
A programming approach for complex animations. Part I. Methodology

C. Bajaja, C. Baldazzib, S. Cutchina, A. Paoluzzib,* , V. Pascuccia, M. Vicentinob

aDepartment of Computer Sciences and TICAM, University of Texas, Austin, TX 78712, USA
bDipartimento di Informatica e Automazione, Universita` di Roma Tre, Via Vasca Navale 79, Rome 00146, Italy

Received 28 August 1998; received in revised form 15 June 1999; accepted 12 July 1999

Abstract

This paper gives a general methodology for symbolic programming of complex 3D scenes and animations. It also introduces a minimal set
of animation primitives for the functional geometric languagePLaSM. The symbolic approach to animation design and implementation
given in this paper goes beyond the traditional two-steps approach to animation, where a modeler is coupled, more or less loosely, with a
separate animation system. In fact both geometry and motion design are performed in a unified programming framework. The representation
of the animation storyboard with discrete action networks is also introduced in this paper. Such a network description seems well suited for
easy animation analysis, maintenance and updating. It is also used as the computational basis for scheduling and timing actions in complex
scenes.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Graphics; Animation; Design language; Collaborative design; Geometric programming;PLaSM

1. Introduction

This work introduces a high-level methodology oriented
towards building, simulating and analyzing complex
animated 3D scenes. Our first goal is the creation of
compact and clear symbolic representations of complex
animated environments. Our second goal is to allow for
easy maintenance and update of such environments, so
that different animation hypotheses can be analyzed and
compared. The construction of complex animations using
minimal man-hours and low-cost hardware also motivated
the present approach.

The contributions of the present paper can be summarized
as follows: (i) definition of a methodology for symbolic
programming of complex 3D scenes; (ii) introduction of a
minimal set of animation primitives for a geometric
language; (iii) development of two experimental animation
frameworks, both local and web-based. This approach goes
beyond the traditional two-steps approach to animation,
where a modeler is coupled, more or less loosely, with a
separate animation system.

A programming approach to animation that provides

simple but powerful animation capabilities as an extension
of a geometric design language is discussed here. Hence
both geometry design and animation can be performed in
a unified framework where animations are programmed just
like any other geometric information. In this way a designer
or scientist may quickly define and simulate complex
dynamic environments, where movements can be described
by using well-established methods of mathematical physics
and solid mechanics.

We show that using a functional language is serviceable
both in quickly implementing complex animations and in
testing new animation methods. For this purpose, look at the
solution proposed for describing the storyboard of very
complex animations and computing the relative time
constraints between different animation segments. Notice
that a full “choreographic control” is achieved by imple-
menting a “fluidity constraint” of the whole animation,
which holds for any possible choice of expected durations
of animation segments.

For very complex animation projects, where several users
cooperate to design an animated environment, we are devel-
oping a collaborative web-based interface where multiple
client applications can interact with the same scene. Due to
the compactness of the shared information, multiple client
applications, possibly distributed in a wide area network,
can interact with the same animated scene either synchro-
nizing their views or working with independent focus on
different aspects of interest or competence. This provides

Computer-Aided Design 31 (1999) 695–710

COMPUTER-AIDED
DESIGN

0010-4485/99/$ - see front matterq 1999 Elsevier Science Ltd. All rights reserved.
PII: S0010-4485(99)00062-7

www.elsevier.com/locate/cad

* Corresponding author. Tel.:139-06-5517-3214.
E-mail addresses:bajaj@cs.utexas.edu (C. Bajaj), baldazzi@dia.

uniroma3.it (C. Baldazzi), cutchin@cs.utexas.edu (S. Cutchin), paoluzzi
@dia.uniroma3.it (A. Paoluzzi), pascucci@cs.utexas.edu (V. Pascucci),
vicenti@dia.uniroma3.it (M. Vicentino)

a shared workspace that makes easy the animation process
and reduces its production time and cost.

We are experimenting the methodology in two settings.
Firstly we have been using a simple Open Inventor-based
animation server to allow local display of the animations on
any system including low-cost PCs. Also, we are developing
a web-based visualization framework, where the compact-
ness of the language representation turns out to be useful
when transmitting geometry and animation information
over the network.

For this purpose we have extended the geometric
languagePLaSM [13], recently integrated into the colla-
borative and distributed 3D toolkitShastra[3], with the
ability to generate platform-independent animated scene
descriptions capable of being read by 3D graphics libraries
such as the Shastra animation moduleGati [4], or Open
Inventor [22]. The animation methodology introduced
here is implemented as an extension of thePLaSM
language, providing a hierarchical description of scenes
and capable of being exported to generic animation engines,
just by switching to an appropriate driver.

The proposed methodology allowed to implement a
detailed reconstruction of a real catastrophic event which
occurred in Italy three years ago. This large-scale example
is described in the companion paper [14].

The present paper is organized as follows. In Section 2
some animation softwares are quickly described, in order to
abstract their common features. In Section 3 a set of
animation concepts is defined, and an animation design
methodology based on discrete action networks is proposed.
In Section 4 some background concepts from graphics,
geometric programming and network programming are
recalled. In Section 5 the design goals and implementation
directions of thePLaSManimation extension are discussed.
In Section 6 the static and run-time architecture of both a
local Inventor-based animation server and of web-based
Shastra’s animation services are discussed. In Section 7 a
complete implementation of a non-trivial animation
example is given. In Section 8 the on-going extensions to
the described animation environment are outlined.

2. Previous work

In this section we report on some main aspects of both
commercial and academic animation software. In particular,
we concentrate on the animation capabilities, even when the
systems also offer advanced modeling tools. Commercial
animation software usually allows to animate objects, lights,
cameras, surface properties and shading parameters. The
basic tools define animations on the basis of key-frames
and motion paths. They also normally solve inverse
kinematic problems. The user interface allows interactive
definition and editing of parameters curves.

Power Animator [2] is a software from Alias/Wavefront.
Interactive tools allow fine tuning of the interaction among

actors and the background. It also allows to emulate physi-
cal phenomena like gravity, friction, turbulence or colli-
sions. Advanced features include automatic generation of
3D solid and gaseous particles interacting realistically
with the environment. Maya [1], also from Alias/Wavefront,
allows for intuitive animation of syntheticcharacters. The
character behaviors are defined by hierarchical controls.
This includes hierarchical deformations, inverse kinematic,
facial animation,skinningtools. It provides a wide number
of special effects and includes the scripting language MEL.
It also provides a C11 API that allows to modify a number
of functionalities as needed by the user.

LightWave [12] from NewTek is platform independent.
The system is mostly modeling and rendering oriented (e.g.
real-time transformation of polygonal surfaces into
NURBS). Advanced features are provided for dealing with
evolving illumination and the definition of dynamic systems
of particles. The animations can be defined through the
scripting languageL-script . Electric Image [6] is also
platform independent. In Electric Image 3D models can be
build directly from their skeletons. Shape transitions are
performed through morphing techniques. Ad hoc features
are available for sky and backgrounds.

Houdini [19] is a software from Effects Software. It is a
procedural animation system providing a scripting language
and a SDK for system customization. The procedural para-
digm is implemented through a friendly user interface with a
data-flow like structure. 3D Studio Max [11] from Autodesk
is an object-oriented environment with a flexible animation
control system, where every feature is editable and exten-
sible. SoftImage [20] offers a high-level interface for
sequencingactions(sets of animation data) along the time
axis. This allows easy animation editing of segmented high-
resolution characters. It provides advanced features for skin-
ning and inverse kinematics of physically based characters.

The academic software Alice, by Randy Pausch’s group
[17] at CMU, is an interesting rapid prototyping interactive
system for virtual reality. Alice is also based on a program-
ming approach, which uses the object-oriented interpreted
language Python [21]. When the Alice program is execut-
ing, the current state can either by updated by evaluating
program code fragments, or by GUI tools. Alice’s simula-
tion and rendering are transparently decoupled. Cinderella
[18] is a Java software for geometry definition and anima-
tion. It is oriented towards mathematical users experiment-
ing with projective and descriptive geometry, but does not
seem to be well suited for 3D modeling.

Published work on advanced animation systems is often
focused on specific aspects of the problem. For example,
Grzeszczuk et al. [9] explore the possibility to replace heavy
physically based simulated animations with physically
realistic sequences generated by trained neural networks.
This approach seems very interesting but cannot be used
within general-purpose animation systems. Gleicher [8]
considers the problem of retargetting existing motions of
animated characters to structurally equivalent ones. His

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710696

approach minimizes the frequency magnitude of the differ-
ence between the original motion and the adapted one using
a space–time constraint solver. In this way the visual arti-
facts of the adapted motion are strongly reduced. Such an
approach could be used to reusing pieces of animation code
in different settings.

3. Methodology

The animation methodology proposed in this paper is
specified here. First some definitions are given, then the
animation partitioning with network techniques is proposed,
and the typical modeling and animation cycle is discussed.

3.1. Definitions

In order to focus the main aspects of the animation
problem several definitions are given. Some of them are
quite standard in the animation field. Anyway, it seems
useful to provide a precise meaning to concepts used in
the remainder of this work:

Scene: A sceneis defined here as a function of real para-
meters, with values in some suitable data type. Each
feasible set of parameters defines aconfigurationof the
scene. The time can be considered a special parameter
and treated separately from the other ones.
Background: The scene part which is time-invariant is
calledbackground.
Foreground: The time-varying portion of an animated
scene is calledforeground. It can be subdivided intostatic
anddynamicforeground. The former is visible only inside
a time interval with a constant configuration. The latter is
instead associated to variable configurations.
Behavior: The product of the time domain times the
Configuration SpaceCS gives the state-spaceof the
animation.1 A continuous curve in thestate-spaceof
the animation is called abehaviorof the scene.
Animation: An animation is a pairkscene, behaviorl.

3.2. Network approach

An animation description with discrete action networks is
introduced here. Such a network description seems well
suited for easy animation analysis, maintenance and updat-
ing. It is also used as the computational basis for scheduling
and timing actions in complex scenes. The relevant concepts
are given in the following:

Storyboard: A network representation of the animation
foreground is called thestoryboard. It is a hierarchical
a-cyclic graph with only one node of in-degree zero
(called sourcenode) and only one node of out-degree
zero (calledsink node). The source node represents the

animationstart. The sink node represents the animation
end.

From a practical viewpoint, the storyboard states a hier-
archical partitioning of the animation behavior (and scene)
into independent components. In other words, the story-
board partitions the animation into largely independent
“segments” and specifies both time constraints between
such components, and the projection curves of the anima-
tion behavior into lower-dimensional subspaces associated
to segments:

Segment: A segmentis an arc of the storyboard. It repre-
sents a foreground portion characterized by the fact that
every interaction with the remainder animation is concen-
trated on the starting and ending nodes of the segment.

Each segment may be modeledindependentlyfrom the
others, by using alocal coordinate frame for both space and
time coordinates. The concepts of storyboard and segment
are interchangeable, in the sense that each complex segment
of the animation can be modeled by using a local story-
board, which can be decomposed into lower-level segments.
Elementary segmentsare those without a local storyboard:

Event: An eventis a storyboard node. The segments start-
ing from it may begin only whenall the segments ending
in it have finished their execution.
Segment model: The geometric modelof a segment is a
description of both the assembly structure and the geome-
try of its elementary parts. InPLaSM every geometric
model results from the evaluation of some polyhedrally
typed expression.
Segment behavior: A behavior of the segment is the
continuous curve restriction of the scene behavior to the
segment’s subset of degrees of freedom.
Actor: An actor (or character) is a connected chain of
segments associated with a unique geometric model and
with different behaviors. So, at any given time each actor
has a unique fixed set of parameters, i.e. a unique config-
uration.

Notice that the behaviors of an actor are defined as differ-
ent curves in the same subspace of state-space. In fact, since

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 697

Fig. 1. Motion data set generated by anANIMATIONprimitive. This repre-
sentation can be played by a generic animation server.

1 Remember thatCSis the product space of the interval domains of scene
DOFs.

the geometric model is invariant, the segment configuration
space is also invariant. The different curves correspond to
pairs of events where the considered actor interacts with
other actors, according to the storyboard.

3.3. Modeling and animation cycle

The highest levelPLaSMprimitive, namedANIMATION,
directly corresponds to the animation storyboard. The
language interpreter generates at run-time a suitable set of
motion data(see Fig. 1) to be interpreted and executed by
the animation server.

Each animation segment is associated with a time length
(duration), either introduced by the user for elementary
segments, or automatically computed by using the segment
storyboard and a suitable algorithm. In particular, thecriti-
cal pathalgorithm is used for this purpose. This method is
based on the computation of the longest-time paths of the
storyboard network. According to standard PERT terminol-
ogy each segment of a storyboard may be defined as either
of typeearliest_start, or latest_endor critical (both earliest
start and latest end), to denote the specific time constraints.

Geometric models are implemented inPLaSMas Hier-
archical Polyhedral Complexes (HPC) [15]. Such a model
may be exported fromPLaSMas either VRML or Inventor
file. Container nodes referring to external VRML/Inventor
files provide the geometric components for the run-time
behavior of the animation.

The geometric model of a dynamic foreground segment
must provide some degrees of freedom (DOFs), i.e. some
unbounded parameters, often corresponding to parameters
of affine transformations. Such a segment will be suitably
exported using theMOVEprimitive described in Section 5.2.
The unbound parameters constitute one of main components
of the motion files in the CS folder (see Fig. 1) associated by
the PLaSMinterpreter to the foreground segments.

The behavior curves are implemented inPLaSMby using
parametric curves and splines. The starting and ending times
are automatically computed using the dynamic program-
ming formulas recalled in Section 4.5. A simple and often
useful choice is to use Be´zier curves to represent the beha-
viors. A behavior is completely specified by a sequence of
points in state-space. In particular, any Be´zier curve inter-
polates the first and last points and approximates the other
ones. A sampled behavior, i.e. a finite sequence of state-
space points, is exported to the external animation software,
where a suitable engine will linearly interpolate between
any pair of adjacent samples.

Animation cycle: To define a complex animation the
following typical steps are required:

• Problem decomposition into animation segments, and
definition of the storyboard as a graph.

• Modeling of geometry and behavior of the animation
segments. Each segment will be modeled, animated and
tested independently from each other.

• Non-linear editing of segments, describing inPLaSM

their events and time relationships (look at example of
Section 7). The segment coordination is obtained by
using the critical path method.

• Simulation and parameter calibration of the animation as
a whole.

• Feedback with possible storyboard editing, with the start-
ing of a new cycle of modeling, editing, calibration and
feedback, until a satisfying result is obtained.

4. Background

This section presents some background information for
better understanding the material presented in the paper.
First the PLaSM functional approach to programming is
described, then the important graphics concepts of hierarch-
ical assemblies and parametric curves are recalled. Finally
some concepts of network programming, including critical
path method, are briefly described.

4.1.PLaSMmodel of computation

ThePLaSMlanguage [13] is a geometry-oriented exten-
sion of a subset of the functional languageFL [5]. Generally
speaking, eachPLaSMprogram is afunction. When applied
to some inputargumenteach program produces some output
value. Two programs are usually connected by using func-
tional composition, so that the output of the first program is
used as input to the second program. The composition of
PLaSMfunctions behaves exactly as the standard composi-
tion of mathematical functions. For example the application
of the compound mathematical functionf +g to thex argu-
ment

�f +g��x� ; f �g�x��
means that the functiong is first applied tox and that the
function f is then applied to the valueg(x). The PLaSM
denotation for the previous expressions would be

�f ~g� : x ; f : �g : x �
where ~ stands for functioncompositionandg:x stands for
applicationof the functiong to the argumentx .

In PLaSM, a name can be assigned to a geometric model
by defining it as a function without formal parameters. In
such a case thebodyof the function definition will describe
the computational process which generates the geometric
value. The parameters that it depends on will normally be
embedded in such a definition. For example we may have

DEF object � (Fun3~Fun2~Fun1):
parameters;

The computational process that produces the object value can
be thought as the computational pipeline shown in Fig. 2.

In severalPLaSMscripts the dependence of the model
upon the parameters is implicit. In order to modify the
generated object value it is necessary (a) to change the
source code in either the body or the local environment of

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710698

its generating function, (b) to compile the new definition and
(c) to evaluate again the object identifier.

A parametric geometric model can be conversely
defined, and easily combined with other such models, by
using a generating function withformal parameters. Such a
kind of function will be instantiated with differentactual
parameters, so obtaining different output values. It is inter-
esting to note that such a generating function of a geometric
model may accept parameters of any type, including other
geometric objects.

4.2. SomeFL & PLaSMsyntax

FL is a pure functional language based on combinatorial
logic. Primitive FL objects are characters, numbers and
truth values. Primitive objects, functions, applications and
sequences are expressions. An application expression
exp1:exp2 applies the function resulting from the evalua-
tion of exp1 on the argument resulting from the evaluation
of exp2 . Also the infix form is allowed for binary opera-
tors:

1 : k1;3l � 1 1 3 � 4

Application associates to left, i.e.f : g : h � �f : g� : h:
Also, application binds stronger than composition, i.e.
f : g~h � �f : g�~h:

Construction functionalcons allows the application of a
sequence of functions to the same data. It can also be
denoted by enclosing the functions between angle brackets:

CONS:kf 1,…,f nl:x � [f 1,…,f n]:x �
kf 1:x,…,f n:x l

Apply-to-all conversely allows the application of a func-
tion to a sequence of data:

AA : f : kx1 ;…; xnl � kf : x1 ;…; f : xnl

The Identity function and the Constant functional have
the standard meaning:

ID : x � x
K : x1 : x2 � �K : x1 � : x2 � x1

The Conditional function is defined as follows, wherep,
f andg must be functions:

IF : kp; f ;g; l : x � f : x if p : x � TRUE
IF : kp; f ;gl : x � g : x if p : x � FALSE

Other FL combining forms have a combinatorial beha-
vior, and strongly contribute to the working of the language
as a “combinatorial engine”. In particular, the “Insert right”

and “Insert left” functions allow for (recursively) applying a
binary function to a sequence of arguments of any length:

INSR:f: kx1,x 2,…,x nl� f:
kx1,INSR:f: kx2,…,x nll
INSL:f: kx1,…,x n21,x nl� f:
kINSL:f: kx1,…,x n21l,x nl

The CAT (Catenate) function allows for appending
sequences. Several other primitive functions for sequences
are available, includingLIST , FIRST , TAIL , LAST, and
the selectorsS1;S2;…;Sn of the first, second and thenth
element of a sequence:

CAT: kka,b,c l, kd,e l,…, kx,y,w,z ll�
ka,b,c,d,e,…,x,y,w,z l
LIST : x � kx l
S3 : ka; b; c ;d; e; f ; l � c

The two Distribute functions are applied to a pair
composed by a sequence and by any expression and gener-
ate a sequence of pairs:

DISTR : kka;b; c l; x l � kka; x l; kb; x l; kc ; x ll
DISTL : kx ; ka;b; c ll � kkx ; al; kx ;bl; kx ; c ll

The Transpose function works exactly as a matrix compo-
sition, e.g.

TRANS:kkx1,x 2l, ky1,y 2l, kw1,w 2ll�
kkx1,y 1,w 1l, kx2,y 2,w 2ll

The languagePLaSM can evaluate expressions whose
value is apolyhedral complex. This is the only new primi-
tive data type, with respect toFL. Clearly, it can produce
higher-level functions in theFL style. Some important
differences withFL exist. In particular no free nesting of
scopes and environments is allowed inPLaSM, and no
pattern matching is provided.

Two kinds of functions are recognized inPLaSM: global
(or top-level) functions andlocal functions. Global func-
tions may contain a definition of local functions between
WHEREandENDkeywords. Local functions may not, and
cannot contain a list of formal parameters. In order to make
a local functionparametricthey must necessarily adopt the
FL style of function definition, using combining forms and
selector functions. Notice that the visibility of local func-
tions is restricted to the scope of the global function where
they are declared.

Top level functions may contain a list of formal para-
meters. They are always coupled to some predicate, which
is used to test the type of the actual parameter:

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 699

Fig. 2. Example of computational pipeline.

DEF f �a < type1 � � body
DEF f �a1 ;…;an < type2 � � body

Notice that with more than one parameter, the application
of the function to actual parameters requires the use of angle
brackets:

f : x
f : kx1 ;…; xn l

For a complete listing and meaning of pre-definedPLaSM
operators, the interested reader should read paper [13].
Anyway, most of times the operator meanings are consistent
with their names.

4.3. Hierarchical structures

Hierarchical structures are a basic graphics concept. A
structure is inductively defined as an ordered set (sequence)
of structures, affine transformations and elementary
geometric objects. The semantics of the structure concept
is very simple. Every affine transformation contained in a
structure is (ordinarily) applied to all the subsequent objects
that follow it in the sequence. This application returns a
sequence of geometric objects all lying in the same coordi-
nate space, when originally they were independently defined
using local coordinate systems.

Structures are represented as oriented acyclic graphs. In
particular, each structure is associated with a node, whereas
the elements in its sequence are represented as the child
nodes of the parent node. The structure

n� S; with S� { n1;n2;…; nk} ;

is therefore implemented as an oriented graph with

nodes {n} < Sand arcs {n} × S:

A structure network2 or hierarchical scene graph3 is
simply the union of the graphs of the different structures.
Such a graphis not necessarilya tree, since the same node
may have more than one parent node at an upper level.

A traversal algorithm linearizes such a graph, suitably
transforming all the geometric objects, each one defined in
a local coordinate frame, into the coordinate frame of the
root, often calledworld coordinate system. Such a traversal
is often performed by some predefinedvieweravailable in
the chosen toolkit (e.g. in Open Inventor) and is executed at
a suitable frequency to achieve fluid animation.

The animation effect is obtained when some of geometric
parts of the scene change position, orientation or internal
configuration. Such change is often implemented by editing
the internal values of parameters of some affine
transformation.

4.4. Polynomial parametric curve

A polynomial parametric curve is a vector-valued func-
tion of a real variableu, obtained by the combination of
some control points with the elements of a suitable polyno-
mial basis in theu variable. In particular, a Be´zier curvec of
degreen is a polynomial combination ofn 1 1 control
pointsqi [Ed:

c : R! Ed : c�u� �
Xn
i�0

Bn
i �u�qi ;

where the blending functionsBn
i : R! R are the Bernstein

polynomials:

Bn
i �u� �

n

i

 !
ui�1 2 u�n2i

:

Notice that the imagec(u) of the curve is a continuous set of
points in the same space where theqi control points are
defined, which shortly describe the curve shape. Remember
also that a Be´zier curve interpolates the first and last control
points, and approximates the intermediate control points.

4.5. Network programming

We use network programming techniques to edit the
collection of animation segments. In particular, we use the
dynamic programming algorithm of PERT (Program
Evaluation and Review Technique) [10] to compute mini-
mal and maximal times of events as well the completion
time of the whole animation.

PERT, also known asCritical Path Method, is well
known for managing, scheduling and controlling very
complex projects and computing the optimum allocation
of resources. Such projects may have tens or hundred of
thousands of activities and events. This technique is the
most popular variation of the network programming techni-
ques, where a bundle of inter-dependent activities is repre-
sented as a directed acyclic graph.

Minimal (maximal) spanning time: tk (Tk) of a nodek is
the minimal (maximal) time for completing the activities
entering the nodek. Notice that such activities can (must)
be completed into this time, respectively.
Critical path method: The more important computation
concerns minimal and maximal spanning time of nodes.
The dynamic programming algorithm is very easy (see
Fig. 3):

tk � max
i[pred�k�

{ ti 1 Tik} ; Tk � min
i[succ�k�

{ Ti 2 Tki}

There are two subsequent steps in the computation,
respectively, called forward and backward computation.

Forward computationof minimal times tk. Set t0 � 0:
Then try to compute the minimal timete of ending
node, i.e. the completion time of the whole project. The

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710700

2 ISO/PHIGS terminology.
3 SGI/Inventor and VRML terminology.

recursive formula allows for computing thetk of all nodes
(see Fig. 3a).
Backward computationof maximal timesTk. SetTe � te:
Then try to compute the maximal timeT0 of starting node.
The recursive formula allows for computing theTk of all
nodes (see Fig. 3b).
Activity slacks: Theslack Sij of the arc (i, j) is defined as
the quantity of time which may elapse without a corre-
sponding slack of the completion time of the project. The
activity slack is given by

Sij � �Tj 2 ti�2 Tij ;

where Tij is the expected duration of the activity (i, j)
(see Fig. 3c). Thecritical activities have empty slacks:
Sij � 0:

5. Language extension

This section outlines the extensions to thePLaSM
language implemented for defining and exporting motion
data which may contain geometry, attributes and anima-
tions. Such exporting was targeted towards commonly
available 3D toolkits. The reference model for such graphics
extension of thePLaSMgeometric language is the hierarch-
ical scene graph. The described approach is currently
performing onlyoff-line geometric animations.

From the animation viewpoint the language extensions
allow the modeling of the actors and their interactions on
the scene, as well as the modeling of the independent beha-
viors of animation segments. The time assembly of indepen-
dent animation segments is automatically guaranteed.

The previous PLaSM implementation allowed for
geometric computations without considering non-geometric
attributes such as colors, lights and textures. The current
extension introduces such non-geometric features into the
language, using as reference a hierarchical scene graph with
non-geometric nodes. In particular, colors, lights and
textures were added to the language [16].

A basic design decision was that of introducing only
small modifications to the existing language interpreter.
The language was mainly extended by modifying the pre-
defined functional environment. A new internal data type
and four new animation primitives were introduced into the
language. Such minimal extension to the language has

shown to be sufficient for implementing very complex
animated scenes, as discussed in the companion paper [14].

5.1. Static animation with classicPLaSM

In PLaSM the animation of a polyhedral scene can be
implicitly represented by explicitly giving the degrees of
freedom as formal parameters of a function which generates
the polyhedral values.

The desired behavior can also be modeled as a curve in
configuration space. The movement can finally be emulated
by: (a) sampling the curve; (b) applying the generating func-
tion of the shape on each sampled configuration (set of
parameters); and finally by (c) aggregating all the resulting
polyhedral complexes in a unique structure. The resulting
covering of the work space will therefore represent the
movement.

Example (Modeling a planar arm). Consider the very
simple planar robotic arm with three degrees of freedom
shown in Fig. 4a. There are three rotational degrees of free-
dom, respectively, nameda1, a2 anda3

DEF rod � T: k1,2 l: k 2 1, 2 19l:
(CUBOID: k2,20 l)
DEF DOF(alpha < IsReal) � T:2: 218
~R: k1,2 l:alpha;
DEF arm(a1,a2,a3 < IsReal) � STRUCT:
krod,DOF:a1,rod,DOF:a2,rod,DOF:a3,rod l

Example (Modeling a movement). The desired move-
ment is modeled as a cubic Be´zier curve defined by four
points in configuration space�2p;p�3 , R

3
: Such a curve

is shown in Fig. 4b. Notice that theSampling function
produces a sampling of the unit internal [0,1]. The imple-
mentation of the Be´zier curve mapping is given in Appendix
A.4

DEF CSpath � Bezier: kk0,0,0 l,
kPI/2,0,0 l, kPI/2,PI/2,0 l,
kPI/2,PI/2,PI/2 ll;
DEF Sampling(n < IsIntPos) �
(AA:LIST~AA:/~DISTR): k0..n,n l;

Such a movement is emulated by applying thearm

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 701

Fig. 3. (a) Forward computation of nodek. (b) Backward computation of nodek. (c) SlackSij shown in the earliest_start scheduling of the (i,j) segment.

function to a sequence of 18 curve samples and by accumu-
lating the resulting polyhedral complexes in a structure:

(STRUCT~AA:arm~AA:CSpath):
(Sampling:18)

The geometric result obtained by evaluating the above
PLaSMexpressions is displayed in Fig. 4c.

5.2. Animation with extendedPLaSM

For the purpose of defining and exporting animations, we
have introduced four new primitives inPLaSM, respec-
tively, denoted asFRAME, XSTRUCT, MOVE, ANIMATION.
The representation of background objects does not require
new primitives.

Background: The time-invariant objects in the scene are
simply defined as standard polyhedral complexes, by
using polyhedrally typedPLaSMexpressions.
FRAMEprimitive: TheFRAMEprimitive is used to repre-
sent a static portion of the foreground, i.e. a segment with
constant configuration. Such a primitive is first applied to
the static geometry, i.e. to a polyhedral complex. The
result is then applied to an increasing pair of time values.
The two time values define the existence interval of such
geometry in the scene. Each animation is assumed to start
at local timet � 0: The special time symbol21 is used to
denote the final time of the storyboard.
XSTRUCTprimitive: TheXSTRUCTprimitive is used to
define parameterized polyhedral complexes, which corre-
spond to the new internal data type XHPC of extended
PLaSM. The syntax and usage are equivalent to the
STRUCTprimitive, which is used to generate assemblies.
Its semantics requires a lazy evaluation mechanism,
where a set of parameters is left unbound for subsequent
use.
MOVEprimitive: The MOVEprimitive is used to imple-
ment the behavior of a dynamic foreground segment. It
requires three cascaded applications. First it is applied to
a function, parameterized on the degrees of freedom of
the segment and returning a value of XHPC type. The
resulting function is then applied to the sampled

trajectory in the segment configuration space. Finally,
the function resulting from the latter application is
applied to a conformal sequence of time steps.
ANIMATION primitive: The ANIMATION primitive is
used (likewise a container) to define and export the set
of motion data for a given background and foreground. Its
input is a sequence of either polyhedral complexes, or
FRAMEexpressions orMOVEexpressions. As a side effect
of its evaluation the motion files and directories displayed
in Fig. 1 are generated. Such files will be used by the
coupled animation server for the animation play-back.

Example (Modeling arm motion and geometry). In order
to discuss the extensions toPLaSM, the robot arm example
has been animated according to the behavior curve already
presented. The extendedPLaSMcode for the description of
both the planar arm and its motion is given in the following:

DEF background �
(EMBED:1~T:2: 2 90~CUBOID): k100,100 l;
DEF Rod� T: k1,2 l: k 2 1, 2 19l:
(CUBOID: k2,20,1 l);
DEF dof(alpha < IsReal) �
T:2: 2 18~R: k1,2 l:alpha;
DEF Arm(a1,a2,a3 < IsReal) � XSTRUCT:

kRod, dof:a1, Rod, dof:a2, Rod, dof:a3,
Rodl;

DEF t1 � 2;
DEF t2 � t1 1 5;
DEF Sample(n < IsIntPos) �
(AA:LIST~A:/~DISTR): k0..n,n l;
DEF Motion � Bezier: kk0,0,0 l, kPI/
2,0,0 l, kPI/2,PI/2,0 l, kPI/2,PI/2,PI/2 ll;
DEF Time � Bezier : kkt1 l; kt1 1 1l; kt2 ll;
DEF CSpath � �AA : Motion ~Sample � : 18 ;
DEF TimePath �
(CAT~AA:Time~Sample):18;
DEF FirstConfiguration �
(STRUCT~Arm): k0,0,0 l;
DEF LastConfiguration �
(STRUCT~Arm): kPI/2,PI/2,PI/2 l;
DEF Storyboard � ANIMATION : k

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710702

Fig. 4. (a) Planar arm configuration generated byarm: kPI/6,PI/4,PI/3 l. (b) Cubic Bézier curve in configuration space. (c) Geometric object generated
by (STRUCT~AA:arm~AA:Cspath):(Sampling18) .

background,
FRAME:FirstConfiguration: k0,t1 l,
MOVE:Arm:CSpath:TimePath,
FRAME:LastConfiguration: kt2, 2 1l

l;

The previous example is a simple instance of our anima-
tion model, with only one animated actor. In this case the
storyboard is a linear graph with three arcs, as shown in Fig.
5. The first and last segments are static, the second one is
dynamic.

6. Test environments

The described animation methodology was experimented
in two settings. A simple Open Inventor-based animation
server has been implemented to allow local play-back of
PLaSM-generated animations. A web-based visualization
framework is also under development to address issues of
user-collaboration over wide-area networks.

6.1. Open inventor animation server

The visualization server MOV (Motion with Open inVen-
tor) was implemented on the IRIX and NT platforms, so
allowing local play-back both on high-end workstations
and desk-top PCs. MOV (see architecture in Fig. 6a) takes
as input the motion data generated byPLaSMwith informa-
tion about: the geometry of actors; their configuration space
path; the corresponding timeline data; the position, orienta-
tion and motion of animated cameras; the background
objects, etc. The motion data set also includes a.prj
project file, with a set of general directives to the player,

like the number of frames per second, the starting and
ending frames, the display resolution, the setting of static
cameras, the background color, and so on. When the server
is used interactively, the user can browse the animation
frame by frame, backward and forward, with interactive
camera control and selection, including all the standard
capabilities of the Inventor’s Examiner Viewer.

The motion data set is used to generate an Inventor scene
graph (see Fig. 6b) and an internal database. The unbound
parameters in the XHPC values are mapped symbolically by
PLaSMinto labels which are defined in the motion data and
referred in the Inventor geometries. This mechanism allows
to optimize the MOV play-back. Three execution modalities
are available: real-time, step-wise and off-line. In real-time
mode the server tries to synchronize the animation time to
the clock time, eventually dropping some frames. In step-
wise mode all the frames are displayed independently from
the rendering time. In batch-mode a sequence of pictures
(jpeg, rgb or bmp) is saved into secondary memory. This is
useful for movie generation and editing.

6.2. Experimental web animation system

We have also built an experimental web animation
system that uses a simple web-based visualization client
(ShaPoly), two domain specific servers (Gati andPLaSM)
and the Shastra collaboration toolkit to integrate the appli-
cations (see Fig. 7). The visualization client is a Java/VRML
application downloadable from a remote web server. Gati is
a dedicated animation server for generating complex anima-
tions from a high-level declarative language. ThePLaSM
server, as widely discussed in the previous sections,
provides the modeling and animation functionalities. It

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 703

Fig. 5. The very simple storyboard of the plane arm animation example.

Fig. 6. (a) MOV server architecture. (b) Animated Inventor scene graph generated by MOV fromPLaSMinput.

provides a powerful high-level language for describing
complex geometric scenes and objects simply. The Shastra
collaboration toolkit is a collection of libraries and applica-
tions that create a web-based collaborative networked envir-
onment.

6.2.1. Static architecture
ShaPoly is a Java/VRML collaborative object browser

that can retrieve 3D objects, scenes, and animations from
remote applications. It has a simple graphical user interface
for displaying and manipulating three dimensional scenes
and animations. Using the Shastra collaboration toolkit
multiple ShaPoly applications can be used collaboratively.

ThePLaSMinterpreter accepts high-level descriptions of
objects, scenes, and animations and in conjunction with the
Gati animation server generates simplified descriptions of
these scenes and animations. These simplified descriptions
are then returned to the ShaPoly client for visualization.

Gati is a programmable animation server. It is capable of
processing multiple remote requests for animations. Scene
descriptions with complex animations are submitted to the
server and simplified scenes and animations are returned as
a result.

The Shastra collaboration toolkit is a collection of
libraries and specialized applications that can be used to
create powerful collaborative and distributed applications.
The toolkit is both Java and C11 based, allowing both
C11 and Java collaborative applications to be created
and inter-operate. The toolkit provides communication,
coordination, and collaboration mechanisms for applica-
tions.

6.2.2. Runtime architecture
Some users interact with the visualization client to send

geometric descriptions to thePLaSMserver that generates
representations for scene and animation. This representation
is passed to Gati which generates the low-level translation
transmitted to the visualization client which displays the
animation.

The animation is begun by the users pointing their web

browser to a web server and downloading the Java ShaPoly
visualization client. After the client is downloaded the user
will be automatically connected to the Shastra collaboration
environment. This allows them to access all the network
resources active within the environment.

A user uses the ShaPoly visualization client to create a
scene graph with objects that can be imported by thePLaSM
interpreter. A simple graphical user interface is provided for
creating scenes of user defined polyhedral objects. After
creating a scene a user can then attach aPLaSMscript to
the scene specifying the motion to be applied to objects
within the scene. Alternatively the user may sketch out
space curves for objects within the scene to follow and
graphically attach them to the scene objects (the interface
will generate the correspondingPLaSMcode).

Once defined a scene and animation can be submitted to a
remotePLaSM server. The user selects aPLaSM server
from a list of available servers provided by the Shastra
kernel resource manager. If noPLaSMserver is executing
the user may request that one by starting and the Kernel will
start a remotePLaSMserver.

After the remotePLaSMserver has been selected the user
defined scene and animation is converted to aPLaSM
geometric language description and submitted to the server
using the Shastra communication layer. ThePLaSMserver
then processes the code and generates the motion data
described in the previous sections of this paper. Such data
are submitted to a Gati server specified within the geometric
language code. The scene and motion data are transferred to
the Gati server using the Shastra communication layer.

Finally Gati generates a sequence of atomic transforma-
tions (events) that the viewer can execute directly. The
resulting scene and animations are then streamed to the
original visualization client where they can be played and
replayed by the user.

7. Example

In this section a complete example of scene modeling and
animation is discussed. The example closely resembles the
famousLuxo Lampanimation by Michael Kass and Andrew
Witkin [7]. In our case two similar lamps are moving
together by describing a quite complex path in their config-
uration spaces.

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710704

Fig. 7. Web animation architecture.

Fig. 8. (a) The lamp model in a given configuration. (b) Some key-frames
along a segment animation.

In Section 7.1 the geometric models of the lamp compo-
nents are generated, and the lamp assembly is defined in
local coordinates (see Fig. 8). In Section 7.2 the storyboard
of the animation is given, where the movements of the two
actors are both specified and coordinated (see Fig. 9). In the
appendices a quite small set of relatedPLaSMcode is given,
together with the specification of the CS paths of the various
animation segments.

Notice that the given example code is a complete working
implementation, which can be directly executed under a
PLaSM interpreter, obtaining a set of files to be executed
under the control of either a Gati or MOV interface.

7.1. Geometry modeling

Design parameters: In order to generate different lamp
instances, the lamp code has been parameterized with
respect to the length and side of rods and to the radius and
height of the basis.

DEF rodHeight � 20;
DEF basisRadius � 20;
DEF rodSide � SQRT:2;
DEF basisHeight � 2;

Geometric model of parts: First the lamp rod, named
JointedRod , is generated. It is an assembly, along thez
coordinate, of amaleJoint , a rod , and a female-
Joint .

DEF halfHinge2D � circle:PI:1:12;
DEF hinge2D � STRUCT:
khalfHinge2D,T: k1,2 l: k 2 1, 2 3l,Q:2*Q:3;
DEF hinge � hinge2D*Q : 0:5;
DEF DoubleHinge � STRUCT:
khinge,T:3:1.2,hinge l;
DEF hbasis � circle:(2*PI):1.2:24*Q:2;
DEF femaleJoint � STRUCT:

kT:3: 2 5:hbasis,T:2:0.85,R: k2,3 l:
(PI/2):DoubleHinge l;

DEF maleJoint � STRUCT:
kR: k2,3 l:PI,

T:3: 2 5:hbasis,T:2:0.25,R: k2,3 l:
(PI/2):Hinge l;

DEF rod � T:
k1,2 l: krodSide/ 22,rodSide/ 22l:
�CUBOID: krodSide ; rodSide ; rodHeight l�;

DEF JointRod �maleJoint
TOP rod TOP femaleJoint;

In the previous code notice that infix binary operators
(like TOP) are left-associative. Then the lampbasis and
head are defined, where the conic part as well the cylinder
part are both generated by using the functionTrunCone ,
whose definition is given in the appendix. Thehead func-
tion depends on an implicit integer parameter, which speci-
fies the grain of the polyhedral approximation of surfaces.

DEF basis � (circle:(2*PI):
basisRadius:32*Q:basisHeight)

TOP femaleJoint;
DEF head� STRUCT~[K:maleJoint,
K:(T:3:5),embed:1~circle:(2*PI):4,

TrunCone: k4,4,8 l,K:(T:3:8),
TrunCone: k4,20,20 l];

Luxo lamp assembly: The lamp as a parametric hierarch-
ical geometric model is defined as follows. Notice that the
offset of joints from their center of rotation is5, and that a
JointedRod contains two such joints. This explains the
term10 in thez translation parameter�rodHeight 1 10�:

DEF Luxo�a1 ; a2 ; a3 < IsReal � � XSTRUCT: k
basis,
T:3:(basisHeight 1 5),R: k1,3 l:a1,
JointedRod,
T:3:(rodHeight 1 10),R: k1,3 l:a2,
JointedRod,
T:3:(rodHeight 1 10),R: k1,3 l:a3,
head:32

l;

Notice also that the Luxo function has signatureR
3 !

XHPC: So, the generated values are polyhedral complexes,
extended with non-geometric entities like colors, and
depending on three degrees of freedom. When used with
angle values in degrees, a conversion function to gradients
must be applied to input data.

Luxo:(convert: k 2 90,90,90 l);

7.2. Motion modeling and coordination

Mobile lamp: A 3D object sliding on the ground has three
additional degrees of freedom, corresponding to one rotation
and two translations

DEF mobileLuxo
(a1,a2,a3,a4,a5,a6 < IsReal) �

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 705

Fig. 9. Some key-frames of the animated example.

XSRUCT:kT:1:a1,T:2:a2,R: k1,2 l:a3,
Luxo: ka4,a5,a6 ll;

Luxo’s and friend’s paths: As already stated, the animation
storyboard is given as a network model, with animation
segmentsassociated to the arcsand (coordination)eventsasso-
ciated to the nodes.The expecteddurations ofsingle animation
segments are first given. The dummy segments, drawn as
hatched in Figs. 10 and 11, are used only as constraints and
have duration zero. ThePLaSMrepresentationluxo_pert
of the graph in Fig. 10 is the sequence of the graph’s arcs. Each
arc is a tripleks,e,t l wheres is the starting node,e the
ending node andt the duration time of the arc.

DEF luxo_pert � kk0,1,2 l, k1,2,5 l,
k2,3,3 l, k3,4,4 l, k1,5,0 l, k6,2,0 l, k2,7,0 l,
k8,3,0 l, k5,6,10 l, k6,7,5 l, k7,8,2 ll;

Coordination events: The minimal and maximal spanning
times of storyboard events are computed from the story-

board network shown in Figs. 10 and 11. The minimal
times ti are computed astmin:0,…,tmin:8 . The maxi-
mal times Tj are computed astmax:0,…,tmax:8 .
Appendix A.3 reports of a possible simple implementation
of the functionstmin and tmax . Example of curve in
segment CS: One of the configuration space curves of the
storyboard segments is given in the following:

DEF CSpath_0_1 � AA:((Bezier~AA:XCAT): k
k100 ;0; convert : k0; 0;0;0ll;
k150 ;0; convert : k30 ;30 ;0;210ll;
k200 ;50 ; convert : k 2 150 ;220 ;90 ; 0ll;
k200,100,convert: k90 1 180,
2 60,105,60 ll

l);

It is generated as a Be´zier curve of degree 3 in a configura-
tion space of dimension 6. ThePLaSMfunction generating
Bézier curves of any degree in anyd-dimensional space is
given in Appendix A.4. The remaining CS curves are also
given in the appendix.

Choreographic control: The timing of the (i,j) segment of
the storyboard may be computed by using either minimal or
maximal spanning times for the starting and ending events
of the segment. If the�ti ; tj 1 Tij � pair is used, then the
segment is executed “earliest”. If the�Tj 2 Tij ;Tj� pair is
used instead, then the segment is executed “latest”.

More interesting, when the pair�ti ;Tj� is used, the
segment timing is automatically adapted to the finish and
start times of the incident segments. If such a choice is done
for all the “critical” segments, i.e. for all segments on the
critical path, their animation will be executed as completely
fluid, and no actors must stop and wait for restart in such
storyboard segments.

This choice cannot by directly assumed for non-critical
segments, since if (h,i), (i,k) are two incident non-critical
segments, it would beTi ± ti ; so that the timing given by
�th;Ti� and �ti ;Tk� would produce a time overlap for their
execution.

A good solution is that of assuming for all events the
timing given by their average spanning time, i.e. to use
the timing�tmj ; tmj � for each segment (i,j), with

tmi � ti 1 Ti

2
for all i �1�

This clearly impliestmi � ti � Ti for critical events, and
prevents from time overlaps for non-critical events.

It is very important to notice that the “fluidity constraint”
of the whole animation induced by Formula (1) holds for any
possible choice of expected durations of animation segments.

In PLaSM the average spanning timestmi ; with i �
0;…;8; can be computed astm:0,…,tm:8 using the
function tm below

DEF tm(node < IsInt) �
(tmax:node 1 tmin 1 node)/2;

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710706

Fig. 10. Representation of the storyboard as an abstract graph.

Fig. 11. Projection inE2 of the storyboard embedded in configuration space.

Scene animation: The whole animated scene can be
finally generated by just evaluating the followingANIMA-
TION expression, which contains aMOVEexpression for
each storyboard segment. A number of 10 behavior samples
is generated here for each segment

DEF steps � Sampling : 10 ;
DEF step � Sampling : 1;
DEF SceneAnimation � ANIMATION : k

FloorPlane,
MOVE:mobileLuxo:(CSpath_0_1:steps):
(time: ktm:0,tm:1 l:steps),
MOVE:mobileLuxo:(CSpath_1_2:steps):
(time: ktm:1,tm:2 l:steps),
MOVE:mobileLuxo:(CSpath_2_3:steps):
(time: ktm:2,tm:3 l:steps),
MOVE:mobileLuxo:(CSpath_3_4:steps):
(time: ktm:3,tm:4 l:steps),
FRAME:((MkStruct~mobileLuxo):
((S1~CSpath_5_6):step)): k0,tm:5 l,
MOVE:mobileLuxo:(CSpath_5_6:steps):
(time: ktm:5,tm:6 l:steps),
MOVE:mobileLuxo:(CSpath_6_7:steps):
(time: ktm:6,tm:7 l:steps),
MOVE:mobileLuxo:(CSpath_7_8:steps):

(time: ktm:7,tm:7 1 0.6*

(tm:8 2 tm:7),tm:7 1 0.8*(tm8 2 tm:7),
tm:8 l:steps),

FRAME:((MkStruct~mobileLuxo):
((S2~CSpath_7_8):step)): ktm:8, 2 1l

l;
SceneAnimation;

Segment sub-timing: The approach shown in this paper
allows any sub-timing of segments, according to the degree
of the Bézier map�0;1� ! �0;∞� used to generate the time
samples passed to theMOVEprimitive. This gives the
animator the maximal freedom in accelerating/decelerating
the animation speed within any segment, alsomaintaining
the constraint of fluidity of the full animation.

As an example of non-linear sub-timing, look at segment
(7,8) of the above example, where the time samples are
generated by the partial map

time: ktm:7,tm:7 1 0.6*(tm:8 2 tm:7),
tm:7 1 0.8*(tm:8 2 tm:7),tm:8 l:steps

wheretm:7 , t:m8 , respectively, stand fortm7 ; tm8 : Since the
Behavior function, given in Appendix A.2, is applied to a
sequence of four values, the time sampling is done with a
cubic real-valued Be´zier map. According to the four control
values, which are not equally spaced in the interval�tm7 ; tm8 �;
the samples are accumulated towards the interval end, so

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 707

Fig. 12. Animation preview by super-imposition of segment key-frames.

suitably decelerating the first part and accelerating the
second part of the (7,8) segment animation (see Fig. 12).

8. Conclusions and future directions

The present paper introduces a new approach for the
symbolic definition of complex animated geometric scenes.
The full integration between the design of both the shape of
the elements in the scene and their dynamic behaviors is
obtained by implementing both modeling and animation
within the PLaSMlanguage. For this purpose the language
has been extended with a minimal set of new primitives
shown to be sufficient to design complex animated scenes.

The flexibility of the presented methodology derives from
the representation of the animation storyboard as a discrete
action network that allows first to define/edit each animation
segment independently and then to automatically integrate
all the segments in the global animation. Moreover, any
animation segment can be in turn decomposed into a local
sub-network of lower-level animation segments in a hier-
archical fashion.

The effectiveness of the present approach has been tested
also in practice. A substantial test-bed was for example the
large-scale reconstruction of a catastrophic event described
in the companion paper [15]. In this case all the typical
challenges that arise in dealing with real-life data were
successfully met.

Further development of this research is planned along two
main directions. First thePLaSManimation kernel needs
further extensions to remove the current limitation to off-
line definition of animated scenes. We plan to introduce the
concept of online animation of reactive environments with
the concurrent definition of alternative behaviors. Second
we plan to improve the user-level interaction implementing
a new visual interface for automatic generation ofPLaSM
functions. In this way we aim to relieve most of the time the
user from the need to write directlyPLaSMdefinitions.

Acknowledgements

The work of C. Baldazzi, A. Paoluzzi and M. Vicentino
was partially supported by CERTIA Research Center
project on visualization of simulation.

Appendix A

The PLaSM packages used in the examples are given
here. Together with the code formerly given they constitute
a full implementation of the examples, including Be´zier
curves of any degree and critical path method algorithm.

A.1. Geometry toolbox

The smallest set of geometry functions to implement the
Luxo geometry is given here. Remember thatPLaSMdo not

have a significant set of pre-defined shapes, but allows for
quite simple implementation of needed shape generator
functions

DEF Q� QUOTE~IF : kIsSeq ; ID ;LIST l;
DEF ButLast � REVERSE~TAIL ~REVERSE;
DEF circle(a < IsReal)(r < IsReal)
(n < IsInt) �

(S: k1,2 l: kr,r l~JOIN):(MAP:
([cos,sin]~s1):((Q~#:n):(a/n)));

DEF TrunCone(r1,r2,h < IsReal)
(n < IsInt) �

MAP:[x*cos~s2,x*sin~s2,z]:
(Q:1*(Q~#:n):(2*PI/n))

WHERE
x � K:r1 1 s1*(K:r2 2 K:r1), y � K:0,
z � s1*k:h

END;

A.2. Motion toolbox

The small toolbox of utility functions to sample the [0,1]
interval, to convert from degrees to radiants, etc. is given
here. The recursiveMkStruct function allows to trans-
form a XHPC value with bounded parameters to a HPC
value. It is used to generate a polyhedral actor value for a
specified value of degrees of freedom

DEF Sampling(n < IsIntPos) �
(AA:LIST~AA:/~DISTR): k0..n,n l;
DEF convert(seq < IsSeqOf:IsReal) �
(AA:*~DISTL): kPI/180,seq l;
DEF XCAT� CAT~AA : �IF : kIsSeq ; ID ;LIST l�;
DEF time(tseq < IsSeqOf:IsReal) �
(CAT~AA:(Bezier:(AA:LIST:tseq)));
DEF behavior(Constraints < IsSeq)
(CSpath < IsFun)(nSamples < IsInt) �

(aa:AL~trans~[time:Constraints,
CSpath]):(Sampling:nSamples)

DEF MkStruct � IF: kOR~[IsFun,IsPo1],
ID,STRUCT~AA:MkStruct . ;

A.3. Utility functions to query the graphluxo_pert

A full PLaSMimplementation of the critical path method
is given here. A more efficient solution is out the scope of
the present paper. The functionsrmin and rmax , respec-
tively, return the minimum and maximum element of a
sequence of reals; theinarcs and outarcs functions
return the sequences of either the entering or the leaving
arcs from a given node, where the arcs are represented as
triples (see Section 7.2), and a graph is represented as a
sequence of such triples

DEF greater(a,b < IsReal) �
IF: kGT:a~s2,s2,s1 l: ka,b l;
DEF lesser(a,b < IsReal) �
IF: kLT~s2,s2,s1 l: ka,b l;
DEF rmax(seq < IsSeqOf:IsReal) �

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710708

INSR:greater:seq;
DEF rmin(seq < IsSeqOf:IsReal) �
INSR:lesser:seq;
DEF inarc(node7 < IsInt)(arc < IsSeq) �
IF: kEQ~[K:node,S2],[[s1,S3]],K: kll:arc;
DEF outarc(node < IsInt)(arc < IsSeq) �
IF: kEQ~[K:node,S1],[[s2,S3]],K: kll:arc;
DEF inarcs(node < IsInt)(graph < IsSeq) �
(CAT~AA:(inarc:node)):graph;
DEF outarcs(node < IsInt)
(graph < IsSeq) �
(CAT~AA:(outarc:node)):graph;
DEF tmin �node < IsInt � � rmax : �tpredecs �
WHERE

predecs � inarcs : node : luxo_pert ;

tpredecs � IF: k~[LEN,K:0],K: k0l,AA:
(1~[tmin~S1,S2]) l:predecs

END;
DEFtmax�node < IsInt � � rmin : �tsucces �
WHERE

succes � outarcs : node : luxo_pert ;

tsucces � IF: kEQ~[LEN,K:0],
K: ktmin:node l,AA:(2~[tmax~S1,S2]) l:
succes

END;

A.4. Bézier curves of any degree

Bézier curves of any degreed embedded in any dimen-
sional space are given here. They are implemented as maps
from a 1D polyhedral complex to the targetnD space. The
mapping is generated as a linear combination of thed 1 1
control points with the Bernstein/Be´zier polynomial basis of
degreed

DEF Fact �n < IsInt � � * : �CAT : kk1l;2::nl�;
DEF BinCoeff(n,i < IsInt) � Fact:n/
(Fact:i*Fact:(n 2 i));
DEF Bernstein �n < IsInt ��i < IsInt � �

*~[K:(BinCoeff: kn,i l),**~[ID,K:i],
**~[2~[K:1,ID],K:(n 2 i)]]~s1;

DEF BernsteinBase(n < IsInt) �
AA:(Bernstein:n):(0..n);
DEF Bezier(ControlPoints < IsSeq) �
(CONS~AA:(1~AA:*~TRANS)~DISTL):

kBernsteinBase:degree,
(AA:(AA:K)~TRANS):ControlPoints l

WHERE
degree � LEN : ControlPoints 2 1

END;

A.5. Segment CS curves

The symbolic description of the CS paths of the lamp’s
segments is shown here. The example given in the paper is
so completely reproducible.

DEF CSpath_0_1 � AA : ��Bezier ~AA : XCAT� : k

k100 ; 0; convert : k0;0;0; 0ll;
k150 ; 0; convert : k30 ; 30 ; 0;210ll;
k200 ; 50 ; convert : k 2 150 ;220 ;90 ;0ll;
k200 ; 100 ; convert : k90 1 180 ;260 ;105 ; 60ll

l);
DEF CSpath_1_2 � AA : ��Bezier ~AA : XCAT� : k

k200 ; 100 ; convert : k90 1 180 ;260 ;105 ; 60ll;
k200 ; 150 ; convert : k60 ;230 ;80 ;20ll;
k150 ; 200 ; convert : k20 ;220 ;60 ;90ll;
k100,200,convert: k 2 90 1 180,
2 20,30,30 ll

l);
DEF CSpath_2_3 � AA : ��Bezier ~AA : XCAT� : k

k100,200,convert: k 2 40 1 180,
2 20,30,30 ll,
k50 ;200 ; convert : k 2 20 ;30 ;0;210ll;
k0; 150 ; convert : k 2 40 ;220 ;90 ;0ll;
k0; 100 ; convert : k90 1 180 ;230 ;55 ;40ll

l);
DEF CSpath_3_4 � AA : ��Bezier ~AA : XCAT� : k

k0; 100 ; convert : k90 1 180 ;230 ;55 ;40ll;
k0; 50 ; convert : k 2 120 ; 30 ; 0;210ll;
k0; 20 ; convert : k 2 60 ;220 ;255 ; 20ll;
k0; 0; convert : k0;20;0; 0ll

l);
DEF CSpath_5_6 � AA : ��Bezier ~AA : XCAT� : k

k100 ;2100 ; convert : k0;60 ;260 ; 90ll;
k100 ;250 ; convert : k30 ;0;0;210ll;
k150 ; 0; convert : k 2 150 ;220 ; 90 ; 0ll;
k150 ; 100 ; convert : k90 ;290 ;145 ; 45ll

l);
DEF CSpath_6_7 � AA : ��Bezier ~AA : XCAT� : k

k150 ;2100 ; convert : k90 ;290 ;145 ;60ll;
k150 ; 150 ; convert : k60 ;260 ;80 ;80ll;
k250 ; 250 ; convert : k20 ;60 ;260 ;90ll;
k100 ; 250 ; convert : k 2 40 ;45 ;2130 ;90ll

l);
DEF CSpath_7_8 � AA : ��Bezier ~AA : XCAT� : k

k100 ; 250 ; convert : k 2 40 ;45 ;2130 ;130 ll;
k 2 50 ;250 ; convert : k 2 20 ;230 ; 20 ; 0ll;
k100 ; 100 ; convert : k 2 40 ;20 ;290 ;250ll;
k50 ;0; convert : k90 ;45 ;2145 ; 80ll

l);

References

[1] Alias Wavefront (Silicon Graphics). Maya. http://www.aw.sgi.com/
entertainment/solutions/complete/index.html

[2] Alias Wavefront (Silicon Graphics). Power Animator. http://
www.aw.sgi.com/pages/home/pages/products/pages/poweranimator

[3] Bajaj CL, Anupam V. SHASTRA—an architecture for development
of collaborative applications. International Journal of Intelligent and
Cooperative Information Systems 1994;3(2):155–172.

[4] Bajaj CL, Cutchin S. The GATI client–server animation toolkit. In:
Thalmann N, Thalmann D, editors. Proceedings of Computer
Graphics International, CGI93. Communicating with Virtual Worlds,
Berlin: Springer, 1993. pp. 413–423.

[5] Backus J, Williams JH, Wimmers EL. An introduction to the

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710 709

programming language FL. In: Turner DA, editor. Research topics in
functional programming, 1990.

[6] Electric Image. http://www.electricimage.com/product/ei/index.html
[7] Foley J, van Dam A, Feiner A, Hughes J. Computer graphics: prin-

ciples and practice, 2. Reading, MA: Addison Wesley, 1993.
[8] Gleicher M. Retargeting motion to new characters. ACM Siggraph 98

Conference Proceedings, Annual Conference Series, Reading, MA:
Addison Wesley, 1998. pp. 33–42.

[9] Grzeszczuk R, Terzopoulos D, Hinton G. NeuroAnimator: fast neural
network emulation and control of physics-based models. ACM
Siggraph 98 Conference Proceedings, Annual Conference Series,
Reading, MA: Addison Wesley, 1998. pp. 9–20.

[10] Kelley JE, Walker MR. Critical path planning and scheduling.
Proceedings of the Eastern Joint Computer Conference, 1959.

[11] Kinetics. 3D Studio Max. http://www.ktx.com/3dsmaxr3/
[12] NewTek. LightWave. http://www.newtek.com/products/framese-

t_lightwave.html
[13] Paoluzzi A, Pascucci V, Vicentino M. Geometric programming. A

programming approach to geometric design. ACM Transactions on
Graphics 1995;14(3):266–306.

[14] Paoluzzi A, D’Ambrogio A. A programming approach for complex
animations. Part II. Reconstruction of a real disaster. Computer Aided
Design 1999;31:711.

[15] Pascucci V, Ferrucci V, Paoluzzi A. Dimension independent convex-
cell based HPC: skeletons and product. International Journal of Shape
Modeling 1996;2(1):37–67.

[16] Paoluzzi A, Francesi S, Portuesi S, Vicentino M. Rapid development
of VRML content via geometric programming. Fifth Eurographics
Workshop on Virtual Environments. Vienna, Austria, 31 May–1
June 1999.

[17] Pausch R, Burnette T, Capeheart AC, Conway M, Cosgrove D,
DeLine R, Durbin J, Gossweiler R, Koga S, White J. Alice: rapid
prototyping system for virtual reality. IEEE Computer Graphics and
Applications 1995;15(3):8–11.

[18] Richter-Gebert J, Kortenkamp UH. The interactive geometry software
Cinderella (Interactive geometry on computers, New York: Springer,
1999.

[19] Side Effects Software. Houdini. http://www.sidefx.com/product/
index.html

[20] SoftImage. SoftImage V3.8. http://www.softimage.com/Products/3D/
default.htm

[21] Watters A, van Rossum G, Ahlstrom J. Internet programming with
Python, New York: MIS Press/Henry Holt publishers, 1996.

[22] Wernecke J. The inventor mentor, New York: Addison Wesley, 1994.

C. Bajaj et al. / Computer-Aided Design 31 (1999) 695–710710

