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1 Introduction

Polygonal meshes have been used as the primary geometric model representation for net-
worked gaming and for complex interactive design in manufacturing. Accurate polygonal
mesh approximation of a surface with sharp features (holes, highly varying curvatures) re-
quires extremely large number of triangles. Transmission of such large triangle meshes is
critical to many applications that interactively manipulate geometry models in remote net-
worked environments. The need for succinct representation is therefore not only to reduce
static storage requirements, but also to consume less network bandwidth and thus reduce
the transmission time. Although geometry compression and coding is an emerging disci-
pline, these techniques have matured for 2D digital images into standards such as JPEG
[16] and MPEG [6]. In designing e�cient geometry compression schemes, one attempts to
take advantage of existing 2D image compression techniques.

Prior Work Deering [5] represents triangular mesh connectivity by generalized triangle
strips. Stack operators are used in order to reuse vertices. In this way, the total number
of random accesses to all vertices of the mesh is reduced. This method does not directly
compress non-manifold meshes and its compression ratio is not high. Chow [3] presents an
algorithm which represents a mesh by several generalized meshes. This method is optimized
for real-time rendering but is not compression e�cient because of the large requirement of
connectivity encoding ((logn+ 9) per vertex). Again, this method only considers manifold
meshes.

In Topological Surgery [14], vertices are organized into a spanning tree and triangles into
simple polygons which are further grouped into a series of triangle strips. The connectivity
coding of this scheme is e�cient, about 2-3 bits per triangle. One of its disadvantages is
its inability to directly encode non-manifold meshes. As a preprocessing step, it splits a
non-manifold object into several manifold components, thereby duplicating all non-manifold
features: vertices, edges, and faces. Touma and Gotsman present an algorithm for connec-
tivity coding of orientable manifold meshes [15]. The e�ciency of this lossless connectivity
coding is determined by the distribution of the degrees of all vertices. Progressive trans-
mission and embedded coding are discussed in [11, 10, 12]. A compact representation of
multiresolution surfaces that support progressive transmission is present in [2].

In this paper, we propose a new layering structure to partition an arbitrary triangular
mesh (no-manifold and arbitrary-genus) into generalized triangle strips. An e�cient and
exible encoding of the connectivity , vertex coordinates and attribute data yields excellent
single resolution compression. This scheme gracefully solves the \crack" problem and also
prevent error propagation while providing e�cient prediction coding for both geometry and
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Figure 1: Block diagram of the encoder and decoder

photometry data such as positions, color, normal, and texture coordinates. Figure 1 shows
the diagram for both the encoder and decoder.

The rest of this paper is as follows. Section 2 introduces the layering scheme to partition
input data. Section 3 and Section 4 address the coding of connectivity and geometry. The
attribute coding is discussed in Section 5. Experimental results are presented in Section 6.

2 The Layering Scheme
Layering structures are mainly used to describe the connectivity information of surface
meshes. There are two basic kinds of layers: vertex-layers and triangle-layers. Assume that
a triangle mesh has vertex set V , face set F , and edge set E . A graph of the mesh is given
by G = (V ; E) with all mesh vertices being the graph nodes and mesh edges being the graph
edges.

De�nition 2.1 (vertex-layer) The 0th vertex-layer is a randomly chosen vertex of the mesh.
The kth vertex-layer (with k > 0) includes a vertex V if V is not included in any previous
vertex-layer and there exists an edge E = (V; V �) where V � is included in the (k � 1)th

vertex-layer.

De�nition 2.2 (triangle-layer) The k�th triangle-layer (with k � 0) includes a triangle
T if T has one vertex in kth vertex-layer and T is not included in any previous triangle-layer.

Figure 2: The layering structure. Triangle-layers are alternatively colored black and white
for both apple and horse. (right) Alternative layers of the horse.

Vertices and triangles categorized above have the following properties: any edge in E
can only span two vertex-layers; any triangle in F can only span two vertex-layers; all the
vertex-layers form a partition of V ; all the triangle-layers form a partition of F . Based
on the layering structure, a mesh edge is either a chord or a transversal. A chord is an
edge that connects two vertices in di�erent vertex-layers while a transversal is an edge that
connects two vertices in the same vertex-layer.
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Geometry Primitives The four geometry primitives we use to encode in our single-
resolution compression method are: contours, branching points, triangle strips, and triangle
fans.

De�nition 2.3 A contour is an ordered sequence of vertices fv0; v1; � � � ; vng in a vertex-
layer where each vertex pair (vi; vi+1) is connected by a transversal edge and every interme-
diate vertex vi(0 < i < n) is incident to exactly two transversal edges. Vertices v0 and vn
can be the same point in which case the contour is called closed. A contour can be a single
vertex which is also called an isolated point.

We call v0 the starting vertex and vn the ending vertex of the contour.
De�nition 2.4 A branching point is a vertex in a vertex-layer which is incident to more
than two transversal edges.

By this de�nition, a branching point is contained in more than one contour and thus it
can only be either the starting or the ending vertex of a contour.

De�nition 2.5 A triangle strip is an ordered sequence of triangles in a triangle-layer where
each pair of consecutive triangles share a common edge. The set of vertices of the triangles
in the strip must belong to two contours in two separate vertex-layers.

De�nition 2.6 A triangle fan is an ordered sequence of triangles in a triangle-layer where
all triangles have a common vertex, each pair of consecutive triangles share a common
edge, and no edge is shared by more than two triangles. It is possible that the �rst and last
triangles share a common edge.

Figure 2 exhibits triangle strips in the layering structure. Triangle strips are formed by
stitching individual triangles in the same triangle-layer. In this way, non-manifold meshes
can be represented by the structure. This representation avoids the \crack" problem which
occurs when a non-manifold mesh is converted into several manifold components and non-
manifold features (vertices, edge, faces) are duplicated [7].
Claim 2.1 Triangle meshes of any topological types can be represented by the layering struc-
ture outlined above.

Vertex indexing gives each vertex a reference which is used in connectivity encoding.
Vertex indexing is directly related to coding e�ciency. Three kinds of vertex indices will
be used in our scheme: local indices, global indices and relative indices. The �rst two are
de�ned below while relative indexing will be explained in the next section.

Local Indexing Local indexing is only meaningful to individual vertex-layers. Every
vertex in a vertex-layer is assigned a unique local index. If n is the total number of vertices
in a vertex-layer, then local indices of this vertex-layer are 0; 1; � � � ; n� 1. The numbering
order of local indices in a vertex-layer is as follows: (1) all branching vertices are numbered
�rst; (2) for each contour, all non-branching vertices are numbered, from the starting vertex.
It is important that all branching vertices be numbered separately because they will be
referenced by more than one contour.

Global Indexing The global index of a vertex is de�ned as the summation of its local
index value and the total number of vertices in all previous vertex-layers. Indexing starts
from the 0th vertex-layer. Suppose that there are totally V vertices in the mesh, then the
smallest global index is 0 and the biggest one is V � 1. The incidence of the reconstructed
mesh is expressed with global indices. Let BC(m) be the minimal number of bits to cor-
rectly code a non-negative integer smaller than m. Obviously, BC(m) := minfkj2k > mg.
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Suppose that L is the number of vertices in a vertex layer, then the local index of each
vertex in that layer can be coded by BC(L) bits. However, any global index needs BC(V )
with a total number of V vertices in the mesh. Since L is generally much smaller than V ,
BC(L) < BC(V ), local index coding saves BC(V ) � BC(L) bits. A local index must be
converted back to the global index in the decoding process. A global index g and a local
index l of a vertex v have the relation g = l +

Pk�1
i=0 Li where Li is the total number of

vertices in ith vertex-layer and layer k is where v is located.

3 Connectivity Coding

Connectivity encoding is the central part of any 3D compression method. It guides the
geometry and photometry coding. Single-resolution compression does not change the con-
nectivity in the sense that the decoder can perfectly recover the connectivity, modulo a
permutation of the vertices and triangles.

Scheme Outline Our connectivity scheme is based on the layering structure. For an input
mesh, vertex-layers and triangle-layers are constructed by using a breadth-�rst traversal
algorithm [4]. According to the set of transversal edges, contours are built for each vertex-
layer while all branching points are recorded. Similarly, according to the set of chords,
triangle strips are constructed for each triangle-layer and triangle fans are formed from the
remaining triangles which are not contained in any strip. The entire connectivity encoding
procedure is: (1) encode the total number of layers; (2) encode the layout of each vertex-
layer; and (3) encode all triangle strips and fans in each triangle layer.

The layout of a vertex-layer is speci�ed by the number of branching points; the number
of contours; for each contour the number of vertices, and the characteristics of the starting
and ending vertices (one bit each to indicate if it is a branching vertex; if it is, its local index
is coded). A triangle strip has two boundary contours. The one in the previous vertex-layer
is called the parent contour, the other is called the child contour.
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Figure 3: Exceptional triangle strips where local indices are listed: (left) one bubble triangle
(102; 104; 103) (right) two bubble triangles (102; 105; 103) and (103; 105; 104)

The Coding of Bubbles An exceptional triangular strip possibly has some special tri-
angles attached to its parent contour. These attached triangles are called bubble triangles
because their vertices are located in the same contour. Exceptional triangle strips are
shown to be good basic geometric primitives for the connectivity encoding [17]. To encode
an exceptional triangle strip, the following information must be coded: local indices of two
starting vertices, the bit march string, the number of bubbles, and bubbles. The bit march
string is further encoded by an entropy coding algorithm (Hu�man coding [9] or arithmetic
coding [13]). Figure 3 shows two strips with attached bubbles. To encode a bubble on a
triangle strip, the following information is coded: location of the starting vertex involved;
vertex span which is the total number of involved vertices; number of triangles in the bubble;
triangle index triples. Bubble coding is expensive. However, not all the above values need
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to be put into the bit stream. We use relative indexing to reduce the overall coding bits. A
relative index is de�ned with respect to a bubble. Suppose that a bubble spans n vertices
and the local index of the starting vertex of the bubble is X . Then the relative indices of all
involved vertices are de�ned as 0; 1; � � � ; n� 1. A triangle in a bubble is encoded by a triple
of relative indices. For instance, since the relative indices of 102; 103; 104; 105 in Figure 3
(b) are 0; 1; 2; 3, the two bubble triangles are encoded as (0; 3; 1) and (1; 3; 2). In this case,
coding a triangle only costs 6 bits.

Another technique to enhance the e�ciency of bubble coding is based on the observation
that in practice most bubbles appear in the form of a one-triangle bubble with a vertex
span of 3, and relative index triple �xed as (0; 2; 1). An e�cient way to encode is to use an
extra bit to indicate if a bubble is a one-triangle bubble and no more information is needed.

The Coding of Bit March Strings Once the two starting vertex positions and possible
bubbles are coded, the remaining problem of coding an exceptional strip is reduced to coding
generalized triangle strips. A simple and direct way to encode a bit march string is to put
the 0s and 1s directly into the bit stream. However, it is not an e�cient way. Symbols 0101
and 1010 are found to appear more frequently than other symbols such as 1111 or 0000 in
a typical bit march string if every four consecutive bits are grouped into a symbol.

A static Hu�man table is designed for all the sixteen symbols. Construction of this table
is based on the symbol occurrences over a number of large models. In case the length of a
bit march string is not a multiple of 4, its remaining bits are simply be coded one by one.
Entropy coding of bit march strings uses about 25% less space than direct coding.

The Coding of Triangle Fans Triangles that do not belong to any strip are special.
Their vertices usually span more than three contours or two contours in the same vertex-
layer. A triangle fan can be expressed by a sequence of vertices fv0; v1; � � � ; vmg where v0 is
the common vertex and (v0; vi; vi+1) (i = 1; � � � ; m� 1) is a triangle. To code a triangle fan,
the following information is put into the bit stream : the number m of triangles in the fan;
a sequence of local indices of m+ 1 vertices with the �rst one as the center (the commonly
shared vertex) of the fan.

For large models, the connectivity cost of our scheme can be as good as less than one
bit per triangle. Experiments show that connectivity coding cost is on average 3 bits per
triangle for common objects [17].

4 Geometry Coding

With the encoded connectivity information, the overall geometry encoding scheme is straight-
forward. For each vertex-layer, positions of all branching vertices are encoded directly in
the order they are locally indexed. For each contour, positions of all its non-branching
vertices are predictively encoded.

The procedure of our geometry coding scheme involves bounding box coding, prediction,
quantization, and entropy coding. The bounding box of an input mesh is speci�ed by the
maximum and minimum values of all the x; y; z coordinates: Xmin, Xmax, Ymin, Ymax,
Zmin, and Zmax. Using these values, all vertex positions can be normalized so that they
are located in a unit cube.

Predictive Geometry Coding Predictive coding has been extensively utilized in 2D
image compression methods. For instance, the JPEG standard [16] provides predictive
lossless coding mode for still image compression. The predictive technique can also be
used to remove redundant information within the geometry and attributes of a triangular
mesh. A vertex position predictor combines the positions of previously encoded neighboring
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vertices to form a prediction of the current vertex position. There are three commonly used
geometry predictors: linear predictors [5], high-order predictors [14], and parallelogram
predictors [11]. A correction, more suitable for e�cient coding, is de�ned as the di�erence
between the actual vertex position and its predicted position. Either Cartesian or spherical
coordinates can be used to express a position or a correction which is quantized into an
integer code and then entropy coded.

To quantize a position or a correction vector, we �rst compute its spherical coordinates
(r; �; �). Then the three components are vector quantized to a choice of vectors chosen
uniformly in a solid sphere. With the bounding box and other pre-normalization, r is in the
interval [0; 1], and � and � are in [0; 2�] and [0; �] respectively. The details of the codebook
design, uniform quantization of sphere and error propagation prevention can be found [17].

Second-Order Code Prediction Linear prediction removes redundance by identifying
similar bit values between coordinates of adjacent vertices. However, it is not an optimal
way, especially for models without many sharp features.

Suppose �Pk and �Pk+1 are two adjacent correction vectors and the two integer triples
(rk; �k; �k) and (rk+1; �k+1; �k+1) are their corresponding codes. We observe that since
the angular change from �Pk to �Pk+1 is generally small, so ��k = �k+1 � �k and ��k
= �k+1 � �k are usually small integers. It must be pointed out that the true correction
values �r, �� and �� could be negative. However, there is no need to spend one extra
bit to indicate the sign of each correction value. A value N is added if the correction value
is negative. The decoder takes care of this convention by making sure that the recovered
values r, � and � be within the range [0; N � 1]. Here r, � and � stand for the integer
codes, not the true oat values. A simple example may help to understand this approach.
Suppose that we wish to encode r1 and r2, the codes of the lengths of two consecutive
correction vectors. Also assume r1 > r2. Thus �r = r2 � r1 < 0. Now we encode �r +N

which is in the interval [0; N � 1], instead of encoding negative �r. After having recovered
r1 and the correction value ��r, the decoder �rst computes �r2(= r1 + ��r). If �r2 is in the
interval [0; N � 1], then r2 equals to �r2. In our case, �r2 >= N , which means that ��r is
the summation of the true di�erence and N . So r2 equals to �r2 �N according to the fact
that �r2 = r1+ (r2� r1+N) = r2+N . This approach can also be applied to the other two
components � and �.

Experimental results show that encoding correction code di�erences is more e�cient
than directly encoding correction codes. Figure 4(a-c) shows the frequencies of symbols
of di�erent sizes where horizontal values are symbol values and vertical values are their
corresponding frequencies. In this �gure, solid curves show the frequency of correction code
di�erences while dash lines show the frequency of correction codes from the direct encoding
scheme. The Hu�man coding method [9] is also used to encode code di�erences.

5 Attribute Coding

Besides vertex positions, a mesh may have attached attributes such normals, colors, and
texture coordinates which are used for enhancing shading e�ect. There are four ways in
VRML [8] to bind these attributes with a triangular mesh: no binding, per vertex, per face,
and per corner.

The position predictors can be generalized to code normals, colors, and texture co-
ordinates. In this paper, we present our prediction schemes for normal coding with the
\per vertex" binding. For the other two attributes and other bindings, similar schemes are
designed in [17].
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Figure 4: (a-c) Frequency curves for two encoding schemes: solid curves for code di�erence
and dash lines for the direct encoding. The symbols are sorted by frequency for comparison.
These frequency curves show that in the code di�erence approach most codes are accumu-
lated around only a few symbols. (d-e): Comparison of geometry coding: no prediction,
indirect prediction, and direct prediction.

Just like coding a vertex position, one can use a linear combination of encoded normals
of neighboring entities (vertices or faces) to predict a normal. This is direct prediction.
However, the normal associated with each entity usually reect local geometry variation
around the entity. This implies that the normal can be predicted from neighboring geometry
which is supposed to be already recovered by the decoder. We call this approach indirect
prediction. Several methods to estimate vertex normals can be used in an indirect prediction
approach: average of normals of incident faces, quadratic surface �tting, and subdivision.
Since indirect predictors are based on the geometry information of the reconstructed mesh,
the encoder must use the same geometry information when it does normal predictions. The
�rst predictor averages normals of all incident faces and uses the average normal vector
as the prediction vector. The second predictor uses geometry information of neighboring
vertices to construct a quadratic �tting surface and uses the normal of the �tting surface
at the predicated vertex as the prediction. The subdivision predictor is similar to the
�rst predictor but the incident faces are changed. Figure 4(d-e) compares the e�ciency of
normal coding of three di�erent method: no prediction, indirect prediction by averaging,
and direct prediction from the normal of a neighboring vertex. Clearly, coding normals
without prediction is least e�cient. For the other two cases, the coding results are largely
dependent on the input data.

For any unit normal (n0; n1; n2), its corresponding sphere coordinates can be written as
(1; �; �). So direct coding (no prediction) only needs to code the � and � components. Any
correction vector of a normal does not need to be of unit length. However, since both the
prediction normal and the true normal are of unit length, it is su�cient to code the � and
� components of the correction vector.

6 Experimental Results
Geometry Error Suppose A is the original model and B is the reconstructed model. The
geometric error bewteen A and B is de�ned as E(A;B) = 1

n

Pn�1
i=0 min0�j<n jjPi � Qj jj2

where Pi(0 � i < n) and Qj(0 � j < n) are the vertex positions of A and B respectively,
and A is normalized such that its bounding box diameter is 100. This geometric error
is used for results in Table 1 where our results are compared with the GZIP compressed
�les. Figure 7 compares the compression results of our method compressed gzip �les over
a sample set of 300 VRML models are tested. Every point in this �gure is a compression
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177,652 253,360 253,360 4,453,579

456,734 633,794 823,867 11,260,390

Figure 5: Compression of normals and colors. Both models (brain and skull), whose originals
are shown in the last column (GZIP sizes: 981,827 and 2,431,665 bytes), have normal and
color properties. For the �rst three columns, geometry quantization bits are 12, 18 and
24; normal quantization bits are 8, 12, 16; color quantization bits are 12, 18 and 24. Total
storage sizes are reported below each model in bytes.

ratio which is the quotient of size of VRML/GZIP �le divided by size of our compressed �le.
The horizontal axis is the number of vertices in each model while the vertical axis shows
is the compression ratio. Figure 6 shows our compression results of size triangular models
where the original �les are stored in VRML format [8].

Model Original GZIP CC GC (25 bpv) GC (15 bpv)

Crocodile 1,212,767 395,849 13,055 63,127 (0.010) 39,674 (0.073)

Teapot 5,471,965 1,459,284 12,644 150,900 (0.007) 93,090 (0.063)

Honda 397,730 118,377 3,768 25,739 (0.012) 16,459 (0.101)

Buddha 40,443,806 10,309,238 713,809 1,950,072 (0.003) 1,240,212 (0.011)

Table 1: Comparison of compressed �le sizes in bytes. The fourth column (CC) is connec-
tivity coding cost. The last two columns are geometry coding (GC) cost with two di�erent
quantization bits per vertex (bpv). The numbers in parenthesis are geometry errors.

Besides the ability of handling any kind of triangular meshes, our layering compres-
sion scheme also cherishes a blocking feature that makes it particularly suitable for both
incremental transmission/display and error resilient streaming [1].

7 Conclusion

We have described a space e�cient encoding for both a lossless and an error-bounded lossy
compression scheme for triangular meshes. The compression is achieved by capturing the
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Figure 6: Compression of triangle meshes. The �rst row shows the original models. The
second and third rows are the compressed models which use 25 and 15 bits per vertex.

redundant information in both the topology (connectivity) and geometry, and possibly
property attributes. Error-bounded lossy geometry (without loss of topology) is achieved
by a vector predictor and corrector encoding. Example models and results of our imple-
mentation are also provided. Our future research concentrates on progressive encoding and
transmission of both topology and geometry information for large models, as well as in error
recovery and error concealment encoding schemes.
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