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AbstractÐMany approaches to simpli®cation of triangulated terrains and surfaces have been proposed
which permit bounds on the error introduced. A few algorithms additionally bound errors in auxiliary
functions de®ned over the triangulation. We present an approach to simpli®cation of scalar ®elds over
unstructured grids which preserves the topology of functions de®ned over the triangulation, in addition
to bounding of the errors. The topology of a 2D scalar ®eld is de®ned by critical points (local maxima,
local minima, saddle points), in addition to integral curves between them, which together segment the
®eld into regions which vary monotonically. By preserving this shape description, we guarantee that iso-
contours of the scalar function maintain the correct topology in the simpli®ed model. Methods for top-
ology preserving simpli®cation by both point-insertion (re®nement) and point-deletion (coarsening) are
presented and compared. # 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Scienti®c data is often sampled or computed over a

dense mesh in order to capture high-frequency com-

ponents or achieve a desired error bound.

Interactive display and navigation of such large

meshes is impeded by the sheer number of triangles

required to su�ciently model highly complex data.

A number of simpli®cation techniques have been

developed which reduce the number of triangles to

a particular desired triangle count or until a par-

ticular error threshold is met. Given an initial tri-

angulation M of a domain D and a function F (x)
de®ned over the triangulation, the simpli®ed mesh

can be called M' and the resulting function F0(x).
The measure of error in a simpli®ed mesh M' is

usually represented as

E�M0� � max
x2D
�jF�x� ÿ F0�x�j�: �1�

The ability to bound the error E(M') is very import-

ant, but the error de®nition (1) is inherently a local

measure, neglecting to consider global features of

the data. We introduce new criteria for the simpli®-

cation of sampled functions which preserves scalar

®eld features in addition to bounding local errors.

Two-dimensional scalar ®eld topology is described

by the critical points and arcs between them.

Preserving the scalar ®eld criticalities maintains an

invariant of the connectivity and combinatorial

structure (topological genus) of successively simpli-

®ed isocontours.

In Section 2 we discuss related work in mesh sim-

pli®cation and feature detection. Section 3 intro-

duces the de®nition of 2D scalar topology as it will

be used in our simpli®cation strategy. In Section 4
we introduce two algorithms for simpli®cation with
topology preserving characteristics. The ®rst is an

extension to existing coarsening techniques which
iteratively delete vertices or contract edges in the
mesh. The second algorithm adopts an inverse

approach, iteratively introducing detail (re®nement)
to an initially sparse mesh, preserving the scalar
topology of the ®ne mesh.

2. RELATED WORK

2.1. Simpli®cation
A wide variety of algorithms have been developed

for the simpli®cation of meshes. We present a brief
overview of the classes of algorithms which have
been proposed for geometry and data simpli®ca-
tion.

2.1.1. Vertex insertion/deletion. A large class of
data and geometry simpli®cation algorithms are
based on successive application of one or more

topological mesh operators, such as edge contrac-
tion, which contracts an edge of the mesh to a
point, or vertex deletion, in which a vertex and adja-

cent triangles are removed and replaced with a cov-
ering of the resulting hole. Point insertion and
deletion approaches have been explored by many

researchers for application in geographical infor-
mation systems (GIS). A common technique is to
extract key points of data from the originally dense
set of points and compute a Delaunay triangulation
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[7, 11, 12, 33, 39, 41]. Silva et al. [37] use a greedy

approach for inserting points into an initially sparse
mesh. Schroeder et al. [36] compute reduced rep-
resentations for dense triangular surface meshes

such as those computed by marching cubes [25] or
similar isosurfacing algorithms. Vertices in the
dense mesh are examined and classi®ed based on

geometric features in the triangulation surrounding
the vertex. If error criteria are satis®ed, the vertex is

deleted and the resulting hole is retriangulated.
Retriangulation is guided by local edges detected in
the classi®cation stage and aspect ratios of new tri-

angles. Several passes over the object successively
remove vertices until no vertex satis®es the criteria
for removal. There is no cumulative error measure,

and therefore no guarantee on the amount of accu-
mulated error in the ®nal representation. Hamann

[15] applies a similar technique in which triangles
are considered for deletion based on curvature esti-
mates at the vertices. Reduction may be driven by

mesh resolution or, in the case of functional sur-
faces, root-mean-square (RMS) error. Ronfard and
Rossignac [34] apply successive edge contraction

operations to compute a wide range of levels-of-
detail for triangulated polyhedra. Edges are

extracted from a priority queue based on a com-
puted edge cost such that edges of lesser signi®cance
are removed ®rst. GueÂ ziec [14] introduces a toler-

ance volume for bounding the error resulting from
successive edge contraction operations. The result-
ing merged vertex is positioned such that the

volume remains constant. Cohen et al. [6] introduce
Simpli®cation Envelopes to guide mesh simpli®ca-

tion with global error bounds. Envelopes are an
extension of o�set surfaces which serve as an
extreme boundary for the desired simpli®ed surface.

2.1.2. Region merging. Hinker and Hanson [19]
perform ``geometric optimization'' on triangular
surface meshes by grouping faces into contiguous

sets which are nearly co-planar. Points interior to a
region and points along nearly linear boundaries of
regions are deleted and the resulting hole is retrian-

gulated. Kalvin and Taylor [24] cluster mesh faces
into superfaces, triangulating the resulting polygons

for a simpli®ed representation.
2.1.3. Filtering. Filtering techniques are capable

of producing a large range of simpli®ed models

through application of grouping and merging rules.
An attractive feature of ®ltering techniques is the
ability to simplify objects to a minimal represen-

tation through successive applications. Subsampling
is a simple type of ®ltering which is easily applied

to subdivision meshes for which there exists a natu-
ral remeshing when nested sets of vertices are suc-
cessively deleted. The major drawback to

subsampling is that there is no bound on the error
which is introduced through its application. Ros-
signac and Borrel [35] use clustering and merging of

features of an object based on a regular spatial sub-
division. Clustering approaches have the advantage

that small features which are geometrically close

but not topologically connected can be grouped and
merged for higher rates of simpli®cation. In this
scheme long, thin objects may collapse to an edge

and small objects may contract to a point. He et al.
[16] provide more control over subsampling of regu-
lar grids by ®ltering the simpli®ed mesh at each

step. The regular grid corresponds to a sampling of
the signed-distance function of a 3D surface. A

multi-resolution triangle mesh is extracted from the
resulting multi-resolution volume bu�er using tra-
ditional isosurfacing techniques.

2.1.4. Optimization. Optimization methods de®ne
measures of energies for point sets or triangulations
based on an original mesh, and use interactive op-

timization to minimize these energies in forming a
simpli®ed mesh. Turk [40] computes simpli®ed pol-
ygonal surfaces at a desired number of vertices.

Contrast this with the point insertion and deletion
methods which are usually driven by error compu-

tations rather than desired resolution. Given the
desired number of vertices, point repulsion on the
polygonal surface spreads the points out. A mutual

tessellation of the original triangulation and the
introduced points followed by deletion of the orig-
inal vertices guarantees that the topology of the

polygonal surface is maintained. Point repulsion is
adjusted based on estimated curvature of the sur-

face, providing an adaptive triangulation which
maintains geometric features. Hoppe et al. [21] per-
form time-intensive mesh optimization based on the

de®nition of an energy function which balances the
need for accurate geometry with the desire for com-
pactness in representation. The level of mesh simpli-

®cation is controlled by a parameter in the energy
function which penalizes meshes with large numbers

of vertices, as well as a spring constant which helps
guide the energy minimization to a desirable result.
In [20], Hoppe applies the optimization framework

to the simpli®cation of scalar ®elds.
2.1.5. Multi-resolution analysis. Multi-resolution

analysis is a structured mathematical decomposition

of functions into multiple levels of representation.
Through the use of wavelet transforms [10, 27], a

hierarchical representation of functions can be
obtained by repeatedly breaking the function into a
coarser representation and a corresponding set of

perturbation coe�cients which allow the full recov-
ery of the original representation from the coarse
representation. Generally, the wavelet basis is cho-

sen such that the perturbation coe�cients have
desirable attributes such as direct correlation with

some measure of error which is introduced at a
given level of representation. During reconstruction
from the wavelet representation, su�ciently small

wavelet coe�cients can be left out, resulting in a
coarser approximation to the original data, with a
known bound on the amount of error [8, 26, 38].

Further extensions have provided a similar basis for
the decomposition of surfaces [9]. Muraki [31]
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applies wavelets in 3D to compute multi-resolution
models of 3D volume data. Isosurfaces and planar

cross sections of the resulting data show little
change in image quality with large reductions in the
amount of data representing the volume.

2.2. Feature detection
The problem of detecting ridges and valleys in

digital terrain has been considered in several papers
[12]. McCormack et al. [29] consider the problem of
detecting drainage patterns in geographic terrain.

Interrante et al. [22] used ridge and valley detection
on 3D surfaces to enhance the shape of transpar-
ently rendered surfaces. Extrema graphs were used

by Itoh and Koyamada to speed isocontour extrac-
tion [23]. A graph containing extreme points and
boundary points of a scalar ®eld can be guaranteed
to intersect every isocontour at least once, allowing

seed points to be generated by searching only the
cells contained in the extrema graph. Helman and
Hesselink detect vector ®eld topology by classifying

the zeros of a vector ®eld and performing particle
tracing from saddle points [18]. The resulting parti-
tioning consists of regions which are topologically

equivalent to uniform ¯ow. Globus et al. [13]
describe a software system for 3D vector topology
and brie¯y note that the technique may also be

applied to the gradient of a scalar ®eld in order to
identify maxima and minima. Bader [1] examines
the gradient ®eld of the charge density in a molecu-
lar system. The topology of this scalar ®eld rep-

resents the bonds linking together the atoms of the
molecule. Bader goes on to show how higher level
structures in the topology represent chains, rings,

and cages in the molecule.

2.3. Our approach

Simpli®cation techniques have advanced to the
point at which it is useful to now consider preser-
ving global mesh and data features. In the following

section we present a de®nition and method of com-
putation of scalar ®eld topology, which describes
scalar ®eld structure in terms of criticalities and re-
lationships between them and captures the topologi-

cal connectivity of isocontours. Based on these
de®nitions, we develop two approaches for simpli®-
cation which are motivated by the preservation of

the scalar topology, and hence the preservation of
the topology of approximate isocontours. The ®rst
approach uses a bottom-up simpli®cation approach,

consisting of a small set of consistency checks
which guarantee scalar topology consistency for the
case of iterative simpli®cation by point deletion or

edge contraction. The second approach inverts the
order of operation, beginning with the scalar top-
ology computation, which serves as a sparse base
mesh which is re®ned to meet error-bound criteria.

3. SCALAR FIELD TOPOLOGY

Scalar ®eld structure can be characterized by the

critical points of the scalar ®eld and higher-order

relationships between them [4]. A point x is a criti-

cal point on the scalar function F (x) if all ®rst-

order partial derivatives of F evaluated at x are

zero [30]. In degenerate cases, a critical point may

be part of a larger critical curve or critical region.

We will restrict our attention to critical points,

because our motivating work is not greatly a�ected

by the treatment of these special cases.

For our purpose of feature detection and appli-

cation to simpli®cation, the topology of a scalar

®eld F de®ned over a domain D consists of the fol-

lowing:

(i) The local maxima of F .
(ii) The local minima of F .
(iii) The saddle points of F .
(iv) Selected integral curves joining each of the

above.

Integral curves are de®ned as curves which are

everywhere tangent to the gradient ®eld of F . In

vector ®eld topology, the curves adverted in the

¯ow-®eld segment the ®eld into regions which are

topologically equivalent to uniform ¯ow [17]. In the

case of scalar topology, the analogous property

holds that integral curves partition the ®eld into

regions in which the gradient ¯ow is uniform, or in

other words, the scalar function is monotonic.

Another way of understanding this property is that

within each region, the isocontours of the scalar

®eld will consist of a single connected component.

Figure 1 displays several isocontours of a scalar

®eld and the corresponding scalar ®eld topology.

Fig. 1. Isocontours (dashed) of a scalar ®eld along with
the critical points and integral curves.

Fig. 2. A surface representation of the function in Fig. 1.
A change of contour topology occurs at the saddle point.
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Figure 2 displays a surface representation of the
same ®eld.
The procedure for computation of scalar top-

ology can be broken down into three stages:

(i) Detect critical points of F .
(ii) Classify critical points.

(iii) Compute selected integral curves in gradient
®eld.

In the following subsections we describe the above

components under the assumption that the scalar
®eld F has continuous ®rst derivatives. In Section
3.4 we will remove this restriction and discuss scalar

topology computation for the case of a piecewise
C0 function de®ned over a triangulation.

3.1. Computing critical points
Critical points of a scalar function are de®ned as

points at which the gradient vanishes [28]. Given a
d-dimensional scalar ®eld F , the critical points cor-

respond to solutions of the system of equations:

@F
@x1

..

.

@F
@xd

0BBBB@
1CCCCA �

0

..

.

0

0BB@
1CCA:

3.2. Classi®cation of critical points

Qualitative information about the behavior of the
gradient ®eld near a critical point is obtained by
analysis of the Hessian of F (2D):

@2F
@x2

@2F
@x@y

@2F
@y@x

@2F
@y2

24 35:
The eigenvalues (e1, e2) and eigenvectors (v1, v2) of

the above matrix relate to the behavior of the gradi-
ent ®eld, and hence the scalar ®eld, near the critical
point, much the same as for the behavior of a gen-

eral vector ®eld [5, 18]. One di�erence to note is
that for a gradient ®eld the matrix of derivatives is
symmetric (@2F /@x@y = @2F /@y@x), and therefore
the eigenvalues are real. This is intuitively expected,

as imaginary eigenvalues indicate rotation about the
critical point, and a gradient ®eld is an irrotational

vector ®eld. This observation allows us to simplify
the classi®cation of critical points to the cases
depicted in Fig. 2 (additional degenerate criticalities

exist when e1=0 or e2=0).
A positive eigenvalue corresponds to gradient

¯ow away from the critical point, while a negative

eigenvalue indicates gradient ¯ow toward the criti-
cal point. In the case of a saddle point, there is gra-
dient ¯ow toward and away from the critical point,

distinguishing them from the ®eld behavior near
other critical points. In this case, the eigenvectors
corresponding to the positive and negative eigen-
values de®ne the separatrices of the saddle in the

directions of ¯ow toward and away from the critical
point, respectively. It is this property that is used in
the next section to compute integral curves in the

gradient ®eld.

3.3. Computing integral curves

Having computed and classi®ed the critical
points, the ®nal step for describing the scalar top-
ology is the tracing of selected integral curves

between the detected points. Saddle points have the
property that the eigenvectors of the Hessian are
the separatrices of the saddle. The behavior of the

scalar ®eld near the saddle point can be determined
based on the behavior of the function in the direc-
tion of the eigenvectors. Integral curves are de®ned
as curves which are everywhere tangent to the gra-

dient ®eld of F . For a 2D scalar ®eld, four integral
curves meet at a saddle, dividing the domain into
regions. Two curves follow the (forward and back-

ward) direction corresponding to the positive eigen-
value, and two follow the direction corresponding
to the negative eigenvalue.

Integral curves can be computed e�ciently using
a 4th-order adaptive step Runge Kutta integration
in the gradient ®eld [32]. The initial position for the

iterative stepping is placed a small distance from
the saddle point along the appropriate eigenvector.
Computation of the integral curve ends when we
reach the vicinity of another critical point within a

certain E, in which case the curve terminates at that
point. Other curves may end at the boundaries of
the mesh. The scalar topology for a simple function

is shown in Fig. 4.

3.4. Piecewise linear topology

Critical point analysis for functions with continu-
ous derivatives provides a fundamental theory for
describing the structure of scalar ®elds. Extending

these de®nitions for functions which are not smooth
requires relaxation of some of our de®nitions. We
address the case of a function which is sampled at

the vertices of a 2D triangle mesh and linearly in-
terpolated within each triangle.
For the case of a piecewise linear function, we

must revise our de®nition of ``critical point'' due to

Fig. 3. Scalar critical point classi®cations.
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the fact that the gradient is not everywhere de®ned.

The feature that we want to capture is the change

in the topology of the isocontours, as was illus-

trated in Fig. 2. It is clear that the contour topology

does not change within a triangular cell, and so we

con®ne our attention to the classi®cation of vertices

with respect to the local neighborhood. In the gen-

eral case at a vertex, the gradient is unde®ned, and

may be considered to take on a range of values

based on the normals of the adjacent triangles, as il-

lustrated in Fig. 5. As a result, critical points are

de®ned as vertices at which the normal space of the

adjacent triangles include the vector (0, 0, 1).

Figure 4 illustrates several of the cases which may

occur. Fig. 6 shows the cases of pseudo-critical

points.

Computation of integral curves requires a similar

modi®cation, as the gradient is unde®ned along the

edges of the triangulation as well. Given a saddle

point in a piecewise linear triangulation, the local

topology is determined by examining the adjacent

vertices in a clockwise or counter-clockwise order.

Each local maximum or local minimum in this 1D

ordering corresponds to a ``ridge'' or ``channel'' of

the scalar ®eld. Integral curves can be computed by

traversing the edges of the triangulation corre-

sponding to ridges and channels. Figure 3 illustrates

a the topology of a piecewise-linear function similar

to that presented in Figs 1 and 7.

4. TOPOLOGY PRESERVING SIMPLIFICATION

We describe two approaches to the simpli®cation
of functional meshes while maintaining the struc-

ture, as de®ned by the scalar topology. We assume
that the domain is discretized by a triangular mesh
M of nt triangles Ti and nv vertices Vj. The function
F (x) is de®ned for x = Vj and is linearly interp-

olated over each triangle. F (Ti) is used to represent
the local interpolant over a triangle.

4.1. Bottom-up simpli®cation

In this section we derive necessary and su�cient
conditions which avoid the change of scalar top-
ology in the framework of existing point-deletion or
edge contraction simpli®cation techniques.

The basic framework of our approach is an
error-bounded removal of vertices based on an
ordering criteria [2, 3]. We restrict our simpli®cation

to use the original vertices and to local operations
such as vertex deletion and vertex collapse, as illus-
trated in Fig. 8. The new mesh which results from

the k-th step of simpli®cation is called Mk, and its
triangles are denoted Tk

i . We further de®ne F k(x) to
represent the piecework de®ned height function as-
sociated with the mesh Mk. Note that for all tri-

angles not involved in the operation at step k,
Tk
i=Tk ÿ 1

i and thus F k(Tk
i )=F k ÿ 1(Tk ÿ 1

i ).
Initially, we have M0=M and T0

i=Ti.

Error bounds are computed using a two-phase
process: (i) measurement of error introduced by a
point deletion and (ii) approximation of the accu-

Fig. 4. Scalar topology of a simple scalar ®eld. In this
example only interior criticalities are computed.

Additional criticalities occur at the boundaries.

Fig. 5. Normal space (left) for a cluster of three triangles
incident on a vertex (right).

Fig. 6. A subset of the pseudo-critical points for a piece-
wise linear scalar ®eld.

Fig. 7. Topology of a piecewise linear scalar ®eld.
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mulated error due to all point deletions in an over-

lapping region. In the following sections we describe

the approach for bounding errors and derive con-

ditions which preserve the topology of our given

function.

4.1.1. Local measurement of error. The ®rst step

in maintaining an error-bound on the simpli®cation

is to measure the error introduced by deleting a ver-

tex or collapsing an edge. Computing the intro-

duced error is particularly simple due to the limited

local in¯uence of the operation.

As illustrated in Fig. 9, a local retriangulation

due to removal of a vertex replaces the triangles

Tk ÿ 1
i with triangles Tk

i . The error incurred at any

point x in the local domain is quanti®ed by the

di�erence between the interpolated function value

in the two triangulations, de®ned as

Ek(x)=F k ÿ 1(x)ÿF k(x). As the di�erence of two lin-

ear functions is again linear, the introduced error is

de®ned as a piecewise linear function over the de-

composition implied by the intersections of the tri-

angulations, as illustrated above. The regions of the

decomposition are called Rk
i and the (continuous)

range of introduced error across the region is

[EÿI (R
k
i ), E+I (Rk

i )]. Note that the E+/ÿ
I (Rk

i ) represent

signed error values, and that the minimum and

maximum errors occur at the extreme points of the

convex regions, and thus can be determined by

computing the errors at only a few points in the

domain.

4.1.2. Global errors from local errors. Equally im-

portant as the measurement of error introduced

through one simpli®cation operation is the measure-

ment or approximation of errors which accumulate

through successive operations. Features which are
desirable in, or even required for, an error approxi-

mation strategy include:
Ð The estimation of error must be strict (must

not underestimate the actual error).

Ð The estimation should be tight, such that the
estimate provides a useful measure of the actual

error.

At the same time, our desire for scalability and
e�ciency for extremely large scienti®c datasets

requires that the strategy for bounding errors be
simple and not impose a signi®cant cost in addition

to computing the introduced errors. We have

designed a simple error representation and accumu-
lation scheme which ful®lls these criteria.

4.1.3. Error representation. We associate with
each triangle two ¯oating-point errors Eÿ(Tk

i ) and

E+(Tk
i ) (illustrated in Fig. 10, such that x $ Tk

i

F k�x� ÿ Eÿ�Tk
i � <� F�x� <� F k�x� � E��Tk

i �: �2�
Initially, Eÿ(T0

i ) = E+(T0
i ) = 0, indicating that the

original representation is exact. Note that one can

easily incorporate input data with known source
error bounds into this scheme by initializing the

error bounds appropriately.
With such a representation in hand, we examine

the problem of computing the errors E+/ÿ(Tk
i ) given

E+/ÿ(Tk ÿ 1
i ) such that inequality (2) is maintained as

an invariant. We noted previously that the local
domain is segmented into regions in which the

introduced error varies linearly. Each introduced

triangle Tk
i maps to a set of regions {Rk

i,0 . . .Rk
i,r}.

For each region Rk
i,j we determine the minimal suf-

®cient error range which aggregates the existing
error with the accumulated error. Each region Rk

i,j

corresponds to a portion of a triangle Tk
j with as-

sociated error interval [Eÿ(Tk
j ), E

+(Tk
i )] and by inter-

val arithmetic we arrive at the following inequality
which bounds the error over the region Rk

i :

F k�Rk
i;j�ÿEÿ�Tk

i � ÿ EÿI �Rk
i;j� <� F�Rk

i;j�

<� F k�Rk
i;j� � E��Tk

i � � E�I R
k
i;j

which leads to the accumulated error interval

Eÿ�Rk
i;j� � Eÿ�Tk

i � � EÿI �Rk
i;j�

E��Rk
i;j� � E��Tk

i � � E�I �Rk
i;j�:

For a minimal bound on the triangle Tk + 1
i it is

su�cient to take the maximum of the E+/ÿ(Rk
i,j) for

all regions Rk
i,j, which contribute to the triangle Tk

i .

This process is illustrated geometrically for a simple
1D example in Figs 11 and 12.

4.1.4. Preserving local topology. Topology preser-

vation is easily integrated into a vertex-delete and
edge-contract simpli®cation framework by consider-

ing the topology of the contours in the neighbor-
hood of each candidate edge being considered for

Fig. 8. General simpli®cation operations applied to a local
region of the mesh in (a). In (b), the resulting triangu-
lation is formed by collapsing the deleted point to an adja-
cent point. In (c), the retriangulation is general and may

be chosen to minimize the error introduced.

Fig. 9. Measurement of introduced errors at black vertices
and the fragmentation into linear error regions. The intro-
duced error at the white vertices and along the boundary

is zero.

C. L. Bajaj and D. R. Schikore8



Fig. 10. 1D illustration of the accumulated error bound representation.

Fig. 11. Geometric interpretation of the accumulation of error bounds. The introduced error EI contrib-
utes to the error interval as illustrated.

Fig. 12. Illustration of propagation of error bounds. As each successive point is deleted, the error
bounds on each segment are updated to re¯ect the minimum bound between the new segment and the

original polyline.

Fig. 13. Illustration of topology preserving and topology modifying edge contraction operations.

Topology preserving data simpli®cation 9



contraction. Figure 13 illustrates edge contract op-

erations which preserve the original topology of the

®eld as well as edge contraction operations which

modify the original topology.

Topology preservation can be enforced by com-

paring the classi®cation of the vertices in the local

neighborhood before and after the edge contraction.

If the collection of classi®cations change, criticalities

have either been introduced or destroyed. Note that

criticalities may move from one vertex to a neigh-

boring vertex without modifying the ®eld topology.

If this is undesirable, one can enforce that only

regular points be contracted to a neighbor. Note

that topology preserving simpli®cation of the scalar

®eld in general also simpli®es the scalar topology

diagram (the piecewise linear arcs between the criti-

cal points).

4.1.5. Ordering of operations. Critical to the suc-

cess of an error approximation approach is the

order in which vertices are selected for removal.

Vertex selection by priority queue approaches have

permitted simpli®cation which spans wide ranges of

resolution [34].

We apply a priority queue driven approach which

initially measures the error introduced by removal

of each vertex. At each simpli®cation step, the ver-

tex which introduces the minimum error is extracted

and the simpli®cation operation is applied. After
each operation, neighboring vertices which are
a�ected by the result are reprioritized based on the

accumulated error which results from their removal.
4.1.6. Examples. Figure 14 illustrates the features

of a topology preserving mesh simpli®cation

scheme. Using the same input triangulations, two
simpli®cation strategies are applied. The mesh in
Fig. 14(b) is the result when topology preserving

criteria are enforced. The mesh in Fig. 14(c) is the
result when only local error bounds are used to
guide the simpli®cation.

4.2. Top-down simpli®cation
Coarsening techniques are desirable for their sim-

plicity. Another class of simpli®cation works in the

opposite order, adding detail to an initially coarse
triangulation. In this section we consider the appli-
cation of scalar ®eld topology in guiding the inser-

tion and triangulation. The scalar ®eld topology
diagram consists of a subset of the edges of a tri-
angular mesh. Top-down simpli®cation proceeds

beginning with a base mesh consisting of the critical
points in addition to edges connecting those critical
points which are connected by an arc in the scalar
topology diagram. Figure 15 illustrates the base

Fig. 14. (a) Close-up of input triangulation of MRI data of a heart, with contour in white; (b) a top-
ology preserving simpli®ed mesh; (c) simpli®cation which violates the original topology; (d±f) the as-

sociated triangulations.
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mesh construction from an initial dense mesh based
on the scalar topology diagram.

Having constructed a base mesh, iterative re®ne-
ment operations can be applied, in order to recon-
struct both the scalar ®eld and the scalar topology
diagram to a desired level of detail.

5. CONCLUSIONS

Error-bounded data simpli®cation techniques
have progressed rapidly in recent years. We have
described a de®nition of scalar ®eld structure which

makes it possible to preserve global features in ad-
dition to bounding local errors. The techniques
described can be applied to functions de®ned over

any 2D triangulation. The coarsi®cation strategy
can also accommodate functions de®ned over a 3D
surface triangulation, preserving the topology of
isocontours lying on the surface.

In future work we will extend the techniques
described to preserve isosurface topology in 3D
volume triangulations. Re®nement techniques for

3D surface triangulations will require a method for
combining the initial coarse mesh based on the sca-
lar ®eld topology with metrics for constructing a

coarse mesh based on geometry alone.
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