible by [P3(t)]6. (Details in Appendix B.)

The solutions of P27(t) 5 0 correspond to the 27 lines on the cubic
surface. A method of partial classification is suggested by considering the
number of real roots of P27(t): if it has 27, 15, or 7 real roots, the cubic
surface is F1, F2, or F3, respectively; and if P27(t) 5 0 has three real roots,
the surface can be either F4 or F5. However, this is not quite accurate. In
exceptional cases, P27(t) may have a double root at t 5 t0, which corre-
sponds to f̂2 and ĝ3 sharing a quadratic factor. If this quadratic factor is
reducible over the reals, the double root corresponds to two (coplanar) real
lines; if the quadratic factor has no real roots, it corresponds to two
coplanar complex conjugate lines.

THEOREM 2. Simple real roots of P27(t) 5 0 correspond to real lines on
the surface.

PROOF. Let t0 be a simple real root of P27(t) 5 0. Since P27(t) is a factor
of the resultant of f̂2 and ĝ3 obtained by eliminating x̂ or ŷ, f̂2( x̂, ŷ, t0) and
ĝ3( x̂, ŷ, t0) must have a linear or quadratic factor in common. If f̂2( x̂, ŷ, t0)
and ĝ3( x̂, ŷ, t0) have just a linear factor in common, then that factor is of
the form c1x̂ 1 c2ŷ where c1 and c2 are real constants, since all coefficients
of f̂2( x̂, ŷ, t0) and ĝ3( x̂, ŷ, t0) are real and f̂2( x̂, ŷ, t0) and ĝ3( x̂, ŷ, t0) are
homogeneous in x̂ and ŷ. In this case the real line c1x̂ 1 c2ŷ 5 0, ẑ 5 0 lies
on the surface.

If f̂2( x̂, ŷ, t0) and ĝ3( x̂, ŷ, t0) have a quadratic factor in common, then
that factor is of the form c1x̂2 1 c2x̂ ŷ 1 c3ŷ2. We show that if this is the
case, then P27(t) has at least a double root at t 5 t0. This is sufficient to
prove that simple roots of P27(t) can only correspond to common linear
factors of f̂2( x̂, ŷ, t0) and ĝ3( x̂, ŷ, t0), and hence real lines on the cubic
surface.

If we write f̂2( x̂, ŷ, t) 5 Q1(t) x̂2 1 Q2(t) x̂ ŷ 1 Q3(t) ŷ2 and ĝ3( x̂, ŷ, t) 5
Q4(t) x̂3 1 Q5(t) x̂2ŷ 1 Q6(t) x̂ ŷ2 1 Q7(t) ŷ3, then the resultant of f̂2( x̂, ŷ,
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t) and ĝ3( x̂, ŷ, t) obtained by eliminating x̂ is

R~ f̂2 , ĝ3! 5 *
Q1~t! Q2~t! Q3~t! 0 0

0 Q1~t! Q2~t! Q3~t! 0
0 0 Q1~t! Q2~t! Q3~t!

Q4~t! Q5~t! Q6~t! Q7~t! 0
0 Q4~t! Q5~t! Q6~t! Q7~t!

* ŷ6. (5)

We need to show that if f̂2( x̂, ŷ, t) and ĝ3( x̂, ŷ, t) have a quadratic factor
in common when t 5 t0, then R( f̂2, ĝ3)/ŷ6 has a double root at t 5 t0. This
is equivalent to showing that R( f̂2(t0), ĝ3(t0)) 5 0 and (d/dt)[R( f̂2(t0),
ĝ3(t0))] 5 0. If f̂2( x̂, ŷ, t0) and ĝ3( x̂, ŷ, t0) have a quadratic factor in
common, then ĝ3(t0) 5 k(c1x̂ 2 c2ŷ) f̂2(t0) for some real constants k, c1,
and c2. Thus Q4(t0) 5 kc1Q1(t0), Q5(t0) 5 k[c1Q2(t0) 2 c2Q1(t0)], Q6(t0)
5 k[c1Q3(t0) 2 c2Q2(t0)], and Q7(t0) 5 2kc2Q3(t). Making these substi-
tutions in (5), we find that indeed both R( f̂2(t0), ĝ3(t0)) 5 0 and (d/
dt)[R( f̂2(t0), ĝ3(t0))] 5 0. e

To summarize, the simple real roots of P27(t) 5 0 correspond to real
lines on the cubic surface. Double real roots may correspond to either real
or complex lines, depending on whether what the quadratic factor f̂2( x̂, ŷ,
t) and ĝ3( x̂, ŷ, t) have in common is reducible or not over the reals. Higher
order roots indicate some type of singularity. Complex roots can only
correspond to complex lines in nonsingular cases. If t0, a complex root of
P27(t) 5 0, corresponds to a real line c1x̂ 2 c2ŷ on the surface, then t0
would correspond to the same line, as a real line is its own complex
conjugate. Thus one real line would lead to two distinct values for t0.

5. PARAMETRIZATIONS WITH REAL SKEW LINES

When the cubic surface is of class F1, F2, or F3, it contains at least two real
skew lines, and the parametrization in Abhyankar and Bajaj [1987b] is
used. Figures 2, 3, and 4 show F1, F2, and F3 surfaces, respectively.

The picture on the right in Figure 2 shows a patch entirely within a
tetrahedron, with two of its edges along the skew lines and each point of
the displayed patch is the third point of intersection of the cubic surface
with a line passing through a point on each of the skew edges. Having
obtained skew lines l1(u) 5 [ x1(u) y1(u) z1(u)] and l2(v) 5 [ x2(v) y2(v)
z2(v)], we consider the net of lines passing through a point on each. This is
given by

z 2 z1

x 2 x1

5
z2 2 z1

x2 2 x1

y 2 y1

x 2 x1

5
y2 2 y1

x2 2 x1

.

Solving these for y and z in terms of x, and substituting into the cubic
surface f( x, y, z) 5 0 gives a cubic equation in x with coefficients in u and
v, say G( x, u, v) 5 0. Since x 5 x1 and x 5 x2 satisfy this equation, G( x,
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u, v) is divisible by x 2 x1 and x 2 x2, and we have that

H~u, v, x! 5
G~ x, u, v!

@ x 2 x1~u!#@ x 2 x2~v!#
(6)

is a linear polynomial in x. This is solved for x as a rational function of u
and v. Rational functions for y and z are obtained analogously.

Fig. 2. An F1 cubic surface with two skew lines out of its 27 real straight lines (left), and a
zoom-in on that surface showing the Bézier patch with its bounding tetrahedron, determined
by the two skew lines as opposite edges (right).

Fig. 3. An F2 cubic surface with two skew lines out of its 15 real straight lines (left), and a
zoom-in on that surface showing the Bézier patch with its bounding tetrahedron, determined
by the two skew lines as opposite edges (right).
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The parametrization (1) is then computed as in (2):

~ x, y, z! 5 ~ x~u, v!, y~u, v!, z~u, v!!

5 ~ f1~u, v!/f4~u, v!, f2~u, v!/f4~u, v!, f3~u, v!/f4~u, v!!

where

f1~u, v! 5 a~u, v! x1~u! 1 b~u, v! x2~v!

f2~u, v! 5 a~u, v! y1~u! 1 b~u, v! y2~v!

f3~u, v! 5 a~u, v! z1~u! 1 b~u, v! z2~v!

f4~u, v! 5 a~u, v! 1 b~u, v!, (7)

with

a~u, v! 5 ¹f~l2~v!! z @l1~u! 2 l2~v!#, b~u, v! 5 ¹f~l1~u!! z @l1~u! 2 l2~v!#.

In this notation 2f1(u, v) and f4(u, v) are the coefficients of x0 and x1,
respectively, in H(u, v, x). The symbolic manipulation program Maple was
used to verify that the expressions f1(u, v)/f4(u, v), f2(u, v)/f4(u, v), and
f3(u, v)/f4(u, v) do simplify to x, y, and z, respectively.

Using floating-point arithmetic, it may be the case that some terms with
very small coefficients appear in f1(u, v), f2(u, v), f3(u, v), and f4(u, v)
when the coefficients should in fact be zero. Specifically, these are the

Fig. 4. An F3 cubic surface with two skew lines out of its 7 real straight lines (left), and a
zoom-in on that surface showing the Bézier patch with its bounding tetrahedron, determined
by the two skew lines as opposite edges (right).
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terms containing u3, v3, u4, v4, u3v, and uv3 in f1, f2, and f3, and terms
containing u3 and v3 in f4. These coefficients were shown to be zero using
Maple; so in the algorithm they are subtracted in case they should appear
in the construction of f1, f2, f3, and f4.

6. PARAMETRIZATIONS WITHOUT REAL SKEW LINES

When the cubic surface is of class F4 or F5 it does not contain any pair of
real skew lines. In the F4 case we derive a parametrization using complex
conjugate skew lines, and in the F5 case we obtain a parametrization by
parametrizing conic sections which are the further intersections of the
cubic surface with planes through a real line on the surface.

6.1 The F4 Case

In this case there are 12 pairs of complex conjugate lines. For 6 of these
pairs, the two lines intersect (at a real point). In the other 6 pairs, the two
lines are skew. Let one pair of complex conjugate skew lines by given by
( x1(w), y1(w), z1(w)) and ( x1(w# ), y1(w# ), z1(w# )), where w 5 wR 1 wIi is
a complex-valued parameter with wR and wI as its real and imaginary
parts. Here x1, y1, and z1 are (linear) complex functions of a complex
variable, and x2, y2, z2 may be considered the complex conjugates of x1, y1,
z1. Also, the real parameters wR and wI are unrestricted. Then the
parametrization is again given by (7), with u and v replaced by w 5 wR 1
wIi and w# 5 wR 2 wIi, respectively. Even though the quantities xi, yi, and
zi are complex, the expressions for x(u, v) 5 x(w, w# ), y(u, v) 5 y(w, w# ),
and z(u, v) 5 z(w, w# ) turn out to be real when x2, y2, and z2 are the
complex conjugates of x1, y1, and z1. The symbolic manipulation program
Maple was used to verify that the quantities f1(w, w# )/i, f2(w, w# )/i,
f3(w, w# )/i, and f4(w, w# )/i are all real when ( x1, y1, z1) and ( x2, y2, z2) are
complex conjugates. Note that the functions fi(w, w# ) may be regarded as
functions of the two real variables wR and wI.

Using floating-point arithmetic, it may be that some terms with very
small coefficients appear in f1(w, w# ), f2(w, w# ), and f3(w, w# ) when the
coefficients should in fact be zero. Specifically, these are the terms contain-
ing wR

3 wI and wRwI
3. Using Maple, these coefficients were shown to be zero,

so they are subtracted in the algorithm, in case they appear in the
construction of f1, f2, and f3.

THEOREM 3. The parametrization described in Section 5 provides a valid
parametrization of an F4 cubic surface when u and v are replaced by w 5
wR 1 wIi and w# 5 wR 2 wIi, respectively. The parameters wR and wI
range over all real values. Each real point on the F4 surface, except for those
corresponding to base points of the parametrization, is obtained for exactly
one complex value of w.

PROOF. A classical result from line geometry asserts that two skew
complex conjugate lines possess a two-parameter family of real lines
intersecting them, and that every real point in space lies on exactly one of
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the lines of the two-parameter family. Thus, given an arbitrary real point
( x0, y0, z0) and two skew complex conjugate lines l1(u) and l1

# ~v! on the
cubic surface, there is a unique pair of real numbers (a0, b0) such that the
three points ( x0, y0, z0), l1(a0 1 b0i), and l1

# (a0 2 b0i) are collinear. This
value of (a0, b0), when inserted into the parametrization (7), gives back
( x0, y0, z0), unless (a0, b0) happens to make the fractions 0/0 in (7), which
means that (a0, b0) is a base point of the parameter map. e

6.2 The F5 Case

When the cubic surface is of class F5 (example in Figure 5 (right)), it does
not have any complex conjugate skew lines. One could attempt to use one
real line and one complex line, or two nonconjugate complex skew lines,
and proceed as before. However, there is no simple way to describe the
values that the parameters u and v may take on. In the F1, F2, and F3
cases, u and v were unrestricted real parameters. In the F4 case, we let
u 5 wR 1 wIi and v 5 wR 2 wIi, and obtained a parametrization in which
wR and wI are unrestricted. If we try the same idea with one real and one
complex line, or two complex lines that are not conjugates, then the real
and imaginary parts of w and v are related by complicated functions,
typically seventh-degree polynomials.

In Sederberg and Snively [1987], a rational parametrization is given
based on tangent planes at points lying on a real line. However, this
parametrization is two-to-one, meaning that there are typically two values
of (u, v) corresponding to each point on the cubic surface, instead of the
one-to-one map that results when both curves in the parametrization are
lines, as in the F1 through F4 cases. Another approach, used in Sederberg

Fig. 5. (Left) An F4 cubic surface with all its three real lines, which are coplanar. The two
skew complex conjugate lines used in the parametrization are not displayed. (Right) An F5

cubic surface, together with all its three real lines, which are coplanar. An F5 cubic surface
has no skew lines, real or complex. This particular example has multiple real sheets.
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and Snively [1987], involves a square root of a fourth-degree polynomial in
two variables. The surface is rotated so that the z3 term vanishes, and then
the quadratic formula may be applied by regarding the surface as a
quadratic in z. While this method is quite workable, it does not lend itself
readily to geometric interpretation as the skew line parametrizations do.

With this in mind, we propose to parametrize the surface by parametriz-
ing planes through one of the real lines on the surface and then by
parametrizing the conic sections, which are the further intersections of
these planes with the cubic surface. Thus the curves traced out when one of
the parameters is held constant will be conics; and parametrization of the
conics will be that of Abhyankar and Bajaj [1987a]. With this procedure we
have to use two distinct parametrizations; one works when the conics are
ellipses and the other for hyperbolas. Each requires one square root of a
univariate polynomial.

The procedure for finding parametrization starts out like the ones for F1
through F4. In this case three coplanar real lines and 24 complex lines are
determined, and the complex lines are found to come in 12 coplanar
conjugate pairs. Since the methods of the other cases involving skew lines
do not work here, one of the real lines is chosen for mapping into the x-axis,
and the plane of the three real lines is mapped into the xy-plane. Specifi-
cally, suppose a real line l is given by l(u) 5 ( A 1 Bu, C 1 Du, E 1 Fu)
and that the normal to the plane is given by N 5 (N1, N2, N3). N is
obtained by taking the cross product of the (unit) direction vectors of two of
the real lines or by taking any unit vector perpendicular to the real lines if
they are all parallel. Next, let B 5 (B1, B2, B3) be the cross product of the
direction vector of l with N. We move a point on l to the origin by the
translation x 5 x9 1 A, y 5 y9 1 C, z 5 z9 1 E, and then apply the
transformation

x9 5 ~B2N3 2 B3N2! x0 1 ~FN2 2 DN3! y0 1 ~DB3 2 FB2! z0

y9 5 ~B3N1 2 B1N3! x0 1 ~BN3 2 FN1! y0 1 ~FB1 2 BB3! z0 (8)

z9 5 ~B1N2 2 B2N1! x0 1 ~DN1 2 BN2! y0 1 ~BB2 2 DB1! z0.

This brings l to the x0 axis and the plane of the real lines to z0 5 0.
Planes through the x0-axis can be parametrized by y0 5 uz0 for real

values of u. All planes through the x0-axis are obtained except for z0 5 0,
the plane containing the three real lines already found. The cubic surface
now has an equation of the form f 0( x0, y0, z0) 5 0, and satisfies f 0( x0, 0,
0) 5 0. If we now make the substitution y0 5 uz0 into f 0( x0, y0, z0), we
obtain an equation that factors as z0g0( x0, z0) 5 0, where g0( x0, z0) is a
quadratic in x0 and z0. The factor of z0 indicates that the line z0 5 0 is in
the intersection of the cubic surface and the plane y0 5 uz0 for any real u.
The conic section g( x0, z0) 5 0 is parametrized as in Abhyankar and Bajaj
[1987]: Let g( x0, z0) 5 ax02 1 bz02 1 cx0z0 1 dx0 1 ez0 1 f, and the
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discriminant k 5 c2 2 4ab. The quantities a through f are polynomials in
u.

If k , 0, the conic is an ellipse, and is parametrized by

x0 5
@af~ce 2 2bd! 2 d~t2 1 t3!#v2 1 @df~ce 2 2bd! 2 2ft3#v 1 f 2~ce 2 2bd!

a~t1 1 t3!v2 2 df~c2 2 4ab!v 1 f~t1 2 t3!

z0 5
f~c2 2 4ab!~av2 1 dv 1 f !

a~t1 1 t3!v2 2 df~c2 2 4ab!v 1 f~t1 2 t3!
,

where

t1 5 ae2 1 bd2 2 cde, t2 5 t1 1 f~c2 2 4ab!, t3 5 Ît1t2.

This gives real points only when the terms t1 and t2 have the same sign or
are zero. If t1 and t2 have opposite signs, g( x0, z0) 5 0 has no real points,
and geometrically this means that the plane y0 5 uz0 intersects the cubic
surface only in the x0-axis. Thus values of u should be restricted to those
that give nonnegative values for t1t2. Upon back substitution using y0 5
uz0 and Eq. (8), in the final parametrization, x, y, and z are given by
quotients of functions of the form Q1(u, v) 1 Q2(u, v) =Q3(u), where
Q1(u, v) is of degree 6 in u and 2 in v, Q2(u, v) is of degree 1 in u and 2 in
v, and Q3(u) is of degree 9 in u alone. Due to the use of floating-point
arithmetic, a nonzero coefficient for u10 may appear in Q3(u), and this is
subtracted in case it does show up.

If k $ 0, the conic is a hyperbola or parabola, and is parametrized by

x0 5
a~c 1 Îc2 2 4ab!v2 1 2aev 1 f~c 2 Îc2 2 4ab!

2a Îc2 2 4ab v 1 2ae 2 cd 1 d Îc2 2 4ab

z0 5
22a~av2 1 dv 1 f !

2a Îc2 2 4ab v 1 2ae 2 cd 1 d Îc2 2 4ab
.

Here real values are given for all u and v for which the denominators are
nonzero. In the final parametrization, x, y, and z are given by quotients
of functions of the form [Q1(u, v) 1 Q2(u, v)=Q3(u)]/[Q4(u) 1
Q5(u, v)=Q3(u)], where Q1(u, v) is of degree 3 in u and 2 in v, Q2(u, v) is
of degree 1 in u and 2 in v, Q3(u) is of degree 4 in u alone, Q4(u) is of
degree 3 in u alone, and Q5(v) is of degree 1 in each of u and v.

This parametrization, partly by hyperbolas/parabolas and partly by el-
lipses, sweeps out the entire surface except possibly for the three real lines
on the plane z0 5 0. These lines cannot normally be reached, as u would
have to approach 6` in view of the relation y0 5 uz0. In some cases one of
the lines, specifically y0 5 0, z0 5 0, may be obtained for a specific value of
u when the intersection of the plane y0 5 uz0 with the cubic surface
consists of two lines, with the line y0 5 0, z0 5 0 counting as having been
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hit twice. This would be the case if the intersection was of the form
z02( z0 2 kx0) for some constant k for the particular value of u. This
transition of isoparameter curves from hyperbolas to ellipses is analogous
to the transition of planar cross sections of a right circular cone.

7. CLASSIFICATION AND STRAIGHT LINES FROM PARAMETRIC
EQUATIONS

We also consider the question of deriving a classification and generating
the straight lines of the cubic surface, given its rational parametric
equations (Eq. (1) above):

x 5
f1~u, v!

f4~u, v!
, y 5

f2~u, v!

f4~u, v!
, z 5

f3~u, v!

f4~u, v!
.

Note that given an arbitrary parametrization, the fact that it belongs to a
cubic surface can be computed by determining the parametrization base
points and multiplicities.

The computation of real base points that are the simultaneous zeros of
f1 5 f2 5 f3 5 f4 5 0 are obtained by first computing the real zeros of f1 5
f2 5 0 using resultants and subresultants, via the method of birational
maps [Bajaj 1990], and then keeping those zeros that also satisfy f3 5 f4 5
0. The classification follows from the reality of the base points, as detailed
in the preliminaries section.

Having determined the base points, the straight lines on the cubic
surface are then determined by the image of these points and their
combinations. In general, there can be six real base points for cubic
surfaces. The image of each of the six base points under the parametriza-
tion map yields a straight line on the surface. Next, the fifteen pairs of base
points define lines in the u, v parameter space, whose images under the
parametrization map also yield straight lines. Finally, the six different
conics in the u, v parameter space that pass through distinct sets of five
base points also yield straight line images under the parametrization map
(see Bajaj and Royappa [1994] for techniques to find parametric represen-
tations of the straight lines that are images of these base points.) The
question of determining parametric representations of the straight lines
that are the images of parameter lines or parameter conics is, for now,
open.

Normally, a cubic surface parametrization has six base points, but in the
case of our parametrizations for the F1, F2, F3, and F4 surfaces, the
number of base points is reduced to five because the degree of the
parametrization is sufficiently small. In the F1, F2, and F3 cases, neither u
nor v appears to a power higher than the second. Consider the intersection
of the parametrized surface with a line in 3-space. Let the line be given as
the intersection of two planes aix 1 bi y 1 ciz 1 di 5 0 for i 5 1, 2. Then
when the substitutions x 5 f1(u, v)/f4(u, v), y 5 f2(u, v)/f4(u, v), z 5
f3(u, v)/f4(u, v) are made into the equations of the lines, we obtain
polynomials of degree 2 in each of u and v. When resultants of these
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polynomials are taken to eliminate either u or v, univariate polynomials of
degree 8 are obtained. This indicates that there could be as many as 8
intersection points of the line with the surface. However, a cubic surface
will intersect the line in only three (possibly complex) points, counting
multiplicity and solutions at infinity. The difference between these two
results (8 and 3) is the number of base points. In the F4 case, the degrees of
the numerators and denominator of the components of the parametrization
are 4 and 3, respectively. However, making the linear change of variables
wR 5 (u 1 v)/ 2, wI 5 [(v 2 u)/ 2]i yields a parametrization in which u
and v each appear to powers at most 2, just as in the F1, F2, and F3 cases.
Computation of the location of the base points does not depend on the
coordinate system, and since these computations are done over the field of
complex numbers, such a complex-valued linear transformation is permis-
sible. Thus the same argument applies, and there are five values of (u, v),
and consequently five values of (wR, wI), which make f1, f2, f3, and f4 all
equal to zero. A general cubic parametrization would have led to 9 possible
intersection points when considering the algebraic equations, and hence 6,
the difference of 9 and 3, is the number of base points for such a
parametrization. Our parametrization for F5 surfaces may have 6 base
points.

Let l1 and l2 be the two skew lines used in the parametrization, whether
they be real or complex. The base points (u, v) correspond to lines on the
cubic surface that intersect both l1 and l2. Real base points correspond to
real lines and complex base points correspond to complex lines. One of the
many useful results on nonsingular cubic surfaces is that given any two
(real or complex) skew lines on the surface, there are exactly five lines that
intersect both [Segre 1942]. For an F1 surface, the five transversal lines,
and the base points, are all real. Thus those five real lines are missed by
the parametrization (1). For an F2 surface, three of the base points are real
and the other two form a complex conjugate pair. The parametrization (1)
consequently misses the three real lines incident to both l1 and l2. In
addition, if the two transversal complex conjugate lines are coplanar and
have a real intersection point, that point is also missed. For both F3 and F4

surfaces, one base point is real and the other four form two conjugate pairs.
In each of these cases there is one real line through both l1 and l2, and that
line is missed. Again, if a pair of transversal complex conjugate lines is
coplanar, their real intersection point is missed, so there may be two such
isolated points for F3 and F4. The missing points on the surface can be
approached as (u, v) approaches the corresponding base point, in an
appropriate manner. Skew complex conjugate lines corresponding to com-
plex base points result in no missed real surface points.

In addition to the transversal lines, two conic sections are also missed in
the parametrization of the F1, F2, and F3 surfaces. One conic is obtained as
follows: take the intersection of the plane containing l1(u) and perpendicu-
lar to l2(v) with the cubic surface. This intersection consists of l1 plus a
conic. It turns out that the value of v at which l2 intersects this plane tends
to 6`. Thus, points on the conic are not obtained for finite values of v, even
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though the line l1 does turn out to be reachable. The other missing conic is
found by interchanging the roles of l1 and l2. These two conics lie on
parallel planes, and are obtained if u or v, respectively, is allowed to
approach 6`. In the F4 case, no real conics are missed. The plane
containing l1 and perpendicular to l2 intersects the cubic surface in the
complex line l1 and a complex, not a real, conic section.

8. CONCLUSION AND FUTURE RESEARCH

We have presented a method of extracting real straight lines, and from
there a rational parametrization of four out of five families of nonsingular
cubic surfaces. The parametrizations of the real cubic surface components
are constructed using a pair of real skew lines for the three families that
have them, and, remarkably, using a complex conjugate pair of skew lines
in a fourth family. In each, the entire real surface is covered except for one,
three, or five lines that intersect both skew lines, one or two isolated points,
and two conic sections. The missing conics can be recovered through the use
of projective instead of real coordinates. For the last family, in which two
real skew lines do not exist, in order to cover the whole surface we had to
use two separate parametrizations, each involving a square root. Fortu-
nately, many graphics applications, such as the triangulation of a real
surface, will involve only the classes of cubics that do contain real skew
lines. These real skew lines will correspond to nonintersecting edges of the
tetrahedra. This procedure may also be used when the cubic surface is
given in Bernstein-Bézier form, as shown in Figures 2, 3, and 4. Open
problems remain in computing the images of curves on the cubic surface
corresponding to real base points of high multiplicity, as well as in
efficiently generating Bernstein-Bézier forms for the F5 case. All figures of
the cubic surfaces shown in this paper were made using the GANITH and
SPLINEX toolkits of the SHASTRA system [Anupam and Bajaj 1994].

Additional future research is in computing invariants for cubic surfaces,
on the basis of their straight lines. In computer vision, as pointed out in
Bruckstein et al. [1993]; Holt and Netravali [1993]; Mundy and Zisserman
[1992], it is essential to derive properties of curves and surfaces that are
invariant to perspective projection, and to be able to compute these invari-
ants reliably from perspective image intensity data. In connection with the
First Fundamental Theorem of Invariant Theory (refer to Abhyankar
[1992] and Mundy and Zisserman [1992] for details), we attempt to
calculate complete systems of symbolic invariants of cubic surfaces. In
doing these calculations, it is important to know all the relations among a
set of invariants, which is the content of the Second Fundamental Theorem
of Invariant Theory.

Appendix A. Examples

We provide examples of the parametrization of F1, F4, and F5 cubic
surfaces.

Rational Parametrizations • 19

ACM Transactions on Graphics, Vol. 17, No. 1, January 1998.



An F1 Surface. The F1 surface is given by the implicit equation

f~ x, y, z! 5 16x3 2 10y3 2 156z3 1 3x2y 1 101x2z 2 38xy2 1 72y2z

1 39xz2 2 74yz2 2 81xyz

2 389x2 2 98y2 1 1988z2 1 470xy

2 291xz 1 318yz 1 332x 2 718y 2 8114z 1 11082 5 0.

The point (1, 2, 3) lies on this surface. Using this point, the polynomial
P27(t), as computed by the algorithm in Section 4, factors as

t~t 2 2!~t 1 4!~t 1 8!~2t 2 1!~2t 1 1!~3t 2 1!~4t 2 3!~4t 1 7!

z ~4t 1 17!~4t 2 43!~5t 2 1!~5t 1 11!~5t 2 16!~5t 1 24!

z ~5t 1 32!~5t 1 74!~8t 2 11!~20t 1 71!~25t 2 8!~37t 2 32!

z ~205t 2 116!~215t 1 32!~295t 1 1216!~755t 2 4576!.

When the solution t 5 0 is substituted into the expressions f̂2( x̂, ŷ) and
ĝ3( x̂, ŷ) (from Eq. (4)), it is found that their common factor is x̂ 1 ŷ. Thus
the line x̂ 1 ŷ 5 0, ẑ 5 0 lies on the cubic surface; transforming back to
the original coordinates, this turns out to be the line l1(u) 5 ( x, y, z) 5
(u 1 3, 2u 1 2, 2u 1 3). When the solution t 5 1/2 is chosen, the
common factor of f̂2( x̂, ŷ) and ĝ3( x̂, ŷ) is ŷ. Therefore the line ŷ 5 0, ẑ 5 0
is on the surface, and in the original coordinates this is l2(v) 5 (2, v 2 2,
v/3 1 3). These two lines are skew, and many other choices are possible (see
Figure 2). With these lines, we obtain the parametrization (x(u, v), y(u, v),
z(u, v)) 5 ( f1(u, v)/f4(u, v), f2(u, v)/f4(u, v), f3(u, v)/f4(u, v)), where

f1 5 185u2v2 2 2151u2v 1 1602u2 1 652uv2 2 9972uv 1 21708u

1 291v2 2 6981v 1 19890

f2 5 55u2v2 2 369u2v 2 1602u2 1 603uv2 2 6747uv 1 11502u 1 812v2

2 10134v 1 24660

f3 5 2105u2v2 1 2511u2v 2 14202u2 1 568uv2 2 5352uv 1 324u

(9)

1 497v2 2 7503v 1 16470

f4 5 240u2v 2 2520u2 1 185uv2 2 2301uv 1 3078u 1 97v2 2 2121v

1 5490.
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Similarly, we can easily obtain the rational parametric biquadratic Bézier
form [Farin 1993; Lodha and Warren 1992]:

p~s, t! 5

O i50
2 O j50

2 wijcijS2
i D si~1 2 s!22iS2

j D tj~1 2 t!22j

O i50
2 O j50

2 wijS2
i D si~1 2 s!22iS2

j D tj~1 2 t!22j

,

where

c00 5 ~1154, 1365, 6254!/1427, c01 5 ~4020, 3827, 17672!/4093,
c10 5 ~4662, 3395, 16262!/3981, c11 5 ~14370, 9105, 44874!/11081,
c20 5 ~1814, 665, 5014!/1307, c21 5 ~5257, 1684, 13523!/3535,
c02 5 ~428, 337, 1560!/367, w00 5 211416/3,
c12 5 ~2752, 1523, 7728!/1925, w10 5 22654
c22 5 ~317, 88, 759!/199, w20 5 25228/3,
w01 5 28186/3, w02 5 25872/3,
w11 5 211081/6, w12 5 23850/3,
w21 5 23535/3, w22 5 2796.

At the end of Section 4, it was mentioned that some small coefficients
arising from imperfect floating point computations are removed from the
fi(u, v). In this example, when 15-digit precision is used, the terms
truncated from f1, f2, f3, and f4 are

22.7 z 10211u3 2 3.6 z 10213uv3 2 1.08 z 10212v3,

21.35 z 10211u3v 1 2.7 z 10211u3 1 3.6 z 10213uv3 2 7.2 z 10213v3,

24.5 z 10212u3v 2 4.05 z 10211u3 1 3.6 z 10213uv3 2 1.08 z 10212v3,

and 1.35 z 10211u3 2 3.6 z 10213v3,

respectively.
The five base points, where f1 5 f2 5 f3 5 f4 5 0, are (u, v) 5 (21, 9/2),

(25/4, 5), (212, 114/11), (237/29, 81/16), and (229/15, 156/23). These
correspond to the lines (2, w 1 4, 2w 1 3), (w 1 1, 2w 1 4, 5/3 w 1 3),
(w 1 303/47, 262/121 w 1 286/47, 294/121 w 1 3), (w 1 166/191,
299/128 w 1 752/191, 191/128 w 1 3), and (w 2 502/113, 293/322
w 2 122/113, 113/322 w 1 3), respectively. As an example of what is
meant by this correspondence, consider an arbitrary point ( x, y, z) in
3-space. The values of u0 and v0, for which the points ( x, y, z), (u0 1 3,
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2u0 1 2, 2u0 1 3), and (2, v0 2 2, v0/3 1 3) are collinear, are given by

~u0 , v0! 5 S24x 1 y 2 3z 1 19

2x 2 y 1 3z 2 15
,

3~4x 2 y 1 5z 2 25!

2x 2 y 1 3z 2 13 D . (10)

When ( x, y, z) 5 (2, w 1 4, 2w 1 3) is plugged into this expression, we
obtain (u0, v0) 5 (21, 9/2). Since this is a base point, however, plugging
this into Eq. (9) yields 0/0 for x, y, and z.

It is evident from Eq. (10) that a point ( x, y, z) on the cubic surface will
be missed when a denominator is zero while the corresponding numerator
is not. In this example, these points lie on the planes E1, given by 2x 2 y 1
3z 5 15, and E2, given by 2x 2 y 1 3z 5 13. E1 contains l2 while E2
contains l1, and E1 and E2 are parallel.

The intersection of E1 with the cubic surface consists of the line l2 and a
conic section. It turns out that l2 may be obtained by Eq. (9), but the conic
cannot. In this example, substituting ( x, y, z) 5 (2, w 2 2, w/3 1 3) into
(10) gives 185uv2 2 2631uv 1 6642u 1 97v2 2 2739v 1 8910 5 0, and
each point on this curve in the parameter space, except for the base point
(21, 9/2), gives rise to a point on l2. The conic may be parametrized by
letting u 3 6` in (9). In this example, we have

~x, y, z!

5 S185v2 2 2151v 1 1602

120~2v 2 21!
,

55v2 2 369v 2 1602

120~2v 2 21!
,

235v2 1 837v 2 4734

40~2v 2 21!
D.

Symmetric arguments apply showing that l1 is obtained by the parametri-
zation, and the other missing conic is found by letting v 3 6` in Eq. (9).

An F4 Surface. The F4 surface (shown in Figure 5 (left)) is given by the
implicit equation:

f~ x, y, z! 5 1696x3 2 1196y3 1 881z3 2 2984x2y 2 62x2z 1 2424xy2

1 1174y2z 2 913xz2 2 781yz2 1 450xyz 2 1802x2

1 443y2 2 1217z2 1 1786xz 1 266xy

2 1596yz 1 1696z 5 0.

The polynomial P27(t), as computed by the algorithm in Section 4, is
(11t 1 1) (t2 2 2t 1 2) P24(t), where P24(t) is a polynomial of degree 24
with 2 real and 22 complex roots. The 2 complex roots of the factor t2 2
2t 1 2, namely t 5 1 6 i, yield 2 skew complex conjugate lines. When t 5
1 1 i is substituted into the expressions for f̂2( x̂, ŷ) and ĝ3( x̂, ŷ), it is
found that their common factor is (3 2 i) x̂ 1 2ŷ. Thus the line (3 2 i) x̂ 1
2ŷ 5 0, ẑ 5 0 lies on the cubic surface, and transforming back to the

22 • C. L. Bajaj et al.

ACM Transactions on Graphics, Vol. 17, No. 1, January 1998.



original coordinates, this is line l1(w) 5 ( x, y, z) 5 ((1 2 i)w 1 1 1 i,
(21 1 2i)w 1 2 2 i, (22 2 3i)w 1 3 1 2i), where w 5 wr 1 wIi is a
complex-valued parameter. When t 5 1 2 i, the complex conjugate line
l2(w) 5 ((1 1 i)w 1 1 2 i, (21 2 2i)w 1 2 1 i, (22 1 3i)w 1 3 2 2i)
is obtained. With these lines, we obtain the parametrization ( x(wR, wI),
y(wR, wI), z(wR, wI)) 5 ( f1(wR, wI)/f4(wR, wI), f2(wR, wI)/f4(wR, wI),
f3(wR, wI)/f4(wR, wI)), where

f1 5 68358wR
4 2 69411wR

3 1 136716wR
2 wI

2 1 42607wR
2 wI 2 22381wR

2

2 69411wRwI
2 2 39230wRwI 1 43253wR 1 68358wI

4

1 42607wI
3 2 5775wI

2 1 8221wI 2 11755

f2 5 268958wR
4 1 284194wR

3 2 137916wR
2 wI

2 1 4441wR
2 wI (11)

2 366491wR
2 1 284194wRwI

2 1 11300wRwI 1 193570wR

2 68958wI
4 1 4441wI

3 2 124361wI
2 2 8901wI 2 36677

f3 5 2133716wR
4 1 417667wR

3 2 267432wR
2 wI

2 2 37422wR
2 wI

2 466042wR
2 1 417667wRwI

2 1 58622wRwI 1 224171wR

2 133716wI
4 2 37422wI

3 2 164742wI
2 2 22866wI 2 39654

f4 5 2~33879wR
3 1 300wR

2 wI 2 62530wR
2 1 33879wRwI

2 1 3994wRwI

138739wR 1 300wI
3 2 22624wI

2 2 2804wI 2 8072).

The real base point is (wR, wI) 5 (2/3, 21/6), which corresponds to the line
(w 1 1, 3w 1 1/6, 2w 1 1/6). The four complex base points, (0.67336 6
0.02735i, 20.07294 6 0.11195i) and (0.69678 6 0.02251i,
20.05028 7 0.13900i) correspond to the pairs of skew complex conjugate
lines (w 1 0.16675 7 0.18781i, (0.93864 2 0.59824i)w 1 0.72700 7
0.06977i, (0.55461 7 0.58502i)w) and (w 1 1.45840 1 0.89959i,
(1.26868 1 1.30057i)w 1 0.09568 1 0.80755i, (0.31897 1
1.11820i)w), respectively. Since these complex conjugate lines are skew,
no isolated real points are missed by the F4 parametrization here. Also,
since the lines l1 and l2 are complex, there are no real conics missed that lie
in the planes containing one of these lines and perpendicular to the other,
as was the case in the F1 example. Indeed, if we let wR and/or wI approach
6` in Eq. (11), all three of ( x, y, z) become infinite. Because of this
property it may be desirable to use the skew complex-line parametrization
in the other cases in which it may be used, namely the F2 and F3 surfaces.
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An F5 Surface. The F5 surface (shown in Figure 5 (right)) is given by
the implicit equation:

f~ x, y, z! 5 1816584x3 1 5756616y3 1 1816584z3 2 7289736x2y

29033502x2z 2 14543124xy2 1 4366603y2z

13281094xz2 1 10858818yz2 2 18019466xyz

17087008x2 1 5512596y2 1 4779161z2

11406184xy 2 4714206xz 1 5102202yz

11816584z 5 0.

The polynomial P27(t), as computed by the algorithm in Section 4, is (t 1
1)(69t 1 55)(18t 1 25) P24(t), where P24(t) is a polynomial of degree 24
with 24 complex roots. When t 5 1 is substituted into the expressions for
f̂2( x̂, ŷ) and ĝ3( x̂, ŷ), it is found that their common factor is 9 x̂ 1 11ŷ.
Thus the line 9 x̂ 1 11ŷ 5 0, ẑ 5 0 lies on the cubic surface, and
transforming back to the original coordinates, this is line l1(u) 5 ( x, y, z)
5 (u 1 1, 29/11u 2 1, 12/11u). When t 5 255/69, the corresponding line
is 2 x̂ 1 7ŷ 5 0, ẑ 5 0, or l2(u) 5 (u 1 23/11, 22/7u 2 5/3, 212/7u).
When t 5 225/18, the corresponding line is 107x̂ 1 108ŷ 5 0, ẑ 5 0, or
l3(u) 5 (u 1 1/ 2, 2107/108u 2 25/36, 2u). These three lines lie in the
plane 132x 1 216y 1 41z 1 84 5 0. The discriminant k of Section 6.2 is
u4 1 62.3281u3 2 4080.61u2 1 1509.67u 1 6291.89. This is positive
when u , 2102.340, 21.06325 , u , 1.45963, or u . 39.6151. Thus when
u is in one of these ranges, we obtain the parametrization

x 5
Q1~u, v! 1 Q2~u, v! ÎQ7~u!

Q8~u, v! 1 Q9~u, v! ÎQ7~u!
, y 5

Q3~u, v! 1 Q4~u, v! ÎQ7~u!

Q8~u, v! 1 Q9~u, v! ÎQ7~u!
,

z 5
Q5~u, v! 1 Q6~u, v! ÎQ7~u!

Q8~u, v! 1 Q9~u, v! ÎQ7~u!
,

where

Q1~u, v! 5 ~8.99587 z 1024v2 1 3.51462 z 1025v 2 5.36254 z 1026!u6

1 ~0.105133v2 2 2.39248 z 1023v 2 1.42488 z 1023!u5

1 ~220.0872v2 2 2.81225v 2 0.120394!u4

1 ~22185.20v2 2 260.513v 2 7.67265!u3

1 ~238310.8v2 2 5524.64v 2 252.070!u2
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1 ~2105756v2 2 14774.2v 2 638.200!u

2 61685.8v2 2 7016.59v 2 177.247

Q2~u, v! 5 ~25.80221v2 2 1.35397v 2 6.10370 z 1022!u

2 976.728v2 2 237.966v 2 10.7275

Q3~u, v! 5 ~21.03635 z 1023v2 2 4.04895 z 1025v 1 6.17781 z 1026!u6

1 ~29.01630 z 1022v2 1 4.01661 z 1023v

1 1.61011 z 1023!u5

1 ~21.3779v2 1 3.09571v 1 9.94279 z 1022!u4

1 ~1847.63v2 1 206.918v 1 0.796964!u3

1 ~16437.1v2 1 1161.86v 2 88.7687!u2

1 ~16986.2v2 2 3377.13v 2 738.127!u

1 7559.01v2 2 3574.96v 2 621.892

Q4~u, v! 5 ~6.60893v2 1 1.10780v 1 6.10370 z 1022!u

1 690.007v2 1 194.699v 1 10.7275

Q5~u, v! 5 ~1.07033 z 1023v2 1 4.18170 z 1025v 2 6.38036 z 1026!u6

1 ~0.225780v2 2 6.86940 z 1023v 2 2.34092 z 1023!u5

1 ~230.6381v2 2 2.66067v 2 0.241823!u4

1 ~22228.79v2 2 52.2212v 2 6.63043!u3

1 ~244926.3v2 2 4190.55v 2 316.786!u2

1 ~281241.7v2 2 968.908v 2 67.8675!u 2 22013.4v2

1 8162.85v 1 615.892

Q6~u, v! 5 ~4.84035v2 2 1.47706v!u 2 1720.32v2 2 259.599v

Q7~u! 5 21.23442 z 1026u9 2 8.98903 z 1025u8 1 1.44803 z 1022u7

1 2.34577u6 1 105.322u5 1 1142.72u4 1 3359.87u3

1 2594.14u2 2 1217.84u 2 1506.36
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Q8~u, v! 5 ~7.28844 z 1024v2 1 2.84754 z 1025v 2 4.34472 z 1026!u6

1 ~24.67672 z 1022v2 2 3.34107 z 1023v 2 7.39510 z 1024!u5

1 ~28.66808v2 2 2.21378v 1 5.73177 z 1022!u4

1 ~2163.316v2 2 89.9454v 1 13.4150!u3

1 ~39916.3v2 1 7250.72v 1 719.566!u2

1 ~15667.4v2 2 2717.48v 1 268.812!u

2 27542.8v2 2 11191.5v 2 492.248

Q9~u, v! 5 210.2392uv2 2 6.10370 z 1022u 1 600.236v2 2 10.7275.

When 2102.340 # u # 21.06325 or 1.45963 # u # 39.6151, the parametri-
zation is

x 5
Q1~u, v! 1 Q2~u, v! ÎQ7~u!

Q8~u! 1 Q9~u, v! ÎQ7~u!
, y 5

Q3~u, v! 1 Q4~u, v! ÎQ7~u!

Q8~u! 1 Q9~u, v! ÎQ7~u!
,

z 5
Q5~u, v! 1 Q6~u, v! ÎQ7~u!

Q8~u! 1 Q9~u, v! ÎQ7~u!
,

where

Q1~u, v! 5 ~237.9245v2 1 10.3515v 1 1.29295!u3

1 ~494.075v2 2 128.591v 2 2.94159!u2

1 ~93044.0v2 2 29296.9v 2 2915.68!u

1 487668v2 1 74012.5v 1 4973.82

Q2~u, v! 5 ~61.5568v2 1 11.0999v 1 0.583780!u

2 3608.55v2 2 650.692v 2 12.5729

Q3~u, v! 5 ~50.3928v2 2 7.71286v 2 1.36727!u3

1 ~22521.47v2 2 202.038v 2 2.39279!u2

1 ~227524.8v2 1 37257.0v 1 4336.48!u

1 126848v2 1 64003.1v 1 6008.88
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Q4~u, v! 5 ~250.3646v2 2 11.0999v 2 0.517062!u

1 2952.45v2 1 650.692v 1 24.2988

Q5~u, v! 5 ~2143.386v2 1 7.30692v 1 0.854738!u3

1 ~12450.7v2 1 1507.99v 1 126.109!u2

1 ~2243361v2 2 114213v 2 4201.03!u

1 364834v2 1 41143.5v 1 6520.34

Q6~u, v! 5 ~67.1529v2 1 0.400306!u 2 3936.60v2 1 70.3552

Q7~u! 5 1.45651u4 1 90.7814u3 2 5943.45u2 1 2198.85u 1 9164.20

Q8~u! 5 1.06687u3 2 52.9820u2 2 4776.83u 2 3741.83

Q9~u, v! 5 ~11.0999v 1 0.216832!u 2 650.692v 2 77.0652.

Appendix B: Proof of Theorem 1

THEOREM 1. The polynomial P81(t) obtained by taking the resultant of f̂2
and ĝ3 factors as P81(t) 5 P27(t)[P3(t)]6[P6(t)]6, where P3(t) 5 B0t3 1
F0t2 1 D0t 1 A0, the denominator of K(t) and L(t), and P6(t) is the
numerator of S# (t) (P6(t) 5 S# (t)[P3(t)2]).

PROOF. This proof was performed with Maple. When expanded in full,
P81(t) contains hundreds of thousands of terms, so a direct approach was
not possible. Instead, P81(t) was shown to be divisible by both [P3(t)]6 and
[P6(t)]6.

The quantities f̂2 and ĝ3 were expressed in terms of the numerators of
Q# (t), R# (t), and S# (t), and the numerator and denominator of K(t). Let
K(t) 5 P2(t)/P3(t), where

P2~t! 5 2~Lt2 1 Nt 1 K!

P3~t! 5 Bt3 1 Ft2 1 Dt 1 A (12)

(For brevity, we drop the double primes on the coefficients A0 through P0 of
f( x0, y0, z0).) Then we have

Q# ~t! 5
@~Ft2 1 2Dt 1 3A! P2~t! 1 ~Nt 1 2K! P3~t!#P2~t!

@P3~t!#2
5

Q*

P3
2

R# ~t! 5
@~3Bt2 1 2Ft 1 D! P2~t! 1 ~2Lt 1 N! P3~t!#P2~t!

@P3~t!#2
5

R*

P3
2 (13)
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S# ~t! 5
~Gt2 1 Jt 1 E!@P2~t!#2 1 ~Pt 1 O! P2~t! P3~t! 1 S@P3~t!#2

@P3~t!#2
5

S*

P3
2 .

Then we obtain

f̂2 5 $@~It 1 H! P2 1 MP3#Q*2 2 @~ Jt 1 2E! P2 1 OP3#Q*S*

1 @~Dt 1 3A! P2 1 KP3#S*2% x̂2

1 $@~2It 1 2H! P2 1 2MP3#Q*R* 2 @~2Gt 1 J! P2 1 PP3#Q*S*

2 @~ Jt 1 2E! P2 1 OP3#R*S* 1 @~2Ft 1 2D! P2 1 NP3#S*2% x̂ŷ

1 $@~It 1 H! P2 1 MP3#R*2 2 @~2Gt 1 J! P2 1 PP3#R*S*

1 @~3Bt 1 F! P2 1 LP3#S*2% ŷ2,

ĝ3 5 ~2CQ*3 1 HQ*2S* 2 EQ*S*2 1 AS*3! x̂3

1 ~23CQ*2R* 1 IQ*2S* 1 2HQ*R*S* 2 JQ*S*2 2 ER*S*2 1 DS*3!x̂2ŷ

1 ~23CQ*R*2 1 2IQ*R*S* 2 GQ*S*2 1 HR*2S* 2 JR*S*2 1 FS*3!x̂ŷ2

1 ~2CR*3 1 IR*2S* 2 GR*S*2 1 BS*3! ŷ3.

With this representation it was possible to take the result of f̂2 and ĝ3 with
respect to x̂ without overflowing the memory of the machine. The result
could be factored, and [P6(t)]6 was one of the factors.

The factor [P3(t)]6 proved to be more difficult to obtain. After the factor
[P6(t)]6 was removed from the result, the substitution Q* 5 P2

2 P3 2 tR*
was used to eliminate Q* from the remaining factor. This remaining factor
was split into 28 terms, as follows:

A1R*6 1 A2R*5S* 1 A3R*5 1 A4R*4S*2 1 A5R*4S* 1 A6R*4 1 A7R*3S*3

1 A8R*3S*2 1 A9R*3S* 1 A10R*3 1 A11R*2S*4 1 A12R*2S*3

1 A13R*2S*2 1 A14R*2S* 1 A15R*2 1 A16R*S*5 1 A17R*S*4

1 A18R*S*3 1 A19R*S*2 1 A20R*S* 1 A21R* 1 A22S*6

1 A23S*5 1 A24S*4 1 A25S*3 1 A26S*2 1 A27S* 1 A28 (14)

The coefficients Ai are functions of A through P, P2, and P3, and range
from 76 terms in the case of A22 to 1674 terms for A5 (these coefficients
must be omitted due to space limitations). These substitutions were made
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next:

R* 5 M2P2
2 1 N2P2P3

(15)
S* 5 M3P2

2 1 N3P2P3 1 SP3
2.

These substitutions will be made later:

M2

N2

5 3Bt2 1 2Ft 1 D

5 2Lt 1 N

M3 5 Gt2 1 Jt 1 E

N3 5 Pt 1 O
(16)

so that the system (15 and 16) agrees with the definitions of (12 and 13).
These substitutions are made to express the results in terms of P3 as much
as possible, so as to more readily determine what powers of P3 divide into
the coefficients Ai.

Upon making the substitutions in (15), each of the terms AiR* jS*k

becomes a term Bi, where the Bi are functions of A through P, P2, and P3.
The number of terms in the Bi ranges from 140 for B28 to 48,960 for B7.
Each Bi can be regarded as a polynomial in P3. The highest power of P3
appearing in any term is P3

15 in B28. Since we are trying to show that (i51
28

Bi is divisible by P3
6, we need only consider the terms of the Bi which do not

contain any power of P3 greater than or equal to six. That is,

if Bi 5 O
i50

15

biP3
i ,

let Ci 5 O
i50

5

biP3
i .

It turns out that each of the Ci is divisible by P2
10, so let Di 5 Ci/P2

10.
We now make the substitutions

A 5 P3 2 Bt3 2 Ft2 2 Dt

K 5 2P2 2 Lt2 2 Nt

into terms Di to produce more terms Ei. The latter are now functions of B,
C, . . . , J, L, M, . . . , P, P2, and P3. Each of the Ei turns out to be
divisible by P3

2. As was the case with the Bi, we remove powers of P3
greater than or equal to 6 from the Ei. When we do that, all of the resulting
terms are divisible by P2. Thus,

if Ei 5 O
i52

8

eiP3
i ,
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let Fi 5 ~O
i52

5

biP3
i !/P2 .

(the highest power of P3 appearing in Ei is 8, in 7 of the Eis.)
The sum of all the terms of Fi is 61,170. Since this is less than 216, all of

Fi can be added in Maple to obtain one large expression, which can be
expressed as a polynomial in P2 and P3, as follows:

~G1P2
4 1 G2P2

3 1 G3P2
2 1 G4P2 1 G5! P3

5 1 ~G6P2
4 1 G7P2

3 1 G8P2
2 1 G9P2! P3

4

1 ~G10P2
4 1 G11P2

3 1 G12P2
2! P3

3 1 ~G13P2
4 1 G14P2

3! P3
2. (17)

By using Maple we were able to show that each of the four terms enclosed
in parentheses in (17) vanish. The fourth term, (G13P2

4 1 G14P2
3), was

shown to be zero by making the three substitutions of (16), namely N2 5
2Lt 1 N, N3 5 Pt 1 O, and (after simplifying) M3 5 Gt2 1 Jt 1 E, and
then determining that the result was divisible by M2 2 3Bt2 2 2Ft 2 D.
The same procedure worked for the third term in parentheses in (17),
(G10P2

4 1 G11P2
3 1 G12P2

2), and for these combinations: (G6P2
4 1 G7P2

3),
G8P2

2, G9P2, (G1P2
4 1 G2P2

3 1 G3P2
2), G4P2, and G5. Thus the expression

in (17) vanishes; and since this is the remainder of the result (14) upon
division by P3

6, we conclude that the entire expression (14) is divisible by
P3

6. e
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