
Sliced Con�guration Spaces for Curved Planar

Bodies

Elisha Sacks and Chandrajit Bajaj

1398 Computer Science Building

Purdue University

West Lafayette, IN 47907, USA

May 2, 1997

Abstract

We present the �rst practical, implemented con�guration space computation algo-

rithm for a curved planar object translating and rotating amidst stationary obstacles.

The bodies are rigid, compact, regular, and bounded by a �nite number of rational

parametric curve segments. The algorithm represents the three-dimensional con�gura-

tion space as two-dimensional slices in which the moving object has a �xed orientation.

It discretizes the con�guration space into intervals of equivalent slices separated by

critical slices. The output is topologically correct and accurate to within a speci�ed

tolerance. We have implemented the algorithm for objects bounded by line segments

and circular arcs, which is an important class for applications. The program is simple,

fast, and robust. The slice representation is a natural and e�cient abstract data type

for geometric computations in robotics and engineering.

To appear in International Journal of Robotics Research

1



1 Introduction

We present the �rst practical, implemented con�guration space computation algorithm for a
curved planar object moving amidst stationary obstacles. Con�guration space computation
is important because it underlies algorithmic approaches to geometric reasoning. It supports
the robotics tasks of path planning [20] and compliant assembly [9]. It supports mechanical
engineering tasks that involve contact analysis, including mechanism design [26, 27], fastener
design [12], part feeder design [9, 10], functional tolerancing [18], �xturing [8], and design
for assembly [24, 30]. It supports the biomedical task of joint modeling [3, 19] (knees, hips,
elbows) for diagnosis, therapy, and prosthesis design. It provides an alternative to collision
detection for fast, robust dynamical simulation [28, 29].

Con�guration space is a concise, complete encoding of the motion constraints imposed on
a rigid object by contacts with rigid obstacles. It is a manifold, the Cartesian product of the
Cartesian plane and the unit circle, whose points represent the position and orientation of the
moving object with respect to the obstacles. Con�guration space partitions into free space
where the object does not touch the obstacles and into blocked space where it overlaps an
obstacle. The common boundary, called contact space, contains the con�gurations where the
object touches an obstacle without overlap. Only free space and contact space are physically
realizable. They represent the possible motions of the object and the couplings between its
degrees of freedom induced by contacts with the obstacle. Con�guration space computation
is the task of constructing a representation of the con�guration space partition.

Previous research provides con�guration space computation algorithms for polygonal
bodies. There are two main approaches. The �rst approach is to represent free space as a
semi-algebraic set bounded by contact surface patches. Each patch represents the motion
constraint when an object feature touches an obstacle feature. The patches intersect at
multiple contact con�gurations. The second approach is to represent free space as a sequence
of planar slices along the orientation axis where each slice represents the contact constraints
when the object translates with a �xed orientation. The properties of the three-dimensional
con�guration space are derived from the slices. For example, intermediate con�gurations
are interpolated from adjacent slices. The slices are chosen to ensure that the properties are
computed correctly.

Previous research does not provide practical algorithms for curved bodies despite their
importance in applications. Curved bodies are common in �ne motion planning, feeder
design, and �xture design. Polyhedral approximations are suboptimal because they introduce
spurious discontinuities in the contact constraints that distort the system dynamics. Curved
bodies are required to model coupled rotation, which occurs in pin joints, ball joints, gears,
cams, and many other mechanical assemblies. Curved bodies are necessary for joint modeling
because human joints exhibit compliant rotation.

We present a slice-based con�guration space computation algorithm for bodies bounded
by rational parametric curve segments. We partition the con�guration space along the

2



orientation axis into intervals of equivalent slices separated by critical slices where the contact
structure changes. We use the partition to compute the topology of the three-dimensional
con�guration space, to approximate the contact space geometry, and to derive specialized
properties for robotics, mechanical design, and dynamical simulation. We have programmed
a fast, robust implementation of our general algorithm for bodies bounded by line segments
and circular arcs, which is an important class for applications.

Our research contributes to the theory and practice of con�guration space computation.
We extend the slice approach from point and line contacts to curve contacts. The slices
generalize from polygons to semi-algebraic sets, slice computation generalizes from linear
algebra to algebraic geometry, and the slice equivalence computations generalize from sim-
ple geometric tests, such as parallel object/obstacle edges, to transversality conditions on
semi-algebraic sets. Our main theoretical result is an algebraic necessary condition for crit-
icality that is completely general and e�ciently solvable. We contribute the �rst practical
algorithm and working program for curved bodies. It is also the �rst slice-based program
that guarantees topological correctness for polygonal bodies. The program is simpler, more
robust, and probably faster than boundary algorithms because it computes and intersects
planar curve segments, whereas they compute and intersect surface patches.

The rest of the paper is organized as follows. The next section illustrates the role of
con�guration space in applications. Section 3 reviews previous work in con�guration space
computation. Sections 4{7 describe the components of our algorithm: the slice representa-
tion, criticality theorem, criticality computation, and slice construction. Sections 8 and 9
discuss the computational complexity of our algorithm and its robustness on non-generic
input. The paper concludes with a discussion of our results and with a plan for future work
on geometric computation using slices as abstract objects.

2 Applications

We illustrate the many applications of con�guration spaces on examples from knee modeling,
mechanism design, �xture design, and fastener design. The �rst two examples are open
research problems, whereas the second two are simple instances of active research areas.

2.1 Knee modeling

Figure 1 shows a planar knee model obtained by slicing the femur and tibia on the sagittal
plane. We hold the tibia �xed and allow the femur to move freely with position (x; y) and
orientation �. The �gure shows the femur in con�guration (x = 5; y = �3; � = 0:5) and
the corresponding (x; y) con�guration space for this orientation. The shaded region is the
blocked space where the femur and the tibia overlap. The white region is the free space. The
dot in free space marks the displayed con�guration of (5;�3). The contact space consists

3



x

y θ

x

y

-25 40

-10

50

Figure 1: Planar knee model with � = 0:5 and its (x; y) con�guration space.

of curve segments that represent contacts between the features of the tibia and the femur.
Figure 2 shows the three-dimensional con�guration space. The contact space is grey. The
blocked space is the interior of the contact space and the free space is the exterior.

The con�guration space supports joint modeling and analysis [3]. It describes the range
of motion of the tibia with respect to the femur and the con�gurations where it hyper-
extends. Speci�c motions, such as exion, extension, and rotation, correspond to paths in
con�guration space. The contact constraints allow us to formulate dynamical and stress
equations directly from geometric models of the parts annotated with material properties
and external forces.

2.2 Mechanism design

Figure 3 shows a cam mechanism from Artobolevsky's encyclopedia of mechanisms [1]. The
function of the mechanism is to advance the �lm in a motion picture camera by repeatedly
inserting the follower tip in a square hole on the side of the �lm, pushing the �lm down,
and retracting. The cam has a constant-breadth pro�le consisting of four arc segments. The
follower has a square pro�le whose sides are slightly longer than the cam breadth. The cam is
mounted on a rotating shaft, indicated by a small circle. The follower is mounted on a frame
that allows horizontal and vertical translation, but prevents rotation. Each rotation of the
cam causes the follower tip to follow the square path marked by the dashed line. We compute
the con�guration space of the cam relative to the follower, which amounts to moving the
cam while holding the follower �xed. The free space forms a narrow, spiral channel bounded
by the contact space, which is shown in grey. The blocked space, everything outside the
channel, is omitted for clarity.

4



x

θ

y

Figure 2: Con�guration space of planar knee model.

y

θ

x

Figure 3: Cam mechanism and its con�guration space. The dots on the cam pro�le delimit
its four constituent arc segments.

5



fixture

part

Figure 4: Part partially engaged in a �xture.

The con�guration space reveals the qualitative and quantitative function of the cam
mechanism to the designer, thus supporting functional design and tolerancing [17, 18]. The
free space consists of four almost linear bands. Starting from � = ��, the �rst and third
bands are parallel to the x axis, while the second and fourth are parallel to the y axis. The
cam pushes the follower left in the �rst band, down in the second, right in the third, and
up in the fourth. The fact that the channel spans the range of angles (��; �) indicates that
the cam rotates without interference from the follower. The width of the channel bounds
the relative motion of the follower with respect to the cam, called backlash, which can cause
part wear, vibration, and failure. The channel width, hence the backlash, is zero in an
ideal mechanism where the cam breadth equals the length of the inner sides of the follower.
The ideal design fails if the follower is slightly too large for the cam due to manufacturing
imprecision. The actual design accepts some backlash in order to guarantee correct function.
The designer computes the function by dynamical simulation based on the contact relations
encoded in the con�guration space.

2.3 Fixture design

Figure 4 shows a �xture adapted from Caine [9]. The purpose of the �xture is to hold the
part in a speci�c con�guration for transport, machining, and assembly. It must hold the part
stably, must provide access to the part by tools or other parts, and must easily engage and
disengage the part. Brost [8] uses con�guration spaces to support the design of polygonal
�xture/part pairs that meet these goals. The goals translate into constraints on the contact
space geometry that express part support, stability, frictional sticking, and accessibility. Our
algorithm extends Brost's method to curved parts and �xtures.

Figure 5 shows the con�guration space of the �xture pair and the slice � = 0 where the
part engages in the �xture. The engaging con�guration (x = 2:1; y = �0:7; � = 0) is a local

6



y

θ

x

x

y

-5 10

-4

7

Figure 5: Fixture con�guration space and � = 0 slice.

maximum of the slice contact space (marked by a dot) and of the three-dimensional contact
space. The well around the maximum consists of con�gurations where the part partially
engages. A similar well appears at � = � where the part engages upside down. The rest of
the contact space represents non-functional contacts between the part and the outer surfaces
of the �xture.

2.4 Fastener design

Fastener design is another important application of con�guration spaces [12]. Figure 6 shows
a simple example of a moving pin and a �xed fastener. The user rotates the pin to the vertical
position, translates it vertically into the fastener slot, and rotates it to the horizontal position.
The free space consists of a single component in slices where the pin is near vertical and of
two components otherwise. The components are tangent in the critical slices that separate
the two cases. The critical slices are the key to a correct design because they model the
transitions between the locked and open states.

Figure 7 shows the three-dimensional con�guration space. The contact space consists
of two roughly rectangular contours connected by narrow channels. The outer and inner
contours represent contacts between the pin and the outside and the inside of the fastener.
The channels, which occur near � = 0 and � = �, represent contacts between the pin and
the slot. The channels begin and end at � values where the pin simultaneously touches both
sides of the slot.

7



x

y

-7 7

-8

3

x

y

-7 7

-8

3

Figure 6: Fastener pair vertical and horizontal con�guration space slices.

8



θ

y

x

Figure 7: Fastener con�guration space.

2.5 Reconstruction

We construct boundary representations of sliced con�guration spaces with an algorithm that
we developed in previous work [6]. We render the boundary representation to obtain the
images shown in Figures 2, 3, 5, and 7. We can selectively construct the portion of the
boundary within a bounding box or between two slices. Partial reconstruction is the key to
e�cient implementations of the manipulation tasks described in the conclusion. The inputs
are the slices and the correspondence between the segments in adjacent slices. The output is
a triangulated contact patch built by �tting triangles between adjacent slices and sometimes
within slices. We can �t smooth patches to the triangles in a variety of ways [5].

The algorithm provides general solutions to the inherent reconstruction problems of con-
tour tiling, correspondence, and contour branching given only the slices [25]. Tiling means
triangulating the strip between two adjacent slices. The results must be topologically correct
and can also optimize metric properties such as surface area and enclosed volume. Corre-
spondence means matching contours in adjacent slices. Contour branching means matching
several contours in one slice to a single contour in an adjacent slice. We specialize the al-
gorithm to exploit the fact that the segment correspondence is known, in contrast to image
reconstruction where missing critical slices create ambiguous topologies. The correspondence
and contour branching problem vanish, tiling is simpler, and the algorithm is much faster.

9



knee mechanism �xture fastener

features 22 16 36 32
criticalities 125 64 155 118
time 4 1 1 0
slices 165 133 156 133
time 27 6 7 4
total time 31 7 8 4

Figure 8: Runtime statistics for the applications (times in seconds).

2.6 Run times

Figure 8 summarizes the runtime statistics on the four examples. The program is written
in Allegro Common Lisp. The running times are on an SGI Indigo 2 workstation with
64MB of main memory and a 250 Mhz processor. The features entry lists the total number
of line segments, circular arcs, and endpoints on the object and obstacle boundaries. The
endpoints are counted because they generate their own contacts and criticalities. The times
are in seconds averaged over three runs.

3 Previous work

The con�guration space approach to robot motion planning originates in the work of Lozano-
P�erez [22]. It has spawned a large literature that is surveyed by Latombe [20]. We discuss
only the portions relevant to our work.

Several boundary-based con�guration space computation methods have been developed
for bodies bounded by algebraic curve segments [20]. The task is formulated algebraically.
The condition that the moving object touch an obstacle without overlap yields multivariate
polynomial inequalities in the con�guration space coordinates. The equations are solved
by algebraic methods, such as cylindrical decomposition or Gr�obner basis calculation. The
solution set is the contact space. None of the algorithms has been implemented, perhaps
because of their intricacy or because of the slowness of the underlying algebraic solvers.

Several researchers have implemented boundary-based algorithms for polygonal bodies.
The contact space consists of ruled surface patches generated by contacts between a moving
vertex and an obstacle edge or between a moving edge and an obstacle vertex. Avnaim
et al. [2] compute the contact patches by tracing their generating line segments through
the range of orientations over which the patches are de�ned. They compute the singular
orientations where changes occur in the number of segments or in the expressions that de�ne
their endpoints. They link adjacent patches to obtain the boundary topology. Brost [8]
presents a similar algorithm that produces correct con�guration spaces on 1599 out of 1600
challenging test cases. He computes contact patches by tracing the boundary curve segments

10



where vertex/vertex contacts occur. He intersects the patches and analyzes the arrangement
of intersection edges to compute the contact space. Caine [9] computes contact patches at
interactive speeds as part of an interactive design algorithm. He does not compute the patch
intersections, so he cannot tell which contacts are adjacent or subsumed. Donald and Pai
[12] compute paths through con�guration space by quasi-static simulation.

The algorithms do not readily extend to curved bodies because they rely on the special
structure of polygonal contact patches, which are simple, ruled surface patches. The bound-
ary computations are complicated and subject to topological errors due to small numerical
errors. The algorithms cannot detect or correct the errors. One error corrupts the entire
boundary representation, often causing the algorithm to fail dramatically. In a personal
communication, Brost reports that these problems are common in his applications.

Lozano-P�erez [23] suggests con�guration space slicing for robot motion planning. Erd-
mann [13] develops a slicing algorithm for con�guration spaces and non-directional back-
projections, which have the same geometry. The algorithm handles polygonal bodies. It
computes slices at �xed intervals and interpolates linearly between them. It does not com-
pute the con�guration space topology or bound the interpolation error. The algorithm is
unreliable when it interpolates through critical slices because the interpolated curves can
vanish or become singular.

Donald [11] and Briggs [7] compute the critical slices of non-directional backprojections
and use them to derive global properties relevant to path planning under motion uncertainty.
The criticality conditions and the slice construction algorithms rely on the special structure
of polygonal contact. We extend the approach to curved bodies by deriving general criticality
conditions and general algorithms for computing criticalities and slices.

4 Slice representation

We model con�guration space as a three-dimensional Euclidean space whose coordinates
are the x position, y position, and orientation � of the moving object reference frame with
respect to a global frame. The orientation is modeled as an interval [��; �], rather than
as a circle. In manifold terminology, we work in a �xed chart. We can recover the correct
topology by identifying the �� and � slices. We must parameterize the orientations by tan �

2

to obtain the semi-algebraic representations that we use below, but the actual computations
are more convenient with �. We suppress this distinction from here on.

Free space is a three-dimensional semi-algebraic set in con�guration space. Contact
space is a two-dimensional semi-algebraic set comprised of realizable contact patches. Each
realizable patch is a subset of a larger patch, called a contact patch, that consists of the
contact con�gurations for a single feature pair, regardless of whether other features overlap.
The realizable patches of a feature pair contain the subset of its contact patches that lies
outside blocked space.

11



The algebraic equations that de�ne a contact patch are

R�[m(u)] +O = f(v) (1)

R�[m
0(u)]� f 0(v) = 0 (2)

with O = (x; y) the reference point of the moving object reference frame, � the orientation of
the moving object, R� the rotation operator, m(u) the moving feature in body coordinates,
f(v) the �xed feature in world coordinates, and the primed quantities derivatives with respect
to u and v. The �rst equation (two scalar equations) states that the features intersect and
the second equation states that their tangents are parallel at the intersection point. The
solution set is a two-dimensional algebraic set that we intersect with the parameter limits
0 � u; v � 1 and project into con�guration space to obtain the contact patch. We de�ne
the patch boundary as the set of con�gurations in which either parameter equals one of its
limits. It is a one-dimensional semi-algebraic set comprised of curve segments along which
an endpoint of one feature touches another feature.

We represent con�guration space as a sequence of slices along the orientation axis. Each
slice consists of the free, blocked, and contact con�gurations at a single orientation. The
free con�gurations form open regions bounded by realizable contact segments along which
the slice intersects the contact space. Each realizable segment is a subset a larger segment,
called a contact segment, formed by the intersection between the slice and a contact patch.
The realizable segments of a feature pair contain the subset of its contact segments that lies
outside blocked space.

We represent the contact spaces as graphs whose nodes represent realizable contact seg-
ments and whose edges represent segment intersection points. We call two nodes equivalent
when their segments arise from the same pair of object/obstacle features. We call two slices
equivalent when their graphs are isomorphic and the isomorphism preserves node equiva-
lence. We de�ne the distance between two slices as the distance between their orientations.
We call a slice regular if it has a neighborhood of equivalent slices, and critical otherwise.

5 Criticality theorem

Our main theoretical result is a necessary condition for slice criticality in the form of poly-
nomial equations whose roots include all critical orientations. We �rst develop su�cient
conditions for a slice to be regular. The converse of these conditions are the necessary
conditions for criticality.

Su�cient conditions for a slice to be regular are that (1) it intersects every contact patch
transversely, (2) it intersects every contact patch boundary transversely, and (3) its contact
segments intersect transversely (Figure 9). Transversal intersection means that the tangent
spaces of the intersecting sets span the ambient space at every intersection point, which
implies that the intersections persist under small perturbations [15]. The theorem applies

12



y

x

θ

contact patch

θ

patch
contact

patch

x

boundary

PROJECTION
y

x

contact
segments

condition 1 condition 2 condition 3

Figure 9: Critical slices for the three regularity conditions.

to di�erentiable manifolds, which have a tangent space everywhere. We extend it to semi-
algebraic sets by requiring that both sets be regular at each intersection point, which implies
that they are manifolds in a neighborhood of the intersection. Condition 1 means that the
patch normal never vanishes (manifold) and is nowhere orthogonal to the slice (transversal).
Condition 2 means that the slice contains no endpoints of contact patch boundary segments
(manifold) and no segments are tangent to the slice (transversal). Condition 3 means that no
contact segments meet at an endpoint (manifold), that three segments never meet at a point
(manifold), and that no segments intersect tangentially (transversal). A triple intersection
means that the endpoint of a realizable contact segment lies on another segment.

The su�ciency proof is a direct application of the transversality theorem. Condition 1
implies that the contact segments in the slice belong to smooth families of segments in
nearby slices. Each realizable segment in the slice contact space is a portion of one of
these segments bounded by contact segment endpoints or intersection points. Conditions 2
and 3 imply that these boundary points belong to smooth, disjoint families of curves in
nearby slices. Hence, the segments belong to smooth families of segments, which means
that all nearby contact graphs have equivalent vertex sets. Condition 3 also implies that
the intersecting segments intersect in nearby slices, whereas the non-intersecting segments
(a form of transversal intersection) do not intersect in nearby slices. This means that nearby
contact graphs have isomorphic edges, hence are equivalent.

We formulate the criticality equations by expressing algebraically the converses of the
regularity conditions. Figure 10 lists the criticality equations. We develop each in turn.

Condition 1 holds when the contact patch is singular or is tangent to the xy plane. We
derive the criticality equations from contact equation (2), which we abbreviate as g(�; u; v) =
0. The equation de�nes an algebraic surface in the (�; u; v) space. The surface is singular at
points where all the partials of g equal zero. These are also the singular points of the contact
patch because Equation (1) de�nes a regular function from (�; u; v) to (x; y). The patch is
tangent to the xy plane at regular points where gu = 0 and gv = 0. We can express � in

13



condition variables equations

1 �; u; v g(�; u; v); gu(�; u; v) = 0; gv(�; u; v) = 0
2 endpoint �; u; v g(�; u; v) = 0; b(u); b(v)
2 tangent �; u; v g(�; u; v) = 0; b(u) and gv = 0 or b(v) and gu = 0
3 endpoint �; u; v; s; t g(�; u; v) = 0; h(�; s; t) = 0; p(�; u; v) = q(�; s; t);

b(u), b(v), b(s), or b(t)
3 triple x; y; �; u; v; s; t; q; r three sets of contact equations (1{2)
3 tangent �; u; v; s; t g(�; u; v) = 0; h(�; s; t) = 0; p(�; u; v) = q(�; s; t);

Equation (4)

Figure 10: Criticality equations.

terms of u and v by the implicit function theorem and substitute into Equation (1) to obtain
a parametric representation of the contact patch in terms of u and v. We derive @

@u
� = 0 at

this point from the equation

d

du
g(�; u; v) = g�

@

@u
� + gu = 0 (3)

using gu = 0, and compute @

@v
� = 0 analogously. We conclude that the � component of

the tangent vector is zero in both parameter directions, hence the patch is tangent to the
xy plane. Conversely if gu or gv is nonzero, we eliminate u or v and obtain a parametric
representation of the contact patch in which � is one of the two parameters. The contact
patch is not tangent to the xy plane because @

@�
� = 1. The tangency equations subsume the

singularity equations, so we need not solve them separately.
Condition 2 holds when a contact patch boundary segment is singular, when a segment

is tangent to the xy plane, or when two segments intersect. The segment equations are the
algebraic patch equations along with one of the boundary conditions b(u), meaning that
u = 0 or u = 1, or b(v), meaning that v = 0 or v = 1. The two disjunctions yield four
sets of equations. The equations for singularity and tangency are analogous to the patch
ones, but simpler because one of the parameters is replaced by 0 or 1. Tangency again
subsumes singularity. Two segments intersect when the contact equation holds along with
two boundary conditions.

Condition 3 holds when two contact segments meet at an endpoint, when three segments
meet, or when two segments intersect tangentially. We write Equation (1) as O = p(�; u; v)
and Equation (2) as g(�; u; v) = 0 for the �rst contact. We write O = q(�; s; t) and h(�; s; t) =
0 for the second contact. The equations g = 0 and h = 0 de�ne contact segments at each
nonsingular � value. The singular case is covered by condition 1. The endpoint equations
state that both contacts occur in the same con�guration and that one contact is at an
endpoint. The triple intersection equations state that three contacts occur. The tangency
equations are the same as the endpoint equations, except that the last equation is replaced

14



by

(pu _u+ pv _v)� (qs _s+ qt _t) = 0

gu _u+ gv _v = 0

_u2 + _v2 = 1 (4)

hs _s + ht _t = 0

_s2 + _t2 = 1:

The �rst equation states that the contact segments are tangent. The tangents are computed
by the chain rule from the unit tangent ( _u; _v) to the curve g = 0 and from the unit tangent
( _s; _t) to h = 0. The last four equations de�ne these tangents.

6 Computing critical orientations

We compute the critical orientations by solving the criticality equations symbolically or
numerically. We can obtain extraneous roots because the regularity conditions are su�cient,
but not necessary. The extraneous roots cause no problems; they just add a few slices to the
output. Before turning to the general case, we develop specialized solutions to the criticality
equations for important classes of problems.

6.1 Polygons

We �rst consider polygonal bodies. Polygons are a good model for applications where
smoothness is unimportant because they yield closed-form solutions for the critical orienta-
tions and the contact segments. We need only consider contacts between vertices and line
segments because they subsume contacts between pairs of line segments. Figure 11 shows a
contact between a vertex r and a line segment lm. Contact equation (1) is

R�r +O = um+ (1 � u)l (5)

for a moving vertex and a �xed segment, and is

R�[um+ (1 � u)l] +O = r (6)

for a moving segment and a �xed vertex. Equation (2) holds identically because the vertex
is independent of its parameter v. The solution sets for both contact equations are ruled
surface patches whose boundary segments represent vertex/vertex contacts.

Direct calculation shows that criticality conditions 1 and 2 never hold. Endpoint condi-
tion 3 subsumes the tangent condition because of the ruled form of the contact patches. The
contact segments are line segments, so segments that intersect tangentially must intersect at

15



r

p

q

m

l

object  B

object  A

Figure 11: Critical contact con�guration.

an endpoint. This occurs when a vertex touches a line segment and a second vertex touches
a third vertex (Figure 11). We formulate four equations in x, y, �, and u for each choice of
these features. The �rst two are the contact Equations (5) or (6) and the last two are

R�p +O = q (7)

with p the part coordinates of the moving vertex and q the global coordinates of the �xed
vertex. We subtract the last two from the �rst two to obtain

R�(p � r) = q � um� (1 � u)l or (8)

R�(p� um� (1 � u)l) = q � r; (9)

which is free of x and y. Equating the norm of the argument to R� and the norm of the
right-hand side yields quadratic equations in u,

jjl�mjj2u2 + 2(l �m) � (q � l)u+ jjq � ljj2 � jjp� rjj2 = 0 or (10)

jjl�mjj2u2 + 2(l �m) � (p � l)u+ jjp� ljj2 � jjq � rjj2 = 0: (11)

We solve for u, substitute the roots into the previous equation, solve for �, substitute into
equations (5) or (6) and solve for x and y.

6.2 Circular arcs

We generalize the treatment of polygons to objects bounded by line segments and circular
arcs. We obtain the contact segments and the critical values in closed form, although the
computations are more complicated than for polygons. The closed-form solutions are much
faster and more robust than the general numerical solution methods below. These advantages
are important in applications with many curved feature contacts, which are the norm in
mechanical design. We found that many mechanisms can be modeled with lines and arcs
based on an extensive survey [16].

We need to analyze three types of contacts: moving arc/�xed line, moving line/�xed arc,
and moving arc/�xed arc (Figure 12). We can treat vertices as circles of radius zero and

16



q

p

n

r

d

l

m

o

part 2
part 1 r

d

o

p

a

n

part 2

part 1

b

c

q

arc/line arc/arc

Figure 12: Contacts between line segments and circular arcs.

type moving feature �xed feature contact equation segment type

line/arc (1 � u)l + um o + r(cos v; sinv) v � � � � = n� line segment
arc/line o+ r(cos u; sinu) (1� v)l+ vm u+ � � � = n� line segment
arc/arc o+ r(cos u; sinu) a+ d(cos v; sinv) u� v + � = n� circular arc

Figure 13: Contact equations for line segments and circular arcs.

can continue to ignore contacts between line segments. Figure 13 lists the contact equations,
which we derive from Equation (2) by trigonometric manipulation, with � the angle between
the line and the local y axis and with n an integer. The simple form of the equations allows
us to solve the criticality equations in closed form. Condition 1 never holds. Condition 2
holds when an arc endpoint touches a line or another arc endpoint. Condition 3 holds when
two line/arc segments meet at an endpoint, a line/arc and an arc/arc meet at an endpoint,
or two arc/arcs are tangent. We omit the equations, which would �ll several pages.

6.3 Conics

We develop a specialized method for computing the critical slices of objects with conic
boundaries. A conic is a parametric curve whose coordinates are given by ratios of quadratic
functions in the parameter. Conics are exible enough to model C1 smooth objects with an
extra degree of freedom for local shape control. We reformulate contact equation (2) as

x0

f

y0

f

=
x0

m cos � � y0

m sin �

x0

m sin � + y0

m cos �
(12)

and substitute the conics xm = a=c, ym = b=c, xf = d=f , and yf = e=f with a; b; c quadratic
in u and d; e; f quadratic in v. We obtain

p1
p2

=
q1 cos � � q2 sin �

q1 sin � + q2 cos �
(13)

17



q
p r

l

m

(a) (b)

Figure 14: Criticality �ltering: (a) vertex/vertex interference; (b) vertex/segment interfer-
ence.

with p1 = d0f � df 0 and p2 = e0f � ef 0 quadratic in u and q1 = a0c� ac0 and q2 = b0c � bc0

quadratic in v. This yields a quadratic equation in u whose coe�cients are quadratic in
v. We solve the equation symbolically to obtain u as a function of v and substitute into
equation (1) to obtain the contact segments. We solve the �rst two criticality equations in
closed form and the third numerically.

6.4 Rational parametric curves

We can solve the criticality equations for general rational parametric curves by resultants
or by homotopy. Most of the computation will probably be wasted because we only need
real critical points that are not in blocked space. Alternately, we can compute the critical
slices by binary search along the � axis. We generate two slices and recurse if they are not
equivalent. We can replace the equivalence test with Sturm sequence tests for the criticality
equations, which are slower but require fewer bisections. We have not implemented these
algorithms.

6.5 Local overlap �ltering

We signi�cantly reduce the number of criticalities by deleting ones that cannot occur be-
cause they imply overlap between the immediate neighbors of the critical features, which is
physically impossible (Figure 14). Contact between vertices p and q causes overlap if the in-
terior angles between the adjacent segment tangents overlap. Contact between vertex r and
segment lm causes overlap if the outward segment normal lies outside the sector bounded
by the normals to the features adjacent to r. These overlap criteria are special cases of the
general rule that criticalities cannot lie in blocked space. We could implement the general
rule by constructing the con�guration space of every critical slice and computing blocked
space membership, but the overhead appears excessive.

18



7 Computing slice con�guration spaces

After computing the critical � values, we construct the (x; y) con�guration spaces of the
critical slices and of enough intermediate slices to guarantee accuracy to within the input
tolerance. We use the HIPAIR program of Sacks and Joskowicz [26]. HIPAIR handles
objects whose boundaries consist of line segments and circular arcs. It computes contact
segments for every pair of interacting features by instantiating precomputed solutions to the
contact equations. The totality of contact segments partitions the con�guration space into
the connected components of the free and blocked spaces. HIPAIR computes the partition
by a line sweep and retrieves the free components by depth �rst search. It has been tested
on 1,000 parametric variations of 50 higher pairs with up to 10,000 contacts.

We can easily extend HIPAIR to conics because we have solved their contact equations in
closed form. We can extend it to rational parametric curves by solving Equations (1{2) by
resultants or by tracing. Resultants are robust, but slow. Tracing is robust and fast given a
point on each curve component [4]. These points can be computed with resultants, by random
sampling, or by homotopy. The homotopy method �nds points on compact components by
solving the equations along with their partials with respect to one parameter. It �nds points
on unbounded components by intersecting with the plane at in�nity or with the bounding
box of parameter values. We can represent the traced segment by line segments, by conic
splines, by other splines, or by recovering its implicit equations from the sampled points.

We compute each con�guration space slice independently of the other slices. We can
reduce the running time with an incremental approach suggested by Donald [11]. We com-
pute an initial contact graph at � = ��, update the vertex and edge data (curve segments
and intersection points) at each regular slice, and update the graph structure and data at
each critical slice. We eliminate the cost of analyzing all the feature contacts at each slice.
We estimate a 25% savings based on the HIPAIR data. The incremental approach is less
robust than the independent approach because an error in one slice can corrupt the entire
con�guration space and because of the non-generic criticalities discussed below.

8 Computational complexity

The computational complexity of criticality computation depends on the geometric and
algebraic complexity of the moving object and the obstacles, that is on the number and
maximal degree of the boundary segments. The worst case complexity is the product of the
number of criticality conditions and the time to solve one set of criticality equations. In the
worst case, there are O(n2) object/obstacle feature pairs for n boundary segments, which
yields O(n2) criticality conditions 1 and 2 and O(n6) criticality conditions 3. The time to
solve one set of equations in closed form is exponential in their degree. It is a small constant
for line segments and circular arcs, as seen in the applications run times, and is a moderate

19



constant for conics.
The computational complexity of computing one slice con�guration space is O(n2) when

the features have bounded geometric complexity, which is the case we study. Several simple
algorithms achieve this bound, but with unacceptable constant factors. Our HIPAIR pro-
gram reduces the constant factors enough to analyze pairs with 10,000 features in one second
[26]. The complexity of computing all the slices is O(n8) because there are O(n6) slices due
to the bounded feature complexity. General features are best analyzed by numerical methods
for which discrete complexity analysis is inappropriate.

We have found that criticality �ltering reduces the number of contacts to O(n), hence the
number of criticality conditions to O(n3), the slice computation time to O(n log n), and the
overall complexity to O(n4 log n). These �ndings are based on extensive testing on hundreds
of pairs [26] and are consistent with the run times in the applications section.

9 Robustness

Our sliced con�guration space computation algorithm handles most non-generic situations
correctly and is insensitive to numerical errors in its input or in its intermediate computa-
tions. The criticality equations are completely general. We assume that the equations have
isolated solutions. This situation is generic, meaning that it is true of almost all equations
and is achieved by almost all small perturbations in the constant terms of the remaining
equations. We can compute the criticalities of line segments and circular arcs without ad-
ditional assumptions because we use symbolic methods. The numerical methods that we
propose for other rational parametric features work best when the solutions are nonsingular,
which is also generic.

Designed artifacts may embody constraints that invalidate genericity by restricting the
space of equations and perturbations. We see no such problem with isolated, nonsingu-
lar solutions, but problems may arise when several criticalities occur in a slice. Although
non-generic, multiple criticalities are common in practice due to symmetries, parallelism,
and the like. They appear as distinct, closely spaced singularities due to input imprecision
compounded by numerical errors. The criticality and slice algorithms make no assumptions
about multiple criticalities. The incremental slice computation algorithm and the recon-
struction algorithm need the correct criticality ordering. A simple interval grouping works
on the examples we have studied, but we may need to devise better heuristics for more
complex shapes.

Designed artifacts may also invalidate the generic assumption that the contact space
consists solely of surface patches, without isolated points or dangling curves. These artifacts
occur when the object mates perfectly with an obstacle, for example a round pin in a round
hole of the same radius. Criticality computation does not depend on this assumption, but
HIPAIR does. Extending HIPAIR to isolated points and dangling curves amounts to adding

20



special cases to the line sweep that computes the connected components of planar partitions.
We would treat them specially in reconstruction and in applications. We expect these cases to
prove irrelevant in applications because the only real parts that �t perfectly are permanently
connected, hence can be modeled as standard joint constraints.

10 Conclusion

We have presented a general algorithm for computing the con�guration space of a planar
object moving amidst planar obstacles. We have implemented the algorithm for objects
bounded by line segments and circular arcs, which cover many applications, and have de-
scribed extensions to conics and to rational parametric curves. The novelty of the algorithm
lies in the general algebraic method of computing critical slices for curved bodies. We expect
that the slice representation will prove to be a useful abstract data type for computational
geometry, since many problems are far simpler in the plane than in three dimensions.

We conclude with a brief discussion of how to automate con�guration space manipula-
tion in support of robotics, mechanical design, and joint modeling. The examples in the
applications section involve several operations on con�guration space, all of which we per-
formed manually. We plan to implement these operations via abstract operators on sliced
con�guration spaces. The critical slices are crucial for every operation.

Each of the examples requires dynamical simulation to compute the motion of parts
due to external forces and contact constraints. The hardest computational problem, called
contact analysis, is to determine the touching parts and the ensuing contact forces at each
time step. Current simulators perform contact analysis at each time step. They try to avoid
the quadratic worst-case performance with collision detection heuristics, such as spatial
partitioning, which avoids comparisons between distant parts, and coherent computation,
which predicts current contacts based on past [21]. It is unclear how well the heuristics work
in the mechanical domain where most parts interact, contact changes are common, clearances
are small, and parts are driven fast. The algorithms approximate curved boundary parts
with polyhedra, which creates spurious discontinuities in the contact functions that distort
the dynamics of high-speed systems and increase the simulation time.

We have developed a simulator that replaces collision detection with con�guration space
computation [28, 29]. The program computes the con�guration spaces of all pairs of parts
before the simulation. It handles contacts between parts with curved boundaries without
approximation. The worst-case running time of the computation is quadratic in the geometric
complexity of the parts, as is a single collision detection. At each simulation step, the
algorithm obtains the necessary contact data by querying the pairwise con�guration spaces.
Each query takes linear time in the number of parts and is independent of their geometric
complexity. We obtain �ve to ten times real-time performance on assemblies of three or four
complex parts.

21



Fixture, fastener, prosthesis, and mechanism design involve parametric design. The input
is a parametric model in which the shapes and the positions of the parts are speci�ed in
terms of symbolic parameters. The designer searches the space of allowable parameter values
for points that realize or optimize behaviors. If the designer can specify the objective as a
smooth function of the parameters, he may be able to achieve it by nonlinear optimization.
This is impossible if the design involves contact changes, if the objective is to achieve a
behavior, or if the objective is qualitative. The traditional approach to these problems is
direct search of the parameter space. This is often impractical, especially when there are
more than three parameters. The designer must examine many points to assure that he has
not overlooked a good design. Each point requires a time consuming analysis. The search is
even harder when the behavior is sensitive to small perturbations in the parameter values.

We aim to reduce search by interactively inverting the mapping from parameter values to
con�guration spaces. The goal is to allow the designer to modify an assembly con�guration
space interactively while the design program updates the assembly to realize the changing
kinematics. We have implemented a naive linearization algorithm for inverting the nonlinear,
many to one mapping from assembly to con�guration space and have tested it on a few planar,
two degree of freedom pairs [17]. The program uses simple heuristics and mouse input to
traverse the space of solution parameter values. Caine [9, 10] takes a similar approach to
polygonal feeder design. We need an e�cient, robust algorithm that handles curved parts
with three degrees of freedom and larger assemblies.

The knee example requires con�guration space composition to model the three way in-
teractions among the femur, tibia, and patella (knee cap). We can embed the tibia/femur,
tibia/patella, and femur/patella con�guration spaces in the nine-dimensional joint con�g-
uration space then intersect the pairwise contact spaces to obtain the joint contact space.
We [16] found this approach highly e�ective for pairs with two degrees of freedom. It may
prove impractical for pairs with three degrees of freedom because of the large number of
regions in the pairwise spaces, which is worst-case exponential in the number of parts with
large constant factors [20]. We can fall back on dynamical simulation, for which pairwise
con�guration spaces su�ce, coupled with local computation of the assembly con�guration
space in key regions.

Acknowledgments

Leo Joskowicz provided excellent comments that helped us signi�cantly improve this paper.
Kwun-Nan Lin developed the reconstruction program and Dan Schikore helped produce the
pictures of the three-dimensional con�guration spaces. Supported in part by NSF grant
CCR 92-22467, NSF grant CCR-9505745, AFOSR grant F49620-94-1-0080, and ONR grant
N00014-94-1-0370.

22



References

[1] Artobolevsky, I. Mechanisms in Modern Engineering Design, volume 1{4. (MIR Pub-
lishers, Moscow, 1979). English translation.

[2] Avnaim, F., Boissonnat, J. D., and Faverjon, B. A practical exact motion planning
algorithm for polygonal objects amidst polygonal obstacles. in: IEEE International

Conference on Robotics and Automation, 1988.

[3] Bajaj, C., Bernardini, F., Lin, K., et al. Physical simulation of the visible human joints.
in: National Library of Medicine Visible Human Project Conference, 1996.

[4] Bajaj, C., Ho�mann, C., Hopcroft, J., et al. Tracing surface intersections. Computer

Aided Geometric Design 5 (1988) 285{307.

[5] Bajaj, C. L. Electronic models of the human anatomy. in: Curves and Surfaces in

Computer Vision and Graphics 2: Proceedings of the Symposium on Electronic Imaging

Science and Technology, volume 1610, pages 230{237, Boston, MA, 1991.

[6] Bajaj, C. L., Coyle, E., and Lin, K.-N. Arbitrary topology shape reconstruction from
planar cross sections. Graphical Models and Image Processing 58 (1996) 524{543.

[7] Briggs, A. An e�cient algorithm for one-step compliant motion planning with uncer-
tainty. Algorithmica 8 (1992) 195{208.

[8] Brost, R. C. Analysis and planning of planar manipulation tasks. PhD thesis, Carnegie-
Mellon University, 1991. Available as Technical Report CMU-CS-91-149.

[9] Caine, M. E. The design of shape from motion contraints. AI-TR 1425, Massachusetts
Institute of Technology, Arti�cial Intelligence Laboratory, 545 Technology Square, Cam-
bridge, MA, 02139, 1993.

[10] Caine, M. E. The design of shape interactions using motion constraints. in: Proceedings
of the IEEE International Conference on Robotics and Automation, pages 366{371,
1994.

[11] Donald, B. R. The complexity of planar compliant motion planning with uncertainty.
Algorithmica 5 (1990) 353{382.

[12] Donald, B. R. and Pai, D. The motion of planar, compliantly connected rigid bodies
in contact, with applications to automatic fastening. International Journal of Robotics
Research 12 (1993) 307{338.

23



[13] Erdmann, M. A. On motion planning with uncertainty. AI-TR 810, Massachusetts
Institute of Technology, Arti�cial Intelligence Laboratory, 1984.

[14] Goldberg, K., Halperin, D., Latombe, J., et al. (Eds.). The Algorithmic Foundations of
Robotics. (A. K. Peters, Boston, MA, 1995).

[15] Guillemin, V. and Pollack, A. Di�erential Topology. (Prentice-Hall, Englewood Cli�s,
NJ, 1974).

[16] Joskowicz, L. and Sacks, E. Computational kinematics. Arti�cial Intelligence 51 (1991)
381{416. reprinted in [14].

[17] Joskowicz, L. and Sacks, E. Con�guration space computation for mechanism design. in:
Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
IEEE Computer Society Press, 1994.

[18] Joskowicz, L., Sacks, E., and Srinivasan, V. Kinematic tolerance analysis. Computer-

Aided Design 29 (1997) 147{157.

[19] Joskowicz, L. and Taylor, R. H. Interference-free insertion of a solid body into a cavity:
An algorithm and a medical application. International Journal of Robotics Research 15
(1996) 211{229.

[20] Latombe, J.-C. Robot Motion Planning. (Kluwer Academic Publishers, 1991).

[21] Lin, M. C., Manocha, D., Cohen, J., et al. Collision detection: Algorithms and appli-
cations. in: Proceedings of the 2nd Workshop on Algorithmic Foundations of Robotics,
1996.

[22] Lozano-P�erez, T. Spatial planning: A con�guration space approach. in: IEEE Trans-

actions on Computers, volume C-32. IEEE Press, 1983.

[23] Lozano-P�erez, T. A simple motion-planning algorithm for general robot manipulators.
IEEE Journal of Robotics and Automation RA-3 (1987).

[24] Lozano-P�erez, T. and Wilson, R. H. Assembly sequencing for arbitrary motions. in:
IEEE Conference on Robotics and Automation, 1993.

[25] Meyers, D., Skinner, S., and Sloan, K. Surfaces from contours. ACM Transactions on

Graphics 11 (1992) 228{258.

[26] Sacks, E. and Joskowicz, L. Computational kinematic analysis of higher pairs with
multiple contacts. Journal of Mechanical Design 117 (1995) 269{277.

24



[27] Sacks, E. and Joskowicz, L. Mechanism design and analysis using con�guration spaces.
in: Proceedings of the Ninth World Congress on the Theory of Machines and Mecha-

nisms, 1995.

[28] Sacks, E. and Joskowicz, L. Dynamical simulation of assemblies of planar, 1dof parts
with changing contacts using con�guration spaces. in: Proceedings of the 1997 IEEE

International Conference on Robotics and Automation. IEEE Computer Society Press,
1997.

[29] Sacks, E. and Joskowicz, L. Dynamical simulation of planar assemblies with changing
contacts using con�guration spaces. Technical Report 97-008, Purdue University, 1997.
submitted for publication.

[30] Wilson, R., Kavraki, Latombe, J.-C., et al. Two handed assembly sequencing. Interna-
tional Journal of Robotics Research 14 (1995) 335{350.

25


