
Multi-Resolution Dynamic Meshes with Arbitrary Deformations*
Ariel Shamirt Chandrajit Bajajt

tcenter for Computationd Visudization
TICAM, University of Texas at Austin

$Center for Applied Scientific Computing
Laurence Livermore National Laboratory

Abstract
Multi-resolution techniques and models have been shown to be ef-
fective for the display and transmission of large static geometric
object. Dynamic environments with intemally deforming models
and scientific simulations using dynamic meshes pose greater chal-
lenges in terms of time and space, and need the development of sim-
ilar soiutions. In this paper we introduce the T-DAG, an adaptive
multi-resolution representation for dynamic meshes with arbitrary
deformations including attribute, position, connectivity and topol-
ogy changes. T-DAG stands for Time-dependent Directed Acyclic
Graph which defines the structure supporting this representation.
We also provide an incremental algorithm (in time) for constructing
the T-DAG representation of a given input mesh. This enables the
traversal and use of the multi-resolution dynamic model for partial
playback while still constructing new time-steps.

1 INTRODUCTION
Dynamic scenes in computer graphics are represented by defining
some of the scene parameters as functions of time. Global param-
eters like the position of the viewer (walk-through) or the position
of objects can be encoded easily using rigid body transformations
or interpolators and behaviors [181. The representation of deform-
ing objects is generally much more complex and more timdspace
consuming. Multi-resolution techniques have been shown to be an
effective tool for handling complex geometric objects. However,
most of the work done in this field concentrates on static objects.
Moreover, the application of previously proposed solutions for dy-
namic models is restricted to objects in which the connectivity and
topology are fixed over time. The T-DAG representation introduced
here removes such limitations allowing for a unified representation
of dynamic geometries where no restriction is imposed on the mod-
ification through time in terms of local connectivity or global topol-
ogy.

The T-DAG data-structure is constructed incrementally over
time. The information relative to the model evolution for each new

*This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48. Research supported in
patt by NSF grants CCR-9732306, DMS-9873326, ACI-9982297 and San-
dia/uNL DOE ASCI-BD4485
0 0-7803-6478-3/00/$10.00 2000 IEEE

time-step is integrated in the T-DAG as it becomes available. This
allows traversing adaptively the multi-resolution model up to time-
step t while still augmenting the model with the newly modified ob-
ject for time-step i! + 1. The scheme extends the possibility of using
adaptive multi-resolution techniques for display and transmission
of timedependent meshes with general &formations.

1.1 Previous Work
Many approaches have been developed in the past for creating
multi-resolution representations of geometric data for graphics and
visualization [9,14,17,191. They vary in both the simplification
scheme like vertex removal [Z], edge contraction [lo, 131, triangle
contraction [81, vertex clustering [ZO], wavelet analysis [3,23], and
in the structure used to organize the levels of detail (either linear
order [lo, 141 or in a DAG [2.6,8,171). However, these techniques
are based on the assumption that the finest resolution mesh is static.
Our scheme evolves from such approaches removing this basic as-
sumption of static input and allowing to define a multi-resolution
representation for dynamic meshes.

A time dependent data structure for the extraction of isosurfaces
from dynamic volumetric data is presented in [NI. A temporal
Branch On Need Octree (BONO) is created to index the data spa-
tially. Extreme isovalues in each node of the hierarchy are com-
puted for each time step and stored separately. This structure is then
used to support queries of the form (timevalue,isovalue) by travers-
ing top down and visiting only in the parts that hold the correct
isovalues for the current time-step. When a leaf node is reached,
the block containing its data is stored in a list. Once the traversal
is done. only blocks in the list are read and the isosurface com-
puted. While this structure seems to be very efficient for isosurface
extraction, it supports only this specific visualization primitive. It
does not apply to meshes where connectivity can change, and it
must be built off-line by global preprocessing. The volume render-
ing approach of time dependent data in [21] uses a spatial octree
to partition the data, but each node holds a binary time-tree. Each
node in the binary tree holds the average value of the containing oc-
bee node sub-volume, along with measurements of the spatial and
temporal errors of these voxels in the corresponding time range.
These measures serve as an indication of the spatial and temporal
coherency of the sub-volume. The structure supports queries of the
form (timevalue,spatial-ertemporal-err). The octree is then tra-
versed from the root expanding only the nodes that do not pass the
tolerance test. In each node the binary time-tree is traversed like-
wise. The rendering of each octree-node voxel is done separately
and the sub-images are composed using their colors and opacities
to create the full image. This structure allows very efficient time-
dependent volume rendering, but is tailored for this specific type of
visualization and does not support changes in connectivity or topol-
ogy of the mesh.

An opposite approach was presented earlier in 141 for multi-
resolution video. A binary time tree is built by subdividing the
time span. Each node corresponds to some averaging of all the im-
ages of its time span. The node holds a spatial quadtree built from

423

this average image. This structure supports multi-resolution in the
temporal dimension by accessing the average images, and seems
very appropriate for video sequences. However, it is not clear how
to define the average of several time-dependent surfaces, especially
when topology and connectivity could change over time, and con-
sequently is difficult to apply such an approach to 3D meshes.

In our approach we exploit the difference in nature between time
and space. We order time information sequentially while support-
ing multi-resolution representation in the spatial dimensions. How-
ever, since we separate the temporal infomation of each vertex,
there is no restriction in storing this information consecutively. In
fact, any type of multi-resolution can be defined for this data simi-
lar to the binary trees of [211. Another option is to use compression
in temporal space. In [15] a method is described for compression
of time dependent geometry. The vertex positions matrix is decom-
posed into P V * G, where P is the time interpolation, V is the
vertex positions at key time-steps and G is the Geometry interpola-
tion or spatial interpolation. Using those terms, [151 concentrates
on compressing the V matrix, while we concentrate on encoding
the G matrix using multi-resolution methods. Therefore the two
methods are somewhat complementary, and might be combined.

1.2 Contribution
We define a multi-resolution data struchue using time-tags for time
dependent traversal. In particular we treat the symbolic in fom-
tion (mesh connectivity and decimation dependencies) in a similar
manner as we treat the numeric information (attributes and posi-
tions of nodes). We show how this extended data structure enables
the representation of a larger class of dynamic models including
also connectivity and topology changes.

We present an incremental algorithm for building this data-
structure. The incremental construction enables the use of the data-
structure (of previous time-steps) even while the input is being pro-
cessed. Moreover, this algorithm enables adjusting the resulting
structure according to the tradeoff between optimized storage space
and traversal time in each time-step for the creation of meshes.

2 PRELIMINARIES

2.1 Meshes
As customary in many application fields and for visualization, we
assume that objects are represented by triangular surface meshes.
We define a mesh M by a tuple M = (P, F, I) . P = k;} is a
collection of points in E3 called vertices (we distinguish between
vertices and nodes using the latter in conjunction with graphs).
F E P x P x P i s a set of tuples of three vertices in P defining the
faces (or triangles) of the mesh. Note that the set of faces induces a
certain global topology on the object defined by the mesh (number
of ~ 0 ~ e c t t - d components, genus of each component). I = { f i } is
a collection of functions called attributes defined over the vertices
of the mesh, such as ’color’ or ’tem rature’ (fi : P -+ R), or
“texture coordinates” (f i : P -+ R). Note that although we re-
strict our discussion to objects in R3, the multi-resolution model
and construction algorithm can support objects in any dimension.
We call I and P the numerical information of the mesh, and F
along with the decimation dependencies (see section 2.3), the sym-
bolic information.

!P

2.2 Dynamic Meshes
Consider a time-sequence of meshes: M t , , M t , , . . . , Mt, , where
t o < t l < . . . < t k . All mesh components, i.e. attributes, posi-
tions and adjacency, become a function of the time t;: Mt, =

(Pt, , Ft,, I t ,) . For our purposes the actual time values are irrel-
evant, and SO we can normalize the time-steps to unitary intervals
{ t i } + i. Therefore, we examine the modifications between two
consecutive meshes M i and M i + l , and distinguish between dif-
ferent possible classes of changes:

1. At&ibute Changes: Pi = Pi+l, Fi = Fi+l, Ii # li+l.

2. Position changes: Fi = &+I. Pi # P;+l, Ii # Ii+1.

3. COMectiVity changes: Fi # Fi+t, Pi # Pi+l, Ii # I;+
but the topology of the object does not change.

4. TOp010gi~al changes: Fi # Fi+l, Pi # Pi+l, Ii # Ii+
with no restriction.

This broad notation covers a large class of possible dynarr
meshes defined in scientific simulations, graphics and animation.
This includes any finite-element simulations of dynamic systems or
key-framing animations featuring attribute and positional changes.
It includes continuous affine transformations and free form defor-
mations, by sampling the modification function over time, and cre-
ating a sequence of changing meshes. But it also includes dynamic
meshes with more drastic changes such as the creation and removal
of holes, splitting and merging of components etc.

The higher modification level a representation scheme can sup-
port the larger the class of meshes it can represent, and the greater
its expressive power is. An important factor in the definition of our
scheme was the ability to support all different levels of dynamic
change without sacrificing too much the possibility to optimize the
representation for models with lower levels of dynamic change (for
example by using quantization of attributes or compression of ge-
ometry positions).

2.3 Multi-Resolution Model
A multi-resolution mesh representation for a geometric object M,
is a representation that embodies a set of meshes {M’ , M 2 , . . .}
each of which is in tum a representation for M. These representa-
tions can be seen as different approximations of the original object
according to some tolerance.

One popular way of creating a multi-resolution model is by dec-
imating an initial mesh M from the bottom up to a coarse mesh. In
very general terms th is process involves three primary decisions:

1. Selecting the primitive decimation operation and the basic
decimation element e.g. a vertex in vertex removal, an edge
in edge contraction. These operation and elements are used in
a priority queue which govems the order of decimation.

2. Defining an error function (estimate) introduced by applying
the primitive decimation to the mesh. This function is highly
dependent on the mesh type and decimation scheme: e.g. ter-
rains [2], scientific data [I], or graphical objects with color
and texture attributes [7,12]. This type of function is used
(i) during the construction of the multi-resolution model for
priority in the decimation queue, and (ii) for traversal of the
resulting model to extract a given mesh.

3. Choosing the type of multi-resolution data-structure used for
storage.

Once these are set, the algorithm for building a multi-resolution
model consists of inserting all decimation elements into a priority
queue, repeatedly choosing the first element, applying the decima-
tion to the mesh, and encoding the decimation and its error in the

424

data-structure. In a sequential model, the sequence of discrete mod-
ifications (decimation operations) is recorded in a linear data SWC-
ture. According to the direction of traversal and the current approx-
imation. a series of operations from this sequence is performed on
the existing mesh either from coarse to fine or from fine to coarse.
In the graph model [2,6,11,16,25] simplification is performed in
multiple levels where each level includes only independent decima-
tion operations. The operations are recorded in a Directed Acyclic
Graph (DAG). The nodes of the DAG represent decimation opera-
tions while the edges represent dependencies between such opera-
tions. If we assume that all roots in this DAG are connected to a
single virtual super-root, then a cut in this graph is a collection of
edges, which intersect all paths from the super-root to the leaves
once and only once. Any such cut corresponds to a valid adaptive-
resolution approximation of the model [SI. In particular the approx-
imation corresponding to a specific cut can be obtained performing
all and only the decimation primitives corresponding to nodes in
the DAG below the cut (nodes in a path from the cut a leaf). The
DAG model allows greater flexibility since one can generate adap
tive approximations that were not explicitly constructed during the
simplification process.

The decimation elements e can be vertices in a vertex removal
scheme or edges in an edge contraction scheme. A cost function
cmt(e) associates each element e with the cost (or degradation)
due to its removal from the mesh. The priority queue Q keeps
always at the top (maximum priority) the element with minimum
cost, The tol (tolerance) parameter governs the stopping criteria
for the decimation in each level. It is initialized to some minimum
and gradually increased with the levels in order to continue build-
ing the hierarchy G. This helps control the maximum e m r allowed
at each level, but should be used cautiously as it may lead to an
unbalanced hierarchy. To guarantee a balanced hierarchy we keep
performing the decimation process if the tolerance criterion is satis-
fied or if a minimum percentage of the mesh vertices have not been
decimated yet. Once the DAG is constructed, a mesh representa-
tion can be generated by traversing the DAG from the roots towards
the leaves, and creating a cut in the DAG. At each step, the error
stored at the current node is compared with a given error tolerance.
If this tolerance is not met, the cut is advanced from this node to its
children, reversing their decimation operations and checking them
in the same manner. In order to create coherent triangulations, a
node can be included in the cut only if all its parents are already
in the cut (not only the parent from which this node was reached).
This is corrected by recursively checking and adding all the parents
of a node before visiting it.

Our multi-resolution time-dependent model extends the graph-
based approach. This means that in addition to the attributes, po-
sitions and connectivity information, the dependencies recorded in
the graph may also be time-dependent.

3 DYNAMIC MULTI-RESOLUTION MODEL

3.1 Mesh Mapping and Global Vertex Indexing
In order to define the dynamic multi-resolution model we need to
have some correspondence mapping between the vertices of the
mesh in the consecutive time-steps. One simple approach to accom-
plish this is to assume that each vertex can be identified precisely
through time. Let M O , M I , . . . , M lo be the dynamic sequence of
meshes. This mapping means that if pi E M , and pj E M ,
then i = j iff pi and pj are considered the same vertex in different
time-steps (t , and t , respectively). In other words the mapping
between consecutive time steps is implemented using a global in-
dexing scheme for the vertices in the mesh through time so that new
vertices can appear and old vertices can be removed. Each new ver-
tex must have a distinct identifier and the identifiers of removed ver-

tices cannot be reused This restriction can simplify both the struc-
ture and implementation of the algorithms. Additional conditions
under which an index can be reused are also possible but tend to be-
come complex for incremental construction of the T-DAG. The un-
derlying assumption is that although dynamic changes are involved,
most of the meshes have similar sets of vertices (the worst case will
mean each time-step will have a separate vertex set).

Furthermore, we need a similar mapping between vertices of dif-
ferent levels of approximation. Therefore, we restrict our choice of
decimation operation to those which preserve a mapping between
the vertices before and after applying the operation. For example,
vertex removal or Half-edge contraction do not introduce new ver-
tices and therefore the identity of vertices is carried through trivially
to any level. By applying some positional change in general edge
contraction, one can map the new vertex intr@uced after the con-
traction to one of the two old vertices. Let M' be a mesh at some
resolution, and let M'+' be a mesh created by applying such dec-
imation operator to M a , then we have Pi+' C P'. This implies
that the total number of nodes in the DAG is exactly the number of
vertices in the original finest resolution mesh. Another possibility
in edge contraction is to use a total of 2n vertices for all levels when
n is the number of vertices in the fine resolution mesh 1.111.

3.2 Definitions
Once the two mapping restrictions are met, we can identify a node
in the DAG with some specific vertex in the dynamic mesh. Such
node represents the decimation operation connected with this ver-
tex (e.g. the removal of this vertex or the contraction of an edge
adjacent to it). We then attach all the numeric vertex information
and symbolic graph information as fields to the nodes. All nodes
will have the same set of five fields: (i) vertex attributes, (ii) vertex
positions, (iii) node decimation error, (iv) parent node links in the
DAG, and (v) child node links in the DAG.

These fields have two basic types: single-valued fields and
multiple-valued fields. Error estimation, vertex coordinates, or
color components have only a single possible value, and therefore
are defined as single value fields. Parent and child links in the DAG
have several values associated with them all valid at the same time,
and therefore are defined as multiple-valued fields. For a static
multi-resolution DAG the fields in all nodes would be static. In a
dynamic setting they are time dependent and need to be represented
as functions of time. Both the numerical and the symbolic informa-
tion are treated in the same manner by attaching different time-tags
to different values in the fields. These tags are in the form of se-
quences of ranges (i,j), with i 5 j , each defining a continuous
time interval (t i , tj) where the value is alive in its field.

Consider a dynamic mesh with k time-steps. We define a single-
valued field of a node 92 as a function F, : R + R U {I}, and
a multiple-valued field as a function F, : R -+ 2" U {I}. For
everyt,O 5 t 5 k-l,F,(t)isarealnumber,and Fm(t)isagroup
of numbers (for simplicity of notation even pointers are assumed to
be represented as real numbers). A value 2 is defined as not alive at
time step t iff its field returns 1. If x has a time tag (i, j). then we
call i birth time and j death-time. Note that 2 can have be multiple
birtwdeath times.

The T-DAG is the collection of all values for all time
steps of all the@& in all the nodes.

Note that the overall T-DAG can be a general graph but for any
specific time-step t , the collection of all alive parent or all alive
child links form an actual DAG at time t (see Figure 1). In general,
a node no in the T-DAG might be a descendent of node n1 at time
t i , and an ascendant of node n1 at time t j , as long as (i # j).

425

Figure 1: The child links in a T-DAG structure with five time-steps
(top), and the five DAGs it represents (bottom). Each child link
edge in the top T-DAG carries a tag depicting the range of time-
steps in which it is alive.
3.3 Queries
As a model for the dynamic meshes MO, M I , . . . , Mk, the T-
DAG is parametric in two dimensions: resolution and time (see
Figure 7). Therefore, every valid T-DAG query needs to instantiate
these two parameters. The fundamental query we are interested in
is a random-time and random-resolution mesh retrieval in the form
(time = t , td = e). The result of this query is an approximation MI
of the mesh M t which does not differ from M t by more than E
under some given error function. Note that we use only e in ow
discussion for simplicity, but the error functions supported can in-
volve more complex computations and additional parameters like
in view-dependent error estimate.

The second type of queries we consider is incremental in nature:
given M ; find or or p e n MZ1. find M T . The in-
cremental queries can be supported tnvially using the fundamental
query. However, we are interested in finding progressive solutions,
where the mesh of previous time step (previous resolution) is pro-
gressively updated to anive at the next time (resolution), The third
type of query is the most difficult to support progressively and it
involves increments in both time and resolution.

3.4 Time-Dependent Storage and Retrieval
Considering that almost all actual information of the T-DAG is
stored at the nodes, the above queries would be translated to ba-
sic time-dependent retrieval operations on the fields of the nodes.
These operations are of the form:

node.getAliveValue(timeStep t)

which returns the alive value for a single-valued field (e.g. getEr -
ror, getposition) or:

node.getAliveValues(timeStep t, array
&values)

which returns the alive values for a multiple-valued field (e.g.
getchildren, getparents).

Let k be the number of time-steps in the T-DAG, and d the max-
imum single-time size of a multiple-valued field of a node (for ex-
ample, the maximum number of children for all time-steps). If n
is the number of different values for a specific field in all time-
steps, then n 5 kd. For fast random and incremental access of
the time-dependent information (O(1) for single-valued, O(d) for
multiple-valued fields), values can be stored in an O(kd) array
of all time-steps. However, often th is storage is too costly. A
better option would be to store the single-valued fields in a list
sorted by birth time, and the multiple-valued fields as an inter-
val tree. This will bring down the storage to O(n) in the wont

case, but the retrieval time would be worse. For the single-valued
fields, incremental access would be constant, but random time ac-
cess would take O(log(n)) (binary search for the active value). For
multiple-valued fields. both random and incremental access would
take O(log(n) + d) for collecting the active values from the tree.

A slightly better approach for multiple-valued fields allows O(d)
incremental and sometimes random access, and O(log(n) + d) for
general random access. We store the values in two lists, one sorted
by increasing birth times and the other sorted by decreasing death
times (O(n) storage). We define a time-window of size w << k,
where we store all active values for this window in time (i.e. from
ti to ti+,) in an array of O(wd) size. Denote this set of values as
S(ti, w). This allows O(d) random and incremental access for all
t with ti 5 t 5 t i+w. Let &(t) be the set of values dying in time
t and &(t) be the set of values born in time t. It is simple to check
that S(ti+l,w) = S(ti,w) - Sd(ti) + St,(ti+w+l). Similarly,
S(ti-i ,w) = S(ti,w) + & (t i - 1) - Sb(t$+w). Wekeep pointers
to the value with smallest birth time greater than ti+w in the birth
time array, and to the value with the largest death time smaller than
ti to the death time array. Using those pointers, the incremental
(both forward or backward in time) update takes O(d) time. For
random access, the binary search to reposition the pointers and the
cokxtion of values inside S(t, w) will take O(log(n) + d).

Overall, incremental time queries can be implemented in O(d)
time-complexity with O(n) storage. Also, inside a given window
in time, we can preserve O(d) for random time queries.

3.5 Resolution Change
For traversal in resolution space, an array of root indices is stored in
the T-DAG in addition to all nodal values. This m y is stored in the
same manner as any other multiple-valued field. For a give time-
step t, the T-DAG can be seen as a static multi-resolution DAG for
M t . Therefore, the type of error functions supported by the T-DAG
are exactly the same as those for the static case, including adap-
tive and view-dependent refinements (see Color Plate 1). Moreover,
traversal is done using essentially the same algorithm for top down
construction of a mesh from a static multi-resolution representation.
For a given time-step t, we start from the set of alive roots at time
t. and traverse the graph in a top down manner using only child
and parent links which are alive in time t. At each node the error
stored for timet is checked using the given error function. Other at-
tributes and position information (used for example, for rendering
the mesh), are all accessed as a function of time t. allowing sim-
ple modification of the shape and appearance of the mesh through
time. Moreover, if the timet remains static, incremental resolution
queries on a T-DAG can be supported dynamically by updating the
DAG-cut similar to static multi-resolution DAGs.

Although our storage and retrieval scheme favors incremental
time queries inside nodes, we adopt a lazy-evaluation scheme for
the values of the nodal fields. For a given time t only the fields
of nodes visited during the traversal are retrieved and updated to
the current tim t. As a consequence a node which was above the
cut at time t for a specific tolerance, and below the cut at times
t + 1, . . . , t + m - 1, would not be evaluated and updated in those
times. If it retums to be above the cut at time t + m, the retrieval
of values in its fields would become random-time queries instead
of incremental. However, since the T-DAG is a multi-resolution
model, only a subset of all nodes (and hence, a subset of the ver-
tices) is needed to create an approximating mesh for a given tol-
erance. Therefore, the cost of random time retrievals of values in
some node fields is a minor penalty with respect to the large gain
of updating only a sub-set of the nodes at each time-step. Figure 6
displays for different T-DAGS the average traversal time needed to
create meshes of various resolutions. These plots are similar in be-
havior to that of static multi-resolution DAGs (2.91.

426

4 FDAG CONSTRUCTION
Consider a time sequence of meshes MO, MI,. . . , Mk. which
satisfies the global vertex indexing scheme defined in Section 3.1.
In this section we introduce and analyze an on-line algorithm for
constructing a T-DAG providing a multi-resolution model for the
given time sequence of meshes.

4.1 Space-Tlme Ttadgoffs
The trivial scheme that one may consider is to treat each mesh
Mi independently, and construct an independent multi-resolution
DAG MR., which conforms to the resolution-levels mapping (Sec-
tion 3.1). The result of this scheme is a sequence of multi-
resolution DAGs M'Ro,M'R1,. . . , M'Rk. To encode such se-
quence of DAGs in a single T-DAG we can define P = {w!v €
Mifor some io 5 i 5 k}, as the union of all vertices in all hme-
steps. Then we construct a node in the T-DAG for each such vertex,
and encode all MI& meshes using these nodes in the following
manner:

loop on all timesteps t

if n E MRt
loop on all nodes n in 'P

set the fields of n at time t with
the values of the fields of n in MRt

set the fields of n at time t
to empty fields

else

Let x be a new value for time t + 1 for some field in node n. If
this field is a single-valued field Fs then if Fs (t) = x, we postpone
the death time of z tobe t + 1. If Fb(t) # x , we createa new value
2 for this field and set its birth and death time to be t + 1. If this
field is a multiple-valued field Fm then if x E Fm(t), we extend
the death time of x to be t + 1. If x fi! Fm(t), we create a new value
x for this field and set its birth and death time to be t + 1.

Using time range tags to encode the lifespan of field values is
beneficial when the ranges of the values are long. This gain is
expressed both in terms of space (changing the death-time instead
of creating a new value) and in terms of traversal time (less time-
dependent updates). The longer these chains of similar values are,
the greater the gain. Therefore, this T-DAG construction scheme
is almost equivalent to the worst case of storing each M7L, sepa-
rately. The fact that the DAGs were created independently results
in rare occurrences of fields having the same value for consecutive
time steps (Figure 2(a)).

The other extreme for a T-DAG creation scheme would be to use
just a single DAG for all time-steps. For example, create M%,
and then instead of looping on the nodes of MZ, , we loop on all
Mi, and apply the same decimations as in M77.0 to the mesh Mi.
This would mean most fields (e.g. child or parent links) would have
values alive for the whole time range, but some (such as coordinate
positions or decimation error) would still have changing values over
time (Figure 2(b)). In such a scheme the storage space and time-
updates are kept to a minimum. However, a single DAG will not
have an optimal structure for all different meshes in all time-steps.
This will generally force traversals to reach down to lower levels
of the graph in order to satisfy a given error tolerance, and results
in larger meshes for a given tolerance (see Color Plate 2). Fur-
thermore, it is not always possible to use a single DAG to encode
a whole sequence of dynamic meshes. As an example, consider
the case of dynamic meshes where the connectivity or the topology
changes over time.

The fimt construction scheme favors optimizing each specific
time-step locally in terms of traversal time for a certain error, or

1 10 . 2 0
range of me

(b)

Figure 2 Percent of parent link values of all nodes in a T-DAG
covered by parent link values of a given range for two different
T-DAGS. The size of T-DAG (b) is around 30% the size T-DAG
(a). The two T-DAGS were constructed for the snake example of
Color Plate 1. The original dynamic meshes hold 12000 vertices
in 20 time-steps. (a) was constructed by simply merging indepen-
dent DAGs created for each time-step, hence, most of the values
have very small time ranges, (b) was constructed by using only a
single DAG of the first timestep and applying, whenever possible,
the exact same decimations for all other time-steps meshes. Simi-
lar distributions occur in most fields of T-DAGS constructed using
these two opposite schemes.
the quality of the mesh for time restrictions. The second (which is
not always possible) means sacrificing traversal time or quality at
the gain of lower storage space, and less time-depndent updates
in nodes. Defining a general construction scheme which is optimal
both in tenns of storage-space and traversal time might be difficult.
Instead, we aim at defining a framework where a valid T-DAG can
always be constructed, and there is a possibility of control over the
different tradeoffs. by using a predefined construction parameter.

4.2 Incremental Construction
In addition to the space-time tradeoffs for a given T-DAG construc-
tion, it is often beneficiary to construct the T-DAG incrementally
over time. For example, in scientific simulations heavy compu-
tations are involved in producing the mesh for each time-step. In-
stead of waiting until the whole process is complete to construct the
model, we would like to be able to visualize in a multi-resolution
manner even partial results. Let TDt be the T-DAG of times
0 , . , . , t, and assume TDo = MRo. An incremental algorithm
creates TDi by merging successively TDi-1 with MRi for all i.

However, creating the DAG M'Ri+l and merging it with the
previous T-DAG TVi-1 might involve complicated graph match-
ing problems. Instead, the key idea behind the incremental T-
DAG construction algorithm is to create at each time-step a multi-
resolution DAG using decimations which will conform to the ex-
isting T-DAG. This is done by using an enhanced priority in the
decimation process, introducing some history considerations which
augment the regular priorities of decimation cost. These consider-
ations aim to preserve the structure of the previous time-steps T-
DAG.

We &fine a history of decimations as a sequence of decimation
operations that were applied to a mesh, sorted by increasing level
and in each level by the order in which they were executed. Our
algorithm uses two such history sequences: Hin holds the previ-
ous time-step decimations and Hovt gathers the current time-step
decimations. At the beginning of each time-step (> 0) Hozlt is
assigned to Hin and cleared.

The algorithm (Figure 3) loops on the decimation operations in
Hin using getEIement0. This function returns the next element
(edge, vertex etc.) representing the next decimation operation in
Hin from levels 0 and up to the current level. This is done since

427

DeeimoteChnform(M, T D , t i m e , H i n . Hout

M is the initial fine resolution mesh
T D is the T-DAG of decimation operation
time is the current time-step
Hin will hold the previous order of decimation
Hout will store the current order of decimation
Q is a priority queue of decimation elements

I

to1 = minimumTol
H i n = Hout . clear Hout
loop until M is coarse enough {

clear dependencies for this level
fill Q with decimation elements from M
while e = Hin -tgetelement (1

find e' matching e in Q
if e' is not found or

e' is marked as dependent or
e' 3 cost() > to1 o r
largeDUf(e'-icost(),e-tcost())
continue

remove e' from Q
ApplyDedmPtlon(e,M , T D , Hout)

1
while Q is not empty {

e = Q 4 f i rs t ()
if e is marked as dependent

continue
if e 4 cost() > tol

break
ApplyDeelmatioo (e, M , T D , Hout 1

I
increase tot

1

t
ApplyDeeimntion (e , M , T D , Hout 1

mark all elements dependent on e
decimate M using e
store decimation in T D (t i m e)
store e dependencies in T D (t i m e)
store e in Hout
update Q if needed

1

Figure 3: An outline of the algorithm for one time-step of creating
a multi-resolution T-DAG model. The degree of conformity be-
tween the current and previous time-steps is govetned by the func-
tion largeDifl. This function checks the difference in cost of the
decimation in the current and the previous time-steps. The algo-
rithm first tries to decimate conforming to the previous time-step,
and only then reverts to its own priority queue. At each time-step
the decimation order is recorded and used in the next time-step by
using the decimation histories Hin and H a t .
some decimations of previous levels may have been skipped due
e.g. to large cost, but they might be applied in the current level. The
element extracted is matched to an element in the current priority
queue Q. The matching of elements is used in a loose sense, e.g.
two edges can match in edge contraction even if the surrounding tri-
angles do not match perfectly. A stricter matching strategy would
fail more often, and our goal is to use such matching only to in-
crease the chance of long time ranges for values in the node fields.
The decimation is skipped in one of the following four cases: (i)
if no matching element is found in the current queue, (ii) if the el-
ement found is dependent in this level, (iii) if the cost of applying
the decimation is too large (cost() > tol), or (iv) if the differ-
ence between the previous decimation costs and current is too large

(see Section 4.3 for the definition of largeaff). Otherwise, it is
performed and recorded in Rout for the next time-step. Some dec-
imations from the previous time-step cannot be found due to topol-
ogy or connectivity changes. Other decimations are valid only on
the current mesh, and so the algorithm performs them at the end of
each level.

Figure 4 illustrates a comparisons between the decimation histo-
ries of consecutive time-steps of the balls in (Color Plate 4). As can
be seen, most of the decimations are carried across the time-steps
in the same order. the likelihood of long time ranges for nodal field
values is increased, and there is gain in storage and time-values up-
dates.

F - m F-0 f - 2 F -2 F - 2

Hl W H1 H2 H l W W H 3 H3H4

Figure 4 Comparisons between decimation histories of consecu-
tive timesteps for different strategies. The decimation operations
are laid out from top to bottom according to their execution or-
der. White regions represent operations that match in both histo-
ries. Gray regions represent operations that were performed only at
the left or right histories. The links across histories connect regions
where the same operations were performed in different order. When
F = 00, the histories match exactly apart from places where topol-
ogy or connectivity changes. When F = 0 each history is almost
totally different since no similarity constraint is imposed. When
F = 2 over several time-steps one can see that most of the histories
are using the same decimation operations in the same order.

4.3 Space-Time Control Factor
When the conformity between consecutive time-step decimations
is large, more attribute values are unchanged across several time
steps and the time-range tags of such attributes in the node fields are
larger. As discussed earlier, this results in reduced storage size, and
faster time-dependent changes. If ct is the cost of the current deci-
mation in the current time-step, and ct-1 is the cost of the same dec-
imation in the previous time-step, then we use largeDiff(ct, ct- I)
test function in order to control the level of conformity between the
two time-steps. Whenever this function returns true the decima-
tion is skipped. Therefore, for greater conformity more such tests
should fail, and for lesser conformity, more tests should succeed.
We use as specific largeDifE

F x Ict - ct-11 > max(l~tl,Ict-11)
Therefore, as the value of the factor F increases, the conformity

decreases. For example, consider three T-DAGS of the meshes se-
quence in Figure 7 built with conformity factors F = 1.1,2,10.
These meshes have 7200 faces and 50 time-steps. Figure 5 displays
the percent of child links covered by ranges of child link values in
the three different T-DAGS. Other nodal field values (e.g. parent
links) display very similar pattems, and in fact, the ratio of the total
sizes of the three different T-DAGS is 7 : 9 : 20 for F = 1.1,2,10
respectively. Figure 6 displays the average traversal time from the
roots to a cut satisfying different tolerances for the three different
conforming factors. Larger F values means the T-DAG shape will
be optimized for each time-step separately, creating higher cuts in
the DAG for a given tolerance, and presumably traversing faster.

428

However, during the traversal, the time-dependent fields need to be
updated. Whenever the conformity is larger, this update is smaller
and faster and this results in the total traversal being faster.

8 0.1
0.05

0
11020304049

U 1 10 20 SO 4049 L' 11020304049

rangeof lite range of life range of lie

Figure 5: Percent of child link values of all nodes in a T-DAG cov-
ered by child link values of a given range for T-DAGS created with
different values of the conforming factor F = 1.1,2,10.

2O0 t

F=10 F=2 -.---*-- i

- 2 - 1 0 1 2 3 4 5 6 7
tolerance (log scale)

Figure 6: Average traversal time (of 50 timesteps) for a given toler-
ance for T-DAGS of different conforming factor E

5 RESULTS
In this section we examine several examples for the use of a T-DAG.
We show the flexibility of the model and the ability of the construc-
tion algorithm to encode time-dependent information with different
restrictions. All examples were created on an Intel Pentium-2 450
mhz machine with 128mb of memory.

In the first example (see Color Plate 3), is the output of a simula-
tion of two sub-atom particles colliding over a 2D domain. This
simulation tracks several attributes changing over 50 timesteps
(density, electrostatic field, ...). Under these conditions, defining an
optimal decimation for all variables could be difficult. Moreover,
if new attributes were introduced, this would mean recalculation of
the whole structure from the first time-step. Instead, we chose to
use a purely geometric condition to govem the decimation process.
Using random maximal vertex removal, we preserve at each step a
Delaunay triangulation (this scheme was presented in [21 for static
terrain meshes). On average, the Delaunay triangulation gives good
adaptive triangulation results for all attributes. The real advantage
of using such a scheme is in the fact that a single average DAG was
used for all time-steps and all attributes. This means that the child
and parent links all have the maximum time-range and therefore
there are no time-dependent updates. The different triangulations
extracted over time are a result of the differences in the error field
for different attributes over time.

Considering a 3D surfaces, additional tests are necessary be-

sides checking the approximation error during the traversal of the
DAG. For example, in order to preserve correct embedding of the
surface, triangles in the neighborhood of the decimation need CO
be checked for orientation changes, global intersections should be
tracked, etc. [22]. These types of tests could involve heavy com-
putation, making it impractical at traversal time. However, if these
tests are carried out during the construction stage of the T-DAG,
verifying that all cuts in all time-steps satisfy the tests, the traversal
time can be reduced. A simpler choice, although it does not guar-
antee correct embedding, would be to penalize during decimation
the cost of contractions that cause a change in triangle orientation,
and omit such checks during traversal.

In the second example we encode a dynamic sequence of meshes
created by two waves colliding (using 7200 faces). We use half-
edge contraction as decimation primitive and quadratic error metric
for tracking decimation cost [7]. The T-DAG constructed then sup
ports the extraction of meshes at any point in the two dimensional
space of time and adaptive resolution (Figure 7).

Figure 7: Two dimensional space of time (horizontal) and resolu-
tion (vertical) defined by the T-DAG model of a mesh of two col-
liding waves.

In cases where the connectivity or topology of the dynamic mesh
changes, the differences of the symbolic information through time
must be encoded as changes in the child and parent field values over
time. The last example (Color Plate 4) shows a two balls merang
(or a ball splitting) with 12,800 faces. The multi-resolution hierar-
chy was built with quadratic error metric using half-edge contrac-
tion. In this case the finest resolution triangulation has different
connectivity in most time-steps and there is also a discrete change
in topology at one time-step. In fact, using the T-DAG model these
changes were encoded seamlessly by the construction algorithm.

6 CONCLUSIONS AND FUTURE DIREC-
TIONS

Numerical simulations and dynamic environment processing de-
formable large scale models are becoming more common as
the computation power and ability to display high-end graphics
evolves. These models are larger and more complex than static
geometric models, and therefore necessitate further use of multi-
resolution techniques. In this paper we presented the T-DAG, a
multi-resolution representation for dynamic meshes with arbitrary
change. This model is flexible enough to encode models ranging
from the use of a single DAG for all time-steps to more complex
graphs with connectivity and topology change. The construction

429

algorithm is simple enough to be used with many types of deci-
mation operations, yet it is powerful enough to seamlessly encode
topology and connectivity changes in the dynamic meshes.

There are several possible extensions for this work. One of the
most important remaining challenges for the T-DAG is the update
of any adaptive cut dynamically over time instead of creating it by
traversing from the roots. Another involves out-of-core computa-
tions. The T-DAG structure evolves through time in coordination
with the meshes around the current time-step. Although the amount
of time-dependent information in each node of the T-DAG could
be large, if one concentrates on t.he window of time-steps, the live
information is much smaller. This fact could be used to support
out-of-core multi-resolution dynamic models, enabling efficient de-
composition of the data into viewing windows of time-steps which
can fit into memory. Also, since the temporal information is gath-
ered in the T-DAG nodes, temporal coherency could be exploited
for compression.

Lastly, it is possible to use the T-DAG for applying time-
dependent constraints for multi-resolution in the same manner as
view- and space-dependent constraints are used. For example, an
object which moves or deforms rapidly could be displayed in lower
resolution than an object which deforms slowly.

References
[11 C. Bajaj and D. Schikore. Topology preserving data simplifi-

cation with error bounds. Computers and Graphics, 22(1):3-
12,1998.

[2] M. de Berg and K. T. G. Dobrindt. On levels of detail in
terrains. Graphical Models and Image Processing. 60: 1-12.
1998.

[3] M. Eck, T. DeRose, T. Duchamp, T. Hoppe, H. Lounsbery,
and W. Stuetzle. Multiresolution analysis of arbitrary meshes.
In ACM Computer Graphics Proceedings, SIGGRAPH’95,
Annual Conference Series, pages 173-1 80, 1995.

[4] A. Finkelstein, C. E. Jacobs, and D. H. Salesin. Multires-
olution video. In ACM Computer Graphics Pmeedings,
SIGGRAPH’96, Annual Conference Series, pages 281-290,
1996.

[51 L. De Floriani, P. Magillo, and E. Puppo. Building and
traversing a surface at variable resolution. In Proceedings of
rhe IEEE visualization conference VIS’97. pages 103-1 10.
1997.

[6] L. De Floriani, P. Magillo, and E. Puppo. Data structures €or
simplicial multi-complexes. In Proceedings Symposium on
Spatial Databases, Hong Kong, China, July 1999.

[7] Michael Garland and Paul S. Heckbert. Surface simplifica-
tion using quadric error metrics. In Turner Whitted, editor,
ACM Computer Graphics Pmeedings, SlGGRAPH’97, An-
nual Conference Series, pages 209-216. ACM SIGGRAPH,
Addison Wesley, August 1997.

[8] Tran S. Gieng, Bemd Hamann. Kenneth I. Joy, Gregory L.
Schussman, and Issac J. Trotts. Constructing hierarchies for
triangle meshes. IEEE Transactions on Ksualization and
Computer Graphics, 4(2):145-161, April 1998.

[9] P. Heckbert and M. Garland. Survey of polygonal surface sim-
plification algorithms. In ACM Computer Graphics Pmeed-
ings, Annual Confemnce Series, SlGGRAPH’97, Multiresolu-
tion Su@zce Modelling, Course Notes No. 25,1997.

[lo] H. Hoppe. Progressive meshes. In ACM Computer Graph-
ics Proceedings, SIGGRA PH’%, Annual Conference Series,
pages 99-108, 1996.

[111 H. Hoppe. View-dependent refinement of progressive meshes.
In ACM Computer Graphics Proceedings, SIGGRAPH’97,
Annual Conference Series, pages 189-198,1997.

[12] H. Hoppe. New quadratic metric for simplifying meshes with
appearance attributes. In Pmeedngs IEEE Visualizarwn’99,
pages 56-46. IEEE Comp. Soc. Press, 1998.

[131 H. Hoppe. Smooth view-dependent level-of-detail control and
its application to terrain rendering. In Proceedings IEEE vi-
sualization ’98, pages 35-42. IEEE Comp. Soc. Press, 1998.

[141 R. Klein and J. h e r . Multiresolution representations for
surface meshes. In Proceedings of the SCCG, 1997.

[15] J. E. Lengyel. Compression of time-dependent geometry. In
Proceedings of the 1999 ACM Symposium on Interactive 3 0
Graphics, Atlanta, Georgia, April 1999.

[161 Paola Magillo. Spatial operations on multiresolution cell com-
plexes (phd thesis). Technical Report DISI-TH-1999-03, Di-
partimento di Informatica e Scienze dell’lnformazione, Uni-
versity of Genova, Italy, 1993.

[17] A. Maheshwari, P. Morin. and J. R. Sack. Progressive tins:
Algorithms and applications. In Pmeedings 5th ACM work-
shop on Advances in geographic information systems, Las Ve-
gas, 1997.

SATION CODING OF MOVING PICTURES and AUDIO
ISO/IEC JTCl/SC29/WGll N2995. MPEG4 standard spec-
z@cations, h t t p : / / d r o g o . c s e l t . i t / “ p e -
4.htm edition.

[191 J. Rossignac and P. Borrel. Multi-resolution 3d approximation
for rendering complex scenes. In B. Falcidieno and T. Kunii,
editors, Geometric Modeling in Computer Graphics, pages
455-465. Springer Verlag, 1993.

A topology modifying progressive
decimation algorithm. In Roni Yagel and Hans Hagen, edi-
tors, IEEE visualization 47, pages 205-212. Em, November
1997.

[21] H. Shen, L. Chiang, and K. Ma. A fast volume rendering algo-
rithm for time-varying fields using a time-space partitioning
(tsp) tree. In Pmeedings of the IEEE visualization Confer-
ence VIS’W, pages 371-378, 1999.

[22] 0. G. Staadt and M. H. Gross. Progressive tetrahedralizations.
In Proceedings of the IEEE visualization Coqfemnce Vis98,
pages 397402. 1998.

[23] E. J. StoIlnitz, T. D. DeRose, and D. H. Salesin. Wavelets for
Computer Graphics. Morgan Kaufmann Publishers, 1996.

[24] P. M. Sutton and C. D. Hansen. Isosurface extraction in time-
varying fields using a temporal branch-on-need tree (t-bon).
In Proceedings of the IEEE K5ualization Conference VIS’99,
pages 147-154.1999.

[25] J. Xia and A. Varshney. Dynamic view-dependent simplifica-
tion for polygonal models. In Proceedings of the IEEE Ksu-
.alization Conference vis%, pages 327-334, 1998.

[181 INTERNATIONAL ORGANISATION FOR STANDARDI-

[20] William J. Schroeder.

430

http://drogo.cselt.it/�pe

