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Abstract 

A-splines are implicit real algebraic curves in Bernstein-Bfzier (BB) form that are smooth. 
We develop A-spline curve models using various energy formulations, incorporating bending and 
stretching energy, based on the theory of elasticity. The attempt to find true energy minimizing 
curves usually leads to complicated integrals which can only be solved numerically, we introduce a 
simplified energy formulation which is much faster to compute yet still provides reasonably accurate 
results. Several examples for C 1_continuous quadratic A-splines using the true and simplified energy 
models are then presented. © 1999 Elsevier Science B.V. All rights reserved. 

1. Introduct ion 

An A-spl ine is a smooth zero contour curve of  a bivariate polynomial  in Bernstein-  
Bfzier  (BB) form defined within a triangle (Bajaj and Xu, 1992), where the "A" stands for 
algebraic. Solutions to the problem of  constructing a C I chain of implicit  algebraic splines 
based on a polygon 79 have been given by Bajaj and Xu (1992) and for dense image or 
sparse scattered data by Bajaj and Xu (1996). 

Several applications in image processing and computer  graphics have been shown 
to be enhanced by using active contour models (Cohen and Cohen, 1993; Kass et al., 
1988; Ronfard, 1994; Wil l iams and Shah, 1992) and physically based modeling (see 
(Terzopoulos et al., 1987) and several others). In this paper we develop a spectrum of  
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physical A-spline curve models using various energy formulations based on the theory of 
elasticity (Landau and Lifshitz, 1959). There are several advantages of this representation: 

• A-splines can model arbitrary closed curves with degree bounded polynomial curve 
segments and various inter-segment continuity 

• The class of objects represented by A-splines contains the class of objects repre- 
sentable by polynomial or rational B-splines 

We consider an exact model for the strain energy, and conclude that simplifications are 
necessary in order to develop a practical algorithm for its approximation. Possible methods 
of approximating the strain energy include Cl-continuous quadratic and C3-continuous 
cubic A-splines. We then explore in detail a simplified energy formulation for C l- 
continuous quadratic A-splines. 

The search for minimal energy curves has a history stretching back to Euler (curves 
he termed as "elastica") and more recently by pure and applied mathematicians (Birkhoff 
and De Boor, 1965; Bryant and Griffiths, 1986; Golomb and Jerome, 1982; Kallay, 1986; 
Lee and Forsythe, 1975; Malcom, 1977), computer vision experts (Brotman and Netravali, 
1988; Bruckstein and Netravali, 1990; Horn, 1983; Mumford, 1994), and geometric 
designers (Mehlum, 1974; Jou and Han, 1990b). A characterization of plane elastica is 
given by Brunnett (1992), and closed-from expressions of bending energies for polynomial 
Pythagorean-Hodograph curves in Farouki (1996). We note that since quadratic A-splines 
are at most C l-continuous, we find that energy-minimizing curves seem to be better 
approximated by cubic A-splines, which can achieve up to C 3 continuity while still 
maintaining a degree of freedom for shape control. 

The rest of this paper is as follows. Section 2 gives preliminary information about 
A-splines as well as the theory of elasticity. In Section 3 we develop the elastic strain energy 
model for A-splines, taking into account both stretching and bending energy. Furthermore, 
we describe a simplified energy model for computational efficiency. Section 4 describes 
algorithms that minimize the different energy formulations of the previous section. Several 
example case studies detailing the use of C 1 -continuous quadratic A-splines are provided. 
Section 5 concludes the paper. 

2. Notation and preliminary details 

Let Pl, P2, P3 c R 2 be non-collinear. Then the triangle (or two-dimensional simplex) 
with vertices Pl, P2, and P3, is T = [P~P2P3]. Let p = (x, y)T, Pi = (xi, yi)T. Then for any 
P = ~ = l  °t iP i G ]1~ 2 with ~ = 1  °li = 1 0t = (Oil, 0/2,  if3) T is the barycentric coordinate of 
p, where the Cartesian and barycentric coordinates are related by 

= 1 ~2 . (2.1) 
oe3 

The noncollinearity of p l, Pz, and P3 guarantees that the 3 × 3 matrix in (2.1) is nonsingular 
and that the barycentric coordinates are well defined. 

Any polynomial F(p)  of degree d can be expressed in BB form over T as F(p) = 
Y~I~L=d bxB~(ot), ~, ~ Z3+, where Bg(ot) = (d!/)~l "z'a'~'l)~l~L''ho/Xlo/)~20l~'31 2 3 are the bivariate 



C.L. Bajaj et al. / Computer Aided Geometric Design 16 (1999) 39-59 41 

Bernstein polynomials  for k = (Z], Z2, )~3) T, a n d  ]kl is defined to be Y~=I k,. Also, 
bx = b)~.~;.~ (as a subscript, we simply write k as Zl;.2Z3) are called control points, and 
Z+ stands for the set of  all three-dimensional vectors with nonnegative integer components.  
Let 

S(ot) = Z b~B~(ot), leel = 1, (22)  
ik!=d 

be a given polynomial  of  degree d on the triangle T = {(~1, ~2, oO) T ~ ]R~: Y~=I oei = 1. 
c~i ~> 0}. The curve segment within the triangle is defined by S(~I, or2, a3) = 0. 

Collecting the base functions B~ l into a v e c t o r  B d and the coefficients b~ into a vector 
b, Eq. (2.2) is rewritten as 

S (~ )  = b T B  d. 

Eq. (2.1) may be rewritten without the use of  oO as 

= ix, x,  31[ i + + 
Y l Y3 v9 Y3 or2 Y3 if2 Y_ 

J is the Jacobian o f u  in terms o f x  and y: 

A Y3- -3 '1  x l  - - x  ' 

a ( u l , u 2 )  
J - -  - -  

O(x, y) 

where 

x I x 2 

A = Y 1 3'2 
1 1 

X3 

3'3 
1 

(2.3) 

(2.4) 

(2.5) 

where Ji  is the ith column of J. 

2.1. Differential geometry of implicit function~ 

2.1.1. Arc" length 
Given an implicit  function F(x, y) = 0, assume that x and y, and thereby the arc 

length s, are all smooth functions of  an independent variable u. Then by the arc length 

T ~ T "~ FJJ V"SJ j  J l  V " S J 2 ]  
= L j 2 T v 2 s j I  T "~ , J2 V-SJ2 J 

(2.7~ 

When we speak of  functions of ot = (o/1, Od2, oo)T,  it should be noted that these are really 
functions of two independent variables since or3 = 1 - oft - o~2. The curve segment within 
the triangle T may thus be expressed as 

S(oq, or2) = F(x(ot), y(ot)). 

We also have these relationships involving the two sets of  coordinates for the gradient 

VF(x, y) = j T v s ( o q ,  ~2), (2.6~ 

and the Hessian 

V2F(x, y) = H ( a )  = JYV2S(Otl, ot2)J 
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relation (ds/d_x>* = 1 + (dy/dx>2 and by differentiating (2.3) with respect to u to obtain 
dp/du = J-’ dcu/du, we also have 

(~)2=(d5)2+(!?)2qC)(!P) 

= ($)J-‘5-f;) 

where 

(2.8) 

dij = J(xi - x,j)* + (y; - yj)2 , 

2.1.2. Curvature 
Given an implicit function F(x, y) = 0, we have dF = 0, or 

F,dx+ F,dy=O (2.9) 

Assuming that in a small neighborhood of point (x, y)T, y is a function of the independent 
variable x, from (2.9) we have 

yx+ 
?’ 

(2.10) 

By differentiating (2.10) with respect to x, we obtain 

a F, 
Y -- xx = ax 6 = - 

( ) 

Fyv F,” + F,, F; - 2F,, Fr F, 

F; 

This allows us to express the curvature of the function F(x, y) = 0, or S(CZI , a*) = 0 in 
BB form, as 

IYXXI IVFTPTV2FPVFI 
K= 

(1 + y$)“/* = (VFTVF)3/2 

IVSTJPTJTV2SJPJTVSI 
= 

(VST JJTVS)3f* ’ 

where the permutation matrix P is defined as 

p= O l 
[ I -1 0 . 

2.2. A-splines 

(2.11) 

An A-spline is a smooth zero contour curve of a bivariate polynomial in BB form defined 
within a triangle (Bajaj and Xu, 1992). Fig. 1 shows examples of A-splines that are defined 
in (Bajaj and Xu, 1992). 
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Fig. 1. Interactively designed contours with cubic A-splines. 

The papers (Bajaj and Xu, 1992; 1996) explore the possibilities of building piecewise 
smooth curves that interpolate or approximate given polygonal data sets. 

For further formulation of elastic models we briefly describe the A-spline in the 
following way. The formulation includes the A-spline (Bajaj and Xu, 1992), the 2D 
counterpart of the A-patch, which treats piecewise implicit surfaces (Bajaj et al., 1995). 
A piecewise A-spline curve consists of the zero contour of some piecewise smooth BB 
polynomials defined over a simplicial hull Z', or a triangulation of a connected region of 
the space. In particular, 

F'(i)(eO =- Z b(~i)Bd(°¢) = bU)TBd = 0 

I;U=d 

is the zero contour of a BB polynomial defined within the ith simplex in Z'. The base 
functions B~ are grouped into a vector B and the coefficients b;~ into b. Smoothness of 
certain degrees and local interpolation of certain degrees are enforced by some linear 
equality constraints 

bTC(p) = 0, (2.12) 

and connectedness of the curve is enforced by additional linear sign inequalities 

bTs > 0. (2.13) 

See Fig. 2 for examples of sign equalities and inequalities of C I and C 3 cubic A-spline 
segments. 

Vector b is a global collection of the coefficient vector b (il of all simplexes in Z', and S 
and C(p) are defined explicitly for A-splines with C k continuity in Bajaj and Xu (1992). 

The partial derivatives of a BB polynomial F (a )  = bTB are given by 

["~i = h T B d  T d d -  l _ ~ j ( ~ ) = b  DjB (~t), 
]:~jo~k bTgcqo~k(Or) T d d - I  d - ~  = = b  DkD j B -(or). 
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A 
I free positive control point 

O3O 03O 
021/~120 ~ free control point 

free negative control point / \ 
021/ \120 

1 dependent positive control point 

~ zero control point / Y 7~ \ 
012/ .,,"~11"V ~ \210  '===' 012/ / \1111 \ \210 
~ [ ' - - I  dependent negative control P O ~  

003 102 201 300 003 102 201 300 

Fig. 2. Sign inequalities for the coefficients of (left) C 1 and (right) C 3 cubic A-splines. For 
i + j + k = 3, the symbol labeled by i jk indicates the sign restriction, if any, for the coefficient 
bijk. 

The D d are matr ices  that  re la te  the der ivat ives  of  the bas is  e lements  of  B d to the basis  J 
d x For  e lements  of  a d - l  . The D j are i ndependen t  of  b and have d imens ions  (d+2) (d+l ) .  

example ,  wi th  d = 2, we have 

B d = [0"12, 20"10"2, 0"~, 20"1 (1 - 0"1 - 0"2), 20"2(1 - 0"1 - 0"2), (1 - Ctl - 0"2)2] T, 

Bd-1  = [0"1,0"2, 1 -- 0"1 -- 0"2] T, 

B d = [20"1,20'2, 0, -40"1 - 20"2 + 2, -20"2,  20"1 + 20"2 - 2] T, 
c~ 1 

Bd2 = [0, 2~1,20"2, --2Otl, --2oq -- 40"2 + 2, 20"1 + 20"2 -- 2] T, 

and 

7 9 2 = 2  

1 0 
0 1 
0 0 

- 1  0 
0 - 1  
0 0 

0 
0 
0 
1 ' 
0 

- 1  

i1 o o] 1 O1 O0 
o 

D~ = 2 _ 
o _ 0 o  
0 0 l 

3. Energy models for A-splines 

3.1. Elastic curves 

Let  a be  the mater ia l  coord ina te  of  a point  on a p lane  curve C with parameter iza t ion  
w ( a ) .  Fo r  a paramet r ic  representa t ion  w ( a ) ,  the elast ic  potent ia l  energy of  a de fo rmab le  
curve is as fol lows:  

= f [ f l (a) lWal  2 + y(a)lWaa[ 2] da (3.1) 

C 

where  f l ( a )  and y ( a )  are mater ia l  functions.  
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Most of  the elastic curves that are built on parameterizations other than the intrinsic, are 
referred to as "elastica" (Jou and Han, 1990a; Mumford, 1994). 

The first step of  defining the elastic energy of a geometric entity is actually the mapping 
between the material coordinates and some parameterization of  the geometric entity. For 
a piecewise representation, the joining points of  the pieces could be identified as such a 
parameterization. Namely, each joining point is associated with fixed material coordinates 
during a deformation process. However, such a parameterization is too coarse. A second 
level parameterization is needed to describe detail changes, especially when there is 
substantial freedom within each entity. In the following energy curves, we assume that the 
material is uniformly distributed along the curve. Thus in place of  the material coordinate 
a we will use the arc length coordinate s, and the elastic potential energy in (3. l ) becomes 
(Mumford, 1994): 

e = [ (/~ + yx  2) ds. 13.2t 

C 

The terms 13 and VK 2 represent the stretching and bending energy, respectively. 

3.2. Elastic strain energy model of  A-splines 

Let S(c~l, oe2) = 0 be an A-spline defined within a triangle Aplp2p3 (see Fig. 3). 
The curved piece interpolates Pl and P3 and is tangent to PiP2 and ~ at pj and p~ 
respectively. Let F(x ,  y) = 0 be the representation of  the spline in Cartesian coordinates. 
The Cartesian coordinates of  Pl, P2 and P3 are ( x j , y j ) T ,  (x2, y2)T and (x3, y3)T, 
respectively, and their local barycentric coordinates, suppressing the third coordinate 
ee3 = 1 - ~1 - c~2, are (1 ,0)T,  (0, I )T,  and (0, 0)T, respectively. 

For several purposes, such as computing the energy (3.2) below, we need to express the 
spline coordinates as functions of  a single parameter, say u. One effective way of  doing this 
is to parametrize the A-spline within a control triangle by finding its point of intersection 

(0, 1)T 

~ u),cz2(u)) T 

X ~1 
P3 = (0, 0)T (u, 0)T Pl = (1, 0)T 

Fig. 3. Representation of points in local BB coordinates. Point Pi has Cartesian coordinates (x i , Yi ) T. 
i = l, 2, 3. A point (ee 1 (u), ee2(u))T is given by the intersection of the spline with the line connecting 
the points (u, 0)T and (0, 1)T in BB coordinates (P2). 
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with a line segment connecting the apex point (P2) to a point on the base (p---3-p~). It was 
shown in (Bajaj and Xu, 1992) that such a line segment always intersects the A-spline 
exactly once when the constraints (2.12) and (2.13) are satisfied, and there this technique 
was used to obtain parametrizations of various quadratic and cubic A-splines. We simply let 
u parametrize the line segment P3P~, so that in BB coordinates, P3Pl is given by (u, 0)T, 
0~<u~<l.  

Now using (3.2), (2.11), and (2.8) we can write the total energy as 

1 

E t o t a l = f ( ~ + V x 2 ) d s = f [ ( ~ ) S - T J - ~ ( 7 ) ] ~ / a ( ~ + V K 2 ) d u  
C 0 

1 
= f [ ( ~ u ) j - r j - I ( d a ~ I I / 2 r ~ + F ( v s T j p T j T v 2 s j p j T v s )  2 ] du. 

du J.] L (VSTJJTVS) 3 .1 
0 

(3.3) 

3.3. Simplified elastic strain energy model of A-splines 

Since the integrand, call it g(u), in (3.3) cannot be integrated symbolically in general, we 
wish to find an approximation to the total energy that can be computed quickly compared 
to the time-consuming numerical integration involved with (3.3). An ideal candidate is 
apply Simpson's rule. Using just three points in the interest of computational speed, this 
gives the approximation Etotal = [g(0) -4- 4g(1/2) + g(1)]/6. However, for many common 
parametrizations g(u) --+ ~ as u --+ 0 or 1. In this case we make a change of variable to 
eliminate the singularity, and use a Simpson's rule approximation to the result. 

4. Energy optimization 

We now consider how to minimize the different energy functions of the earlier section 
over the constrained degrees of freedom (domain vertices and control weights) of the 
A-spline curve. 

4.1. Local minimization of total energy 

Here we take into account both the bending and stretching energy as defined in Eq. (3.2) 
and expressed by Eq. (3.3). The minimization is obtained locally by varying the free 
weights of each individual A-spline curve within its triangle. 

An energy-minimized setting is a solution to 

Vb Etotal = 0 (4.1) 

or  

{ j2 y  sT,pT,Tv2s,pjT s 21/ 
I d --0 

0 
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4.1.1. Exact solutions 
System (4.1) is in general a nonlinear system of b. A nonlinear system is not guaranteed 

to be solvable. However, by restricting the freedom to one variable, we reduce to the system 
to a univariate nonlinear system, which is easy to solve. 

Let b be a vector function of  some parameter t. For an A-spline curve, system (4.1) is 
reduced to 

dE( t )  
- - 0 .  

dt 

Let 

so that 

dE( t )  
f ( t )  - -  

dt 

= f¢! ~ j - T j - l  ~uu ¢~ + ×(VSTJpTjT~7=SjpjTvs)~-~ J ] d, 

0 

v(vsTjpTjTv2s jp jTvs)21}  
x I L fl + (VsTjjT~Ts)3 du. 

f (t) and f '(t) are both continuous. 
In order to solve these equations, we need a parametrization of  the A-spline. 
We can use standard methods, such as Newton's method, to solve for the roots. Note that 

the evaluations of f( t)  and f:(t) would involve numerical integrations. 

4.1.2. Low degree A-splines 
We now proceed to derive parametrizations of  linear, quadratic, and cubic A-splines. 

Doing the linear case first, we observe that a parametrization of  a general line in BB form 

S(al ,  c~2) = bt00aJ + b010~2 + b0ol (1 - a l  - a 2 )  = 0 (4 .2 )  

is given by 

c~1 = u ,  c~2=0, ( ~ 3 = l - u ) ,  0~<u~<l .  (4.3) 

Then VS = [0 1] T and V2S is the 2 x 2 zero matrix, so X = 0 in (2.11) and (3.3), which 
must be the case for a straight line segment. Thus only the stretching energy is present in 
this formulation. Eq. (3.3) then reduces to 

Etotal ~---/3dr 3, (4.4) 

a multiple of  the arc length, here the distance from Pl to P3, as expected. 
Now we present an example of  an energy-minimizing quadratic A-spline with C j 

continuity. First we derive the general equation for such a curve in BB form. The general 
quadratic spline is S(c~l, OE2) = b200ot 2 -~- 2bl IO~lC~2 + 2b101o~1 (1 - or1 - c~2) + boeoot~ + 
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2bollOt2(1 - al  - or2) + boo2(1 - -  a l  - -  og2) 2 = 0. However, S(1, 0) = 0 ~ b200 = 0 and 
S(0, 0) = 0 =:> boo2 = 0. Furthermore, the tangent to S(al ,  a2) at (1, 0)T, is parallel to the 
line al  + 012 = 1. Therefore dot2/dcq = -(dS/dal)/(dS/ot2) = - 1 ,  or dS/doq --- dS/dot2 
at that point. This now implies that b110 = 0. Also, the tangent to S(a l ,  0~2) at (0, 0)T, is 
parallel to the a2-axis. Therefore dS/doe2 = 0 there, and this implies that bol 1 = 0. We now 
have 

S(Otl,  or2) = 2b101o'  1 (1 - ~l - °t2) q- b020 Or2 = 0,  (4.5) 

in accordance with Bajaj and Xu (1996). 
We now parametrize the quadratic spline as described in Section 3.2. Intersecting the 

curve (4.5) with the line al  = u(1 - a2) yields (Bajaj and Xu, 1992): 

u x/2bl01U(1 - u) 
cq (u; b) = ot2(u; b) = 

1 + ,,/2blolU (1 - u ) '  1 + x/2bl01U(l - u ) '  

0 ~< u ~< 1. (4.6) 

Here b denotes the column vector of  the coefficients bijk, and in this case b consists of  the 
single element b i o l .  

We find that 

kCl2 d23 j '  j p T j T =  --X , 0  

[ "1 _ _  d 2 ' jpjT ~ 0 c~ _~ 

= { 4 u ( 1 -  u)d23 + 2bux~-u)[(1-  2 u ) ( d 2 3 -  d122)-4-d23] 

+ b2[ - u(1 - 2u)d22 + u(1 - u)d23 

+ (1 - u)(1 - 2u)d23] } 1/2 / { 2  u ~ / ~  - u)[1 + b u x ~  - u ) ]  2 } 

and that the curvature satisfies 

/ ¢ 2 =  ( v ST JPT JTv2 SJPJTv S)2 

( V S T j j T v s )  3 

= 4 b 2 A 2 [ 1 . 4 _  b ~ ] 6 / { 4 u ( 1 - u ) d 2 3  

+ 2 b  u x ~  - u)[(1 - 2u) (d23 - d22) + d23] 

2 3 
+ b 2 [  - u(1 - 2U)dl22 + u(1 -- u)d23 + (1 - u)(1 - 2u)d23] } . 

Consequently the total energy as given by (3.3) equals 
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1 

Etota~ = ~ 4u(1-u)d~3+2b,~-u)[(1-2u)(d~_3-d~2)+db] 
0 

+ b 2 [ -  u(1 - 2u)eL~ + . ( 1  - .~d~, + (l - l , ~ ( l -  2.~<~3] } 
I/'2/ 

+ 2 b ~ / u ( 1 -  u ) [ ( 1 -  2u ) (d#3-d~2  ) + d ~ ]  

+ b 2 [ -  u(1 - 2u)d12 + u(I - u)d~3 

Note that as b ~ 0, the conic spline approaches the line segment from Pl to P3, and 
Etotal -+  rid13, in accord with (4.4). 

Numerical integration of (4.7) can be tricky because the integrand, call it g(b, u), goes to 
infinity as u approaches 0 or 1. It is true that g(b, u) is integrable over [0, 1] since infinity 
is approached as u -1/2 as u ~ 0 and as (1 - u) -1/2 as u --+ 1. Numerical evaluation of this 
integral is made easier with the following changes of  variable: Let u = v 2 for u ~ [0, 1/21 
and let u = 1 - w 2 for u ~ [1/2, 11. These substitutions eliminate the singularities at the 
endpoints, and we have this equivalent expression for the total energy: 

l / , /5_ 

E,ot~l  = fl 4v2(l-v')dl3+2bv~/1-v2[(1-2v-)(dS3-d?z)+db] 
o 

+ b2[ - v~-(1 - 2v-~td~2 + v-~(1 - ,,~)d13 

+ ( 1 -  v 2 ) ( 1 -  2v2)d23]} l /2 /[~/ l -  v2(l + b v ~ ) 2 ] )  

+ 4 ? ' A 2 b 2 ( ( l + b v  l ~ - ~ ) 4 / x / l - v  2 

] 4 v 2 ( 1 -  ~ ~ , ~ ~ v-)d(3 + 2bvx/1 - v 2 [(1 - 2v')(d53 - di~2) + di~] x 
t 

+ b 2 [ -  v2(1 - 2v2)d~2 + v2(1 - v2)d~3 

+ - -  - -  d 1 2  

L/,/2 

+ f [fl({ 4w2(1-w2)d~3 + 2 b w x / 7 - w  2 

o 

- 2 w - )  (di" 2 ×[(1  ~ ~ - - d ~ 3 ) + < ~ ]  

+ b2[(1 - w2)(1 -2w2)d~2  + w2(l - w2)d~3 

- .  9 2 -w2(l- 2w2)d#3]l'/2/[,,/l-u,2(1 + b w ~ )  ]) 
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+ 4 y A 2 b 2 ( ( l + b w ~ ) 4 /  

~ { 4 w 2 ( 1 -  w2)d23 q- 2 b w x / 1 -  W 2 

× [ ( 1 -  2w2)(d22-d23)q- d23] 

-4- b2[(1 - w2)(1 - 2w2)a~2 -4- w2(1 - w2)d23 

(4.8) 

In a similar manner we can construct cubic A-splines with C 3 continuity. The equation 
of the general C 3 cubic is 

S(Otl, o¢2) ---- 3b201ot2(1 - o t l  - or2) + 3b120O~lOt~ q- 6blllOtlOt2(1 - Otl - o~2) 

+3b102~1(1 - ~  - c~2)2 + 3b021c¢22(1 -c~l - ~2) - or23 = 0 ,  (4.9) 

in accordance with Bajaj and Xu (1992, 1996). When one specifies the second and 
third order derivatives at Pl and P3, it is possible to express the four coefficients b201, 
b120, b102, and b021 as linear functions of the remaining coefficient, b i l l .  When we 
intersect S(cq, ~2) ---- 0 with the line oq = u(1 - ~2), we obtain a parametrization in which 
~1 = u(1 - a2), and u2 is a root of the cubic equation in ~2. If we make the substitution 
~2 = 1/(1 + t), we obtain this cubic polynomial in t: 

At 3 + Bt 2 + Ct - 1 ---- 0, (4.10) 

where 

A = 3u(1 - u)[bzolu + b102(1 - u)], 

B = 6 u ( 1  - -u)b l l l ,  

C ---- 3[blz0u + b021 (1 - u)]. 

The inequality constraints for cubic A-splines are 

b201 > 0 ,  b102 > 0 ,  b021 ~<0, b120 ~<0, (4.11) 

so we have A ~> 0 and C ~< 0 for all u 6 [0, 1]. 
Now let 

3 A C -  B 2 2B 3 - 9 A B C -  27A 2 

P 3A 2 ' q ---- 27A3 

If (q/2)  2 + (p /3)  3 /> 0, then since t(u) = [1 - ol2(u)]/otz(u) is a real root of (4.10), we 
must have 

f q ~ ( q ) 2  ( 3 ) 3  t q ~ ( q ) 2  ( 3 ) 3  B (4.12) 
t ( u ) =  - -2  + 2 + + - - 2 -  + 3A" 

If (q/2)  2 + (p /3)  3 < 0, then p must be negative, and (4.10) has three real roots. Define 

r - -  (_p)3/23~__, 0 = ~ c ° s - l ( - 2 r r q ) '  
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Then the root we want is 

t(u) = 2rl/3 cosO B 
3A 

The final cubic parametrization is then 

Og 1 (U; b) = u[1 - o~2(u; b)], o~2(u; b) -- 

(4.13~ 

1 
0 ~<; u <... I, (4.14) 

1 + t(u: b ) '  

where t(u; b) is given by (4.12) or (4.13). 
Expressions for the total energy of the C3-continuous cubic A-spline analogous to (4.7) 

and (4.8) for the C I-continuous quadratic case can be derived, but will be omitted here due 
to their great length and complexity. 

Case s tudy 

Suppose a quadratic curve F(x, y) = 0 passes through the points P3 = (0, 0)T and 
Pl = (1 ,0)T,  and that we are given that the tangent lines at these points have slopes 2 
and - 3 ,  respectively• Then the intersection of the tangent lines is P2 = (3/5, 6 /5)T.  In this 
case (2.3) gives (cq, a2)T = ((2x - y)/2, 5y/6)T. We set b020 = - 1 ,  and take/:3 = 1 and 
g = 1. Then dl2 = 2 v / ~ / 5 ,  d13 = 1, d23 = 3V'5/5, A = 6/5,  and the integral we wish to 
minimize is this specialization of (4.8): 

] / x/2 

Etota,= f [({4v2(1-v2)+4bvx/l-v2(3-v2)/5 
0 

+ b2[(29v 4 -  3Ova+ 9)/5]}'J2/[,/1- v2(1 + by l x / ~ -  v2) : ] )  

+ ( 1 4 4 / 2 5 ) b 2 ( ( l + b v ~ ) 4 / ~ 1 4 v 2 ( 1 - ~ ?  -) 

+ 4bvx/1- v 2 ( 3 -  v2)/5 + b2[(29v 4 -  30v 2 + 9)/51} 5/2) ] d r  

1 / x/2- 

+f 
0 

[ ( { 4 w 2 ( 1 -  w 2) + 4 b w x / 1 -  w2(2 + u ' 2 ) / 5  

2 + 8)/5] } ,I + b2[(29w 4 -  

+ 

~ { 4 w 2 ( 1  -- w 2) + 4 b w ~ f l  - w2(2 + w2)/5 

- -  ' d w .  ( 4 . 1 5 )  

The function in (4.15) could not be integrated symbolically, so it and its derivative with 
respect to b were integrated numerically for several different values of b = ~ .  The 
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Fig. 4. In these figures Pl = (1, 0)T, P2 = (3/5, 6/5)T, and P3 = (0, 0)T in Cartesian coordinates. 
(a): The exact energy-minimizing quadratic A-spline (4.16), with C 1 continuity at the endpoints, 
obtained when b l01 ----0.356. (b) The simplified energy-minimizing A-spline (4.19), obtained when 
bl0! = 0.366. (c) Superposition of the curves in (a) and (b). 

integral attained its min imum value of  5.63763 at b = 0.844, or bl01 = 0.356. This gives 
an ellipse whose  equation in Cartesian coordinates is 

6 .408x 2 - 1.068xy + 5 .182y 2 - 6.408x + 3.204y = 0 .  (4.16) 

This elliptic arc is shown in Fig. 4(a). 

4.2. Local minimization of simplified energy 

Since the expression (4.7) for the strain energy is quite complicated, a simplified 
form of  the energy may be desired as indicated in Section 3.3. We would like a simple 
approximation to the integral in (4.7). This can be tricky because the integrand, call it 
g(b, u), goes to infinity as u approaches 0 or 1. It is true that g(b, u) is integrable over [0, 1] 
since infinity is approached a s  U -1/2 as u --+ 0 and as (1 - U) -1/2 as u --+ 1. Numerical 
evaluation of  this integral is made easier with the fol lowing changes of  variable: Let u = v 2 
for u c [0, 1/2] and let u = (1 - w) 2 for u c [1/2,  1]. These substitutions eliminate the 
singularities at the endpoints, and we have this equivalent expression for the total energy: 

We now apply Simpson's rule using the three points at v or w = 0, 1 / 2 v ~ ,  and l / v /2 .  
This approximation is best for moderate values of  b, say 0.8 ~< b ~< 4 +-> 0.32 ~< bl01 ~< 8, 
and naturally more accurate approximations may be obtained using more points. We select 
this approximation in the interest o f  computational speed. The result is 

{b(dl2 + d23) 2d13 32 [ 
Esimp = / 5 ~  6V'2 + 3(2 + b-------~ + 3w/-ff(8 + v / f ib )2 ,  [28d23 

+ 4bv/~(  _ 3d22 + 4d23 + 3d223) + b2( _ 6d22 + 7d23 + 42d23)]1/2 

+ [28d13 + 4b~/~(3d22 + 4d123 _ 3d223) + b2(42d22 + 7d~3 _ 6d23)]1/2} 
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+ v A 2  ~ + + 3 ( 2 + b ) @ ~  

128b2(8 x/~b) 4 + 
{ [28d23 + 4b~/7(-3d12 +4d~? + 3d~3 ) 

+ 3,,/7 

+ b2(_6d~2 + 7d~3 o 's/~ + 42d~3) ] _ 

+[28d 3 2 + 4b~/7(3d12 + 4di  3 - 3d~3 ) 

+ b2(42d12 + 7 d 2 3 -  6d~3)1-5/2 } ) .  (4.17) 

To illustrate the accuracy of the simplified energy, we present a couple examples, one 
with an equilateral control triangle and one where angle /PlP2P3 is obtuse. The first 
example has d12 = dl3 = d23 = l, A • x/~/2. We obtain Table 1. 

The simplified stretching and bending energies are within approximately 10% of the 
true energies for 0.6 < b < 4.0, or 0.18 < hi01 < 8.00. This covers most of  the splines 
occurring in actual practice. 

In the second example, d12 = d23 = 1, d13 = x/~, A = ,g~/2. Here we get Table 2. 

Table 1 

True Simplified True Simplified 

b bl01 Stretching energy Bending energy 

0.6 0.180 1.120 1.126 5.000 5.419 

0.8 0.320 1.166 1.172 3.941 3.984 

1.0 0.500 1.209 1.215 3.628 3.646 

1.5 1.125 1.304 1.316 3.841 3.792 

2.0 2.000 1.380 1.408 4.500 4.297 

3.0 4.500 1.494 1.58(I 6.158 5.680 

4.0 8.000 1.573 1.749 7.958 7.323 

Table 2 

True Simplified True Simplified 

b bl01 Stretching energy Bending energy 

0.8 0.320 1.770 1.775 1.043 1.613 

1.0 0.500 1.780 1.785 0.804 1.014 

1.5 1.125 1.804 1.813 0.619 0.635 

2.0 2.000 1.824 1.846 0.611 0.613 

3.0 4.500 1.854 1.931 0.725 0.727 

4.0 8.000 1.876 2.041 0.890 0.879 
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In this example the simplified energies are accurate to within 20% for 1 ~< b ~< 4, or 
0.5 ~< bl01 ~< 8. 

Case study 
Using the same setup as in the example in Section 4.1.2, we find that we need to 

minimize this specialization of (4.17): 

b(4 + 3v/2) 2 + - -  
124'5 3(2 + b) 

+32[ (140+  92~/'ff b + 365b2) 1/2 + (140 + 68~/ffb + 317b2) 1/2] 

3v53(8 + vSb): 

12 { 2~_~ ( 1  ~ ' 2 )  862 (4.18) 
+2-5 ] -~  + 2---~ + 2 + ~  

128b2(8 + ~j7b)4 (140 
-4 ~ + 92~/ff b + 365b2) 5/2 

1 

-4 (140+68v/ffb+g17b2)5/21 }. 
This function is minimized when b = 0.856, or b101 = 0.366, and the minimum value 

of the simplified energy is 5.66611. This gives an ellipse whose equation in Cartesian 
coordinates is 

6.588x 2 - 1.098xy + 5.152y 2 - 6.588x + 3.294y = 0. (4.19) 

This elliptic arc is shown with in Fig. 4(b), and is quite close to the arc obtained by using 
the exact representation, as is evidenced by the superposition of the two curves in Fig. 4(c). 

4.3. Global minimization of simplified energy 

Here we consider the minimization of the simplified energy by varying the domain 
endpoint vertices of a chain of C l quadratic A-spline curves. With the chain we are 
minimizing a sum of expressions (4.17) instead of just a single one. Suppose we have 
n + 1 junction points on a curve, and we wish to pass a spline through all these points. 

,, _(n-l) In), ~n), where superscript i denotes i Label them Pl, P3 = PI1, P3 = Pl . . . . .  183 = P P 
primes and p~n) = Pl if and only if the curve is to be a closed contour. The apex points p~i) 

(i) will be the intersections of the tangent lines through pl i) and P3 • Recognizing that the djk 
and A are functions of the coordinates of Pl, P2, and P3, we can express the simplified 
energy in (4.17) as 

(i) = 17 [h _(i) _(i) _(i).  
Esimp ~ s i m p w i ,  181 , 1'2 , 1'3 ,/3, y). (4.20) 

Thus our objective is to minimize 

n-1 

Esimp = ' ~  E ¢!) s~mp 
i=0 
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for an open contour  and 

Esimp ~ --(i) : Lsimp 
i : 0  

for a closed one over all possible locations of  the p!/) and values of b i • 

Case  s t ud y  
As a simple example,  suppose we have (1, O)T and ( - 1 , 0 ) T  as two fixed points on 

the unit  circle, and we wish to find the point  (x0, yo)T  on the uni t  upper  semicircle such 
that the simplified energy is minimized .  This will require the sum of  two components ,  

the first of  which has Pl = (Xl ,  y l ) T  = ( 1 , 0 ) T  and P3 = (x0, yo )T ,  and the second with 

P'l = (X'l, Y'L )T = (x0, yo)T and p~ = ( - l ,  0 )T  (see Fig. 5). The points P2 = (x2, yz)T and 
! t P~, = (x2, 3'2)T are the intersections of  the tangent  l ines to the circle through P l and P3 and 

through P'I and P3, respectively; these will be (1, (1 - x o ) / Y o ) T  and ( - 1 ,  (1 + xo ) /yo )T  

in the two cases. Since all the points can be expressed in terms of xo via Yo (1 .2, I.~ = -- ~t 0 ) . . 
this p rob lem is a min imiza t ion  over the three remain ing  unknowns  x0, b, and b' ,  with the 

restrictions Ix0l < 1 and b, b '  > 0. 
We illustrate the results for/3 = 1/12,  V = 1 and tor/~ = 1, ~, = 1/12. In the first case, 

the global m i n i m u m  occurs when  x0 = 0 and b = b '  = 1.501 (b101 = 1.126), y ie lding a 
total energy of 3.414. For A p l p 2 p 3 ,  we have a~ = 1 - y and ~2 = x + y - 1 (from (2.3)), 
and the Cartesian equat ion of  this port ion of the arc, that of  an ellipse, is given by 

:¢2 _ 0 .252xy + y2 + 0.252x + 0 .252v - 1.252 = 0. 

The second part of  the spline, the piece wi thin  Ap lp2p3 ,  is the reflection of the first piece 

across the y-axis.  In the second case, the global  m i n i m u m  is at x0 = 0 and b = b '  = 1.077 

P2 

p ' =  p ,.- ~_.i~z.'L-Tr-~-- 

:ff~,; Semicircle / '"~ 

Initial Curve ~t 

P3 Pl 

Fig. 5. Initial configuration. The point P3 = P'I is allowed to slide along the semicircle. The spline 
labeled "initial curve" is a typical minimal-energy spline if P3 ---- P'l is at the location indicated. 
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P2 P 1 = P3 P2 

P£ Pl 

p~ p;=p~ p: 

P3 Pl 

(~) (b) 

Fig. 6. Optimal configurations for (a):/3 = 1/12, y = 1; (b): fl = 1, y = 1/12. 

/ 

p: p3 = p[ 

f It Fig. 7. Initial configuration. The points P l '  P~I' and pI( slide along the edges of Ap2P2P2 in such a 
way that i f I n t , , n = P2Pl/PePe = u P2Pl/P2P2 = P2Pl/P2P2 for some u in [0, 1]. 

(bl01 = 0.580), yielding a total energy of  3.382. The Cartesian equation of the part of  the 
arc in the first quadrant is 

x 2 + 0.840xy + y2 _ 0.840x - 0.840y - 0.160 = 0. 

These two cases are shown in Fig. 6. Note that as fl increases with respect to y,  
the stretching component  of  the total energy becomes more important than the bending 
component,  and as a result the length of  the simplified energy minimizing spline in 6(b) is 
less than that in 6(a). 

Case s tudy  
For another example,  we consider the problem of  minimizing the total simplified energy 

of  a closed contour with one point on each of  the sides of  the triangle Ap2p2p2,I, where 
/ l /  P2 = (0, 0)T,  p~ = (7, 0)T,  and p~ = (6, 5)T. The three points on the sides of  AP2P2Pz 

will be denoted by P3 PII' P3 , and P3 Pl ,  as in Fig. 7. We will also impose the 
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Fig. 8. Optimal configurations for (a): fl = g/10; (b): fl = y/3; (c): /3 = V; (d): /4 = 37/ 
(e):/3 := 10y. 

condition that each of  Pt, P'l, and p'[ is the same fraction along the way of  their respective 
edges. That is, 

P 2 P l / P 2 P ~  ' " ' " " " ' = P ~ P l / P 2 P 2  _ _ _ = u = P~Pl/P~P~ 

for some u in [0, 1]. With this condition the points on the edges of Ap2p~p~ are found to be 
Pl = (6 - 6u, 5 - 5u )T ,  P'I = (7u, 0)T, and p'( = (7 - u, 5u)T .  With all points expressed 
in terms of  u, minimizing the total simplified energy amounts to minimizing (4.20) over 
the four unknowns u, b, b', and b", where 0 < u < 1 and the b (il > O. 

We illustrate the results for various values of  f l / y  : 

/3/)/ l / l O  1 / 3  1 3 10 

u 0.5111 0.5109 0.5092 0.5057 0.5030 

bl0[ 

b'10 l 
t# 

bl01 

0.318 0.264 0.189 0.123 0.074 

0.916 0.789 0.604 0.409 0.243 

0.627 0.564 0.456 0.322 0.196 

Fig. 8 shows the resulting closed contour for these five cases. Here we have the same 
phenomenon which occurred in the previous example: as /7/× increases, the stretching 
energy component becomes more important as compared to the bending component, and 
the length of  the closed contour for the simplified energy minimizing spline decreases. 
Also, for each value of  f l / g  we have bl01 < b'101 < b'(01, so that the ordering of these 
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coefficients is the same as the order of  the size of  the angle of  the apexes of  their 
~/ (i) (i) (i). 

corresponding triangles t±Pl P2 P3 )" 

5. Conclusion 

Several elastic models using A-splines have been proposed, each of  which has its 
own advantages and shortcomings. Besides the traditional energy model adapted from 
theory of  elasticity, we give several different simplified models that take advantage of  
the A-spline formulation and also yield efficient computation of  the minimum energy 
solution. A subsequent paper will report the use of  these energy splines in image processing 
applications. 

One problem of great interest is the efficient computation of  the minimum energy for the 
exact model presented in Section 4.1.1. If  such a problem can be restricted to having just 
one control weight being free, then the energy-minimizing problem reduces to a nonlinear 
univariate equation. In the much more common situation where this is not possible, one 
possibility is to generate a piecewise linear approximation of  the A-spline such that the 
denominator in the expression (3.3), ( v s T j j T v s )  3, over each piece is nearly constant. 
While the resulting system is sparse and may be solved iteratively, generally a large 
number of  pieces will be required. For example, in the case study in Section 4.1.2, the 
denominator ranges from 0.254 when a l = 0 down to 0.110 at ~1 = 0.535 and back up to 
0.719 when c~1 = 1. Thus if we wanted the denominator to vary by at most 1 percent over 
each subinterval and were able to divide the interval [0, 1] of  the ~l-axis at precisely the 
right points, we would need 133 subintervals. If  we were willing to relax the condition to a 
5 percent variance, we would still need 27 subintervals. Furthermore, finding the values of 

I at which the break points should be located is in itself a significant problem. In practice 
these locations will not be known beforehand, and one may have to make a conservative 
subdivision of  the interval Oel c [0, 1] to ensure the desired accuracy. 
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