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Abstract

In this paper (part one of a trilogy), we introduce the concept of a discriminating family of regular
algebraic curves (real, nonsingular and connected). Several discriminating families are obtained
which yield different characterizations of the Bernstein–Bézier (BB) bivariate polynomials over the
plane triangle and the quadrilateral domain such that their zero contours are smooth and connected.
These regular curve segments in BB basis can be smoothly joined together to form algebraic curve
splines or A-splines. Algorithms for the efficient graphics display of these new A-spline families are
also provided. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider an algebraic curve defined by a real polynomial equation in Bernstein–Bézier
(BB) form over a plane triangle or a quadrilateral. Notwithstanding the overwhelming
popularity of parametric curves in computer aided geometric design (CAGD), one is
increasingly aware that curves defined by implicit equations are useful for certain CAGD
operations (Bajaj, 1993). The primary drawback for the widespread use of the implicit
algebraic curves is that the real curve may have singularities (e.g., cuspidal cubic), and
may be disconnected (e.g., hyperbola) in a given region of the plane. For example, if we fit
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Fig. 1. (a) The points to be fitted; (b) The fitting curve.

Fig. 2. The coefficients on the lines,
that parallel toL, increase.

Fig. 3. Cubic: The real dots are pos-
itive. Shaded are negative. Empty are
zero.

a cluster of points as shown in Fig. 1(a) with a quadratic, we often lead to the result shown
in Fig. 1(b), if no additional conditions are imposed on the curve.

Hence, for some applications in CAGD, such as data fitting or shape design, it is natural
to require that the curve be connected in a specified region.

In this paper (part I of III), we focus on isolating a regular piece of an algebraic
curve that is defined on a given triangle or a given quadrilateral in BB-form. We
introduce the concept of a discriminating family of regular algebraic curve segments
(real, nonsingular and connected). Several discriminating families are obtained which yield
different characterizations of the Bernstein–Bézier (BB)-form bivariate polynomials over
the plane triangle and the quadrilateral domain such that their zero contours are smooth
and single-sheeted. Furthermore, using these discriminating families, we can efficiently
evaluate the algebraic curve segments for display. In parts II and III of this trilogy of
papers, we consider the problems of interpolation and approximation by splines of regular
algebraic curve segments (Xu et al., 2000) and their applications in scattered and dense
data fitting (Bajaj and Xu, 2000).

As mentioned earlier, the main difficulties in dealing with real algebraic curves are
the problems of real singularities and discontinuities. In attempts to overcome these
difficulties, Sederberg in (Sederberg et al., 1985) set conditions on the coefficients of the
BB-form of an implicitly defined bivariate polynomial on a triangle in such a way that if the
coefficients on the lines that are parallel to one side, sayL, of the triangle all increase (or
decrease) monotonically in the same direction, then any line parallel toL will intersect the
algebraic curve segment at most once (see Fig. 2). In (Sederberg et al., 1988), Sederberg,
Zhao and Zundel give another similar set of conditions which guarantees the single-
sheeted property of their TPAC by requiring thatβi0 > 0, thatβ0i, βm−1,i 6 0, and that
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the directional derivative of PAC (piecewise algebraic curves) with respect to any direction
s = αu be non-zero within the triangle domain, whereβij denotes the Bézier coefficients.
Papers of Paluszny and Patterson (1992, 1993) constructG1 andG2 continuous cubic
algebraic splines by using the cubicF(α1, α2, α3)= β201α

2
1α3+ β102α1α

2
3 − β120α1α

2
2 −

β021α
2
2α3 + β111α1α2α3 with β201> 0, β102> 0, β120> 0, β021> 0, and(α1, α2, α3)

T

being barycentric coordinates (see Fig. 3). All the above characterizations dealing with BB
triangles can be regarded as special cases of (Bajaj and Xu, 1999) in which the coefficients
of the BB-form have a one-time sign change. The present paper is an extension of our paper
(Bajaj and Xu, 1999) and deals with the BB-form on both the triangle and the quadrilateral.
For the BB-form on the quadrilateral, a characterization for the single-sheeted purpose is
given in (Patrikalakis and Kriezis, 1989) and is similar to Sederberg’s in (Sederberg et al.,
1988). In particular, if the coefficients increase or decrease monotonically in thex or y
direction, then any line that is parallel to thex or y axis will intersect the curve at most
once. This is again a special case of our characterization in this paper.

2. Notation and mathematical preliminary

Let pi = (xi, yi)T ∈ R2 for i = 1, . . . , k. Then[p1p2 . . .pk] denotes theclosed convex
hull of {pi}ki=1. That is,[p1p2 . . .pk] = {p ∈R2: p =∑k

i=1αipi , 06 αi 6 1,
∑k
i=1αi =

1}. If 0 < αi < 1, then the set defined is theopen convex hullof {pi}ki=1, denoted by
(p1p2 . . .pk). If αi ∈ (−∞,∞), then the set defined is theaffine hullof {pi}ki=1, denoted
by 〈p1p2, . . . , pk〉. If k = 3 andp1, p2 andp3 are affine independent, then[p1p2p3] is a
triangle andα = (α1, α2, α3)

T are known as barycentric coordinates which relate with the
Cartesian coordinates(x, y)T by α1

α2

= 1

∆(p1,p2,p3)

 y2− y3, x3− x2

y3− y1, x1− x3

 x − x3

y − y3


andα3= 1− α1− α2 with

∆(p1,p2,p3)= det

 p1 p2 p3

1 1 1

 .
On a triangle, the algebraic curve will be defined by the zero contour of

Fn(α)=
∑

i+j+k=n
βijkB

n
ijk(α) with Bnijk(α)= Cnij αi1αj2αk3, (2.1)

where

Cni1···ik =
n!

i1! · · · ik!(n− i1− · · · − ik)!
(see Fig. 4 for cubic). Ifk = 4 and any three ofpi (i = 1, . . . ,4) are affine independent,
then[p1p2p3p4] is a quadrilateral. We shall assumep1,p2,p4 andp3 are clockwise, and
map[p1p2p3p4] to the unit squareS = [0,1] × [0,1] in theuv-plane by

p = (p1+ p4− p2−p3)uv + (p3− p1)u+ (p2−p1)v + p1. (2.2)
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Fig. 4. Cubic coefficient index on the
triangle[p1p2p3].

Fig. 5. Bi-cubic coefficient index on
the quadrilateral[p1p2p3p4].

If p1 + p4 = p2 + p3, i.e., [p1p2p3p4] is a parallelogram, then (2.2) is linear. On a
quadrilateral, the algebraic curve is defined by the zero contour of

Gmn(u, v)=
m∑
i=0

n∑
j=0

βijB
m
i (u)B

n
j (v) (2.3)

with Bni (s)= Cni si (1− s)n−i (see Fig. 5 for bi-cubic).
We could imagine that the discussion of the problem of isolating a single piece from

the zero contour ofFn(α) orGmn(u, v) should relate to the problem of root isolation of a
one-variable polynomial. Indeed, in our development, we are always led to the problem of
judging a univariable polynomial equation having zero roots or one root in a given interval.
The following set of lemmas is designed to solve this decision problem for different cases.
For polynomials of low degree (6 3), we could give necessary and sufficient conditions.
For other cases, we give sufficient conditions only.

Lemma 2.1. Let F(x) = ∑n
i=0βiB

n
i (x). If there exist an integerk (0 < k < n) such

that βi > 0 for i = 0, . . . , k − 1 and βi 6 0 for i = k + 1, . . . , n, and there is at least
one strict inequality in each set of the inequalities, then for any realα > 0, the function
Fα(x)=∑n

i=0βi[Bni (x)]α has only one zero in the interval(0,1).

Proof. If α = 1, the lemma follows from thevariation diminishing property(see p. 54 in
(Farin, 1990)). SinceFα(x) = (1− x)nα∑n

i=0 cit
i with ci = (Cni )αβi and t = ( x

1−x )
α ∈

(0,∞), then under the assumption of the lemma, the sequencec0, c1, . . . , cn has a one-time
sign change. It follows from Descarte’s sign rule that the function

∑n
i=0 cit

i has only one
zero in(0,∞). Therefore,Fα(x) has only one zero in(0,1) (see Fig. 6). 2
Lemma 2.2.

∑n
i=0βi[Bni (x)]α > 0 (or > 0) on [0,1], if and only if

∑n
i=0βi (C

n
i )
α−1×

Bni (x)> 0 (or > 0) on [0,1], whereα > 0.

Proof. Let t = xα

xα+(1−x)α . Then forx ∈ [0,1] we havet ∈ [0,1] and

n∑
i=0

βi
[
Bni (x)

]α = [xα + (1− x)α]n n∑
i=0

βi(C
n
i )
αxiα(1− x)(n−i)α

[xα + (1− x)α]n
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Fig. 6. F(x)(real line curve) and
Fα(x)(dotted line curve) forn= 4.

Fig. 7. Positive quadratic curve with a
negative coefficient.

Fig. 8. Lemma 2.4: Necessary and sufficient conditions for a cubic to have one zero in(0,1).

= [xα + (1− x)α]n n∑
i=0

βi(C
n
i )
α−1Bni (t).

The lemma follows directly from this equality.2

Lemma 2.3. LetF(x)=∑2
i=0βiB

2
i (x). ThenF(x) > 0 on (0,1) if and only if

(i) βj > 0 (j = 0,1,2) and at least one ofβj is positive, or
(ii) β0> 0, β1< 0, β2> 0 andβ2

1 < β0β2.

Proof. It is obvious thatF(x) > 0 on(0,1) if condition (i) holds. Now suppose condition
(ii) is satisfied. Then fromF ′(r) = 0 we get r = (β0− β1)/(β0+ β2− 2β1). Since
F ′′(r) = 2(β0 + β2 − 2β1) > 0, r is a minimum point ofF(x) in (0,1) with the
minimum value(β0β2 − β2

1)/(β0 + β2 − 2β1). HenceF(x) > 0 on [0,1] (see Fig. 7).
This completes the proof of the sufficient part of the lemma. The necessary part can be
proved similarly. 2

Lemma 2.4. LetF(x)=∑3
i=0βiB

3
i (x) withβ0< 0, β3> 0. ThenF(x) has a single zero

in (0,1) if and only if
(i) β16 0 or β2> 0, or
(ii) β1> 0, β2< 0 and

∆ := β2
0β

2
3 − 3β2

1β
2
2 − 6β0β1β2β3+ 4β0β

3
2 + 4β3

1β3> 0.

Proof. (See Fig. 8.) Ifβ1 6 0 or β2 > 0, then the sequence{βi}3i=0 has one-time sign
change. It follows from thevariation diminishing property(see p. 54 in (Farin, 1990)) that
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Fig. 9. Lemma 2.5: Necessary and sufficient conditions for a cubic to be positive.

F(x) has a single zero in(0,1). Supposeβ1> 0 orβ2< 0. ThenF(x) has no zero outside
[0,1]. LetF(x)= (1−x)3G(t), withG(t)= β0+3β1t+3β2t

2+β3t
3 andt = x/(1−x).

Then sinceG(−1)= (β0− β3)+ 3(β2− β1) 6= 0,F(x) has one zero in[0,1] if and only
if G(t) has one zero in(−∞,∞). It is well known thatG(t) has one zero in(−∞,∞) if
and only if its discriminant∆/(4β4

3) > 0. 2
Lemma 2.5. LetF(x)=∑3

i=0βiB
3
i (x). Then

(i) F(x) > 0 on [0,1] if and only if (a) β0 > 0, β3 > 0, β1 > 0 and β2 > 0 or (b)
β0> 0, β3> 0 and∆> 0.

(ii) F(x) > 0 on (0,1] (or [0,1)) andF(0)= 0 (or F(1)= 0) if and only if(a)β0= 0,
β3 > 0 (or β3 = 0 β0 > 0), β1 > 0 andβ2 > 0 or (b) β0 = 0, β3 > 0 (or β3 = 0
β0> 0) and∆> 0.

(iii) F(x) > 0 on(0,1) andF(0)= F(1)= 0 if and only ifβ0= β3= 0, β1> 0, β2> 0
andβ1+ β2> 0.

The proof of this lemma is similar to that of Lemma 2.4, and so we omit it here.

3. Discriminating families

Consider first the classical one variableC1 function (it is of course defining a smooth
curve)y = g(x), x ∈ [a, b]. The smoothness of the curvef (x, y) := y − g(x)= 0 can be
tested by considering if every straight linex = α, α ∈ [a, b], intersects the curve only once
(see Fig. 10(a)). The cases shown in Figs. 10(b)–(c) could not happen.

The essential point behind this observation is that if each line in the set{x = α: α ∈
[a, b]} intersects the curve only once, then the curve is regular. That is, the family of these
lines can be used to judge the regularity of a curve. Furthermore, in paper (Bajaj and Xu,
1999), we have used straight lines{

α(t)= (1− t)(β,1− β,0)T+ t (0,0,1)T, t ∈ [0,1]: β ∈ (0,1)}
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Fig. 10. (a) Single-valued regular function; (b) Multi-valued non-regular function; (c) Function not
differentiable.

Fig. 11. Closed piecesR1 andR2 of the boundaries of a triangle and a quadrilateral.

Fig. 12. (a) The linesD1; (b) The quadratic familyD2.

in a triangle (see Fig. 12(a)) to intersect the curve. The conclusion we obtained there was
that under certain conditions on the coefficients of a bivariate polynomialFn(α), each line
in this family will intersect the curveFn = 0 only once in the triangle, and so the curve is
regular. Again, this set of lines is used to judge the regularity of the curve. In this section,
we extend these observations to introduce a general concept of a discriminating family.
The purpose of the extension is that we want to find more algebraic curves that can be
distinguished as regular.

The questions we raise are:
(1) Can we find simple discriminating families?
(2) Do simple conditions exist for the algebraic curve under which the curve can be

judged as regular by the discriminating families?
To answer the first question, we give some examples of discriminating families after

Definition 3.1. These families are then used to judge the regularities of various curves in
the subsequent section. Hence, the answers to both the problems are affirmative.

Definition 3.1. For a given triangle or quadrilateralR, let R1 and R2 be two closed
pieces of boundary ofR with R1 ∩ R2 = ∅ (see Fig. 11). LetD = {As(x, y)= γ (x, y)−
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sδ(x, y)= 0: s ∈ [0,1]} be an algebraic curve family withs as a parameter andδ(x, y) > 0
onR \ {R1,R2} such that

(1) Each curve inD passes throughR1 andR2;
(2) Each curve inD is regular in the interior ofR;
(3) For∀p ∈ R \ {R1,R2}, there exists one and only ones ∈ [0,1] such thatAs(p)= 0.

Then we sayD is a discriminating family onR, denoted byD(R,R1,R2).

In the following, we shall give four examples of discriminating families. The first two
are defined on the triangle, the other two are defined on the quadrilateral.

Example 3.1. Let

D1
([p1p2p3],p3, [p1p2]

)= {α2− s(α1+ α2)= 0: s ∈ [0,1]},
where(α1, α2, α3)

T is the barycentric coordinate with respect to the triangle[p1p2p3].
It is easy to see thatD1([p1p2p3],p3, [p1p2]) consists of straight lines (see Fig. 12(a))
in the triangle[p1p2p3] that connect the pointp3 and all the points on[p1p2]. Hence
D1([p1p2p3],p3, [p1p2]) is obviously a discriminating family.

Example 3.2. Let

D2
([p1p2p3],p2,p3

)= {(1− s)α2α3− sα2
1 = 0: s ∈ [0,1]}.

D2([p1p2p3],p2,p3) consists of quadratics (see Fig. 12(b)) and it is a discriminating
family. The proof of this conclusion follows from Theorem 4.1.

Example 3.3. Let

D3
([p1p2p3p4], [p1p2], [p3p4]

)= {v = s: s ∈ [0,1]},
thenD3([p1p2p3p4], [p1p2], [p3p4]) is a discriminating family (see Fig. 13(a)).

Example 3.4. Let

D4
([p1p2p3p4],p1,p4

)= {(1− s)u(1− v)− s(1− u)v = 0: s ∈ [0,1]}.
ThenD4([p1p2p3p4],p1,p4) consists of hyperbola (see Fig. 13(b)) and it is a discrimi-
nating family. The proof of this fact follows from Theorem 4.5.

Fig. 13. (a) The linesD3; (b) The hyperbolic familyD4.
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Definition 3.2. For a given discriminating familyD(R,R1,R2), let f (x, y) be a bivariate
polynomial (or a C1 continuous function onR \ {R1,R2}). If the curvef (x, y) = 0
intersects with each curve inD(R,R1,R2) exactly once in the interior ofR, we say
the curvef = 0 is regular with respect toD(R,R1,R2) (concisely stated as being
D(R,R1,R2)-regular)).

Here we need to make the meaning ofintersect onceprecise. Letp∗ = (x∗, y∗)T be
a point on the curveAs(x, y) = 0. Since the curve is regular, we represent it locally as
y = h(x) (or x = g(y)) in the neighborhood ofp∗. The termintersect oncemeansx∗ is a
single zero off (x,h(x)).

It is easy to show that aD(R,R1,R2)-regular curvef = 0 is regular. In fact, if∇f = 0
at a point(x∗, y∗)T on the curve, thenx∗ will be a double zero off (x,h(x)) since

d

dx
f
(
x∗, h(x∗)

)= [1, h′(x∗)]∇f = 0,

here h(x) is the same as the function defined in the above paragraph. Therefore,
D(R,R1,R2)-regular is a sufficient condition of the regularity.

4. Regular curve segments

In this section we characterize the regular curve segments defined on a triangle or a
quadrilateral by the discriminating families introduced in Examples 3.1–3.4 in the last
section. The goal is to arrive at the following statement:

For the BB-form polynomialF defined on a triangle or a quadrilateral and a specific
discriminating familyD, if certain conditions are satisfied, thenF = 0 is D-regular. The
“certain conditions” here will be the conditions imposed on the coefficients ofF . For the
purpose of practical use, we require that the validity of these conditions can be checked
within finite steps of computation. The next theorem deals with the polynomials on the
triangle and theD1 discriminating family.

Theorem 4.1. For the triangle [p1p2p3], let Fn(α) be defined as(2.1) and Bk(s) =∑
i+j=n−k βijkB

n−k
j (s) (see Fig.14(a)). If there exists an integerl (0 < l < n) such

that Bk(s) > 0 for all s ∈ [0,1] and k < l; Bk(s) 6 0 for all s ∈ [0,1] and k > l (see
Fig. 15(a))and

∑l−1
k=0Bk(s) > 0,

∑n
k=l+1Bk(s) < 0 on (0,1), then the curveFn(α)= 0 is

D1([p1p2p3],p3, [p1p2])-regular.

The proof of the theorem is given in Appendix A.
Note thatBk(s) depends on only the coefficientsβi,n−i−k,k on the control points

i
n
p1 + n−i−k

n
p2 + k

n
p3 for fixed k and i = 0, . . . , n− k. These control points are on the

line segment[ n−k
n
p2+ k

n
p3,

n−k
n
p1+ k

n
p3] (see Fig. 14(a)). This comment applies to other

theorems in this section, but with lines that are in different directions (see Fig. 14).
As an application of the theorem, we find that the curves inD2([p1p2p3], p2,p3) are

D1([p1p2p3], p1, [p2p3])-regular. Hence they are regular. Then it is easy to seeD2 is a
discriminating family. Here the interesting thing is that starting with a naive discriminating
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Fig. 14. The coefficients ofBk(s) are on a line. (a)D1-regular curve; (b)D2-regular curve;
(c)D3-regular curve; (d)D4-regular curve.

Fig. 15. The positive (real thick lines) and negative (dotted thick lines)Bk(s). (a)D1-regular curve;
(b)D2-regular curve; (c)D3-regular curve; (d)D4-regular curve.

Fig. 16. TheD1([p1p2p3],p3, [p1p2])-regular curves.

family, with the help of the corresponding characterization theorem we obtain other non-
trivial discriminating families.

Note that a sufficient condition for a Bernstein polynomial
∑n
i=0βiB

n
i (s) to be

nonnegative on[0,1] is that the coefficientsβi are nonnegative. Hence we have the
following corollary:

Corollary 4.1 (see Theorem 3.1 of (Bajaj and Xu, 1999)).For the triangle[p1p2p3], let
Fn(α) be defined as(2.1). If there exists an integerl (0< l < n) such thatβijk > 0 for k <
l and βijk 6 0 for k > l and there is at least one strict inequality in each set of the
inequalities, then the curveFn(α) = 0 isD1([p1p2p3],p3, [p1p2])-regular.

The D1([p1p2p3],p3, [p1p2])-regular curves are between the pointp3 and the line
segment[p1p2] and away fromp3 (if β00n 6= 0) and the open line(p1p2) (see Fig. 16(a)).
They can pass throughp1 and/orp2 (see Fig. 16(b)) and furthermore, the curves can be
tangent to the line[p1p3] and/or the line[p2p3] atp1 and/orp2 (see Fig. 16(c)).
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Fig. 17. The four cases in Theorem 4.2. The “+”, “−” and “0” in the circles denote the corresponding
coefficients are positive or non-negative, negative or non-positive and zero, respectively.

The conditions in Theorem 4.1 and Corollary 4.1 are easy to check and hence are
very useful in constructing regular algebraic curves. However, these are not necessary
conditions of regularity. Using Lemma 2.3, Lemma 2.4 and Lemma 2.5 we obtain
necessary and sufficient conditions for regular quadratic and cubic curves.

Theorem 4.2. Assumen= 2 andβ002< 0. ThenF2(α)= 0 isD1([p1p2p3], p3, [p1p2])-
regular if and only if one of the following conditions holds(see Fig.17):

(i) β200> 0, β020> 0 andβ110> 0 or β2
110< β200β020 (F2 = 0 is betweenp3 and

[p1p2]).
(ii) β200= 0, β020> 0, β110> 0 andβ1016 0 (F2= 0 passes throughp1).

(iii) β200> 0, β020= 0, β110> 0 andβ0116 0 (F2= 0 passes throughp2).
(iv) β200= β020= 0, β110> 0, β1016 0 andβ0116 0 (F2 = 0 passes throughp1 and

p2).

Theorem 4.3. Assumen = 3 andβ003< 0. Let S = {s ∈ [0,1]: B1(s) < 0, B2(s) > 0}.
ThenF3(α) = 0 is D1([p1p2p3],p3, [p1p2])-regular if and only if the following two
conditions hold:

B0(s) > 0, ∀s ∈ (0,1), (4.1)

∆(s) := B0(s)
2B3(s)

2− 3B1(s)
2B2(s)

2 − 6B0(s)B1(s)B2(s)B3(s)

+ 4B0(s)B2(s)
3 + 4B1(s)

3B3(s) > 0, ∀s ∈ S. (4.2)

Note that conditions (4.1) and (4.2) in the theorem can be checked in a finite number of
steps. Lemma 2.5 gives the necessary and sufficient conditions forB0(s) > 0 on (0,1).
For condition (4.2), we first note thatS is either an empty set or an interval or the
union of two intervals, andS can be computed easily sinceB1 andB2 are polynomials
of degree two and one, respectively. Hence (4.2) can be checked by Sturm’s theorem.
Let ∆0(s),∆1(s), . . . ,∆6(s) be the Sturm sequence of∆(s) and(a, b) be an interval of
S. Then∆(s) > 0 on (a, b) if and only if the number of sign changes of the sequence
∆0(a),∆1(a), . . . ,∆6(a) is the same as the number of sign changes of the sequence
∆0(b),∆1(b), . . . ,∆6(b).

Now we are going to considerD2-regular curves.
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Theorem 4.4. LetF2m(α)=∑2i+j+k=2m β2i,jkB
2m
2i,jk(α) and

Bn(s)=
∑

j−k=2n

C2m
jk /C

2m
m−k,n+kβ2m−j−k,jkBm+nn+k (s)

(see Fig.14(b)). If there exists an integerl (−m < l < m) such thatBn(s) 6 0 for all
s ∈ [0,1] and n < l; Bn(s) > 0 for all s ∈ [0,1] and n > l; and

∑l−1
n=−mBn(s) < 0,∑m

n=l+1Bn(s) > 0 on (0,1) (see Fig.15(b)), then the curveF2m(α)= 0 isD2([p1p2p3],
p2,p3)-regular.

The proof of the theorem is given in Appendix A.
Just as Corollary 4.1 is derived from Theorem 4.1, we have similar corollaries from

Theorem 4.4 and Theorems 4.5, 4.8 below. We do not repeat them here.
Now we consider the algebraic curves defined on a quadrilateral[p1p2p3p4]. We shall

characterize the coefficientsβij such that the curveGmn(u, v) = 0 in the unit squareS is
a regular curve segment. This curve segment will be transformed to the given quadrilateral
[p1p2p3p4] by (2.2).

Theorem 4.5. Let Gmn(u, v) be defined as(2.3) and Bi(s) = ∑n
j=0βij B

n
j (s) (see

Fig. 14(c)). If there exists an integerl (0< l <m) such thatBi(s)6 0 for all s ∈ [0,1] and
06 i < l; Bi(s)> 0 for all s ∈ [0,1] and l < i 6m (see Fig.15(c))and

∑l−1
i=0Bi(s) < 0,∑m

i=l+1Bi(s) > 0 on (0,1), then the curveGmn(u, v) = 0 is D3([p1p2p3p4], [p1p2],
[p3p4])-regular.

The proof of the theorem is similar to the triangle case (see the proof of Theorem 4.1),
and we omit it here.

Using Theorem 4.5, we can see that the curves inD4 areD3-regular. Hence it is easy to
see thatD4 is a discriminating family.

TheD3([p1p2p3p4], [p1p2], [p3p4])-regular curves are between the line[q1q2] and the
line [q3q4] (see Fig. 18(a)). They can pass throughq1 or q2 or q3 or q4 (see Fig. 18(b)) and
furthermore, the curves can be tangent to the edges at the vertices (see Figs. 18(c)–(d)).
The above theorem implies that if the coefficients have a one-time sign change in theu or
v direction, then the curve inside the unit square is regular.

Again, Theorem 4.5 gives sufficient conditions forGmn(u, v) = 0 to beD3([p1p2
p3p4], [p1p2], [p3p4])-regular. Now we give necessary and sufficient conditions for the
casem,n6 3.

Theorem 4.6. For m= 2 andn6 3,G2,n(u, v)= 0 isD3([p1p2p3p4], [p1p2], [p3p4])-
regular if and only if

B0(s) < 0, B2(s) > 0, ∀s ∈ (0,1),
β00− βm0< 0, β0n − βmn < 0.

(4.3)

SinceBk(s) is a degreen polynomial, the lemmas in Section 2 give necessary and
sufficient conditions forB0(s) < 0,B2(s) > 0.



G. Xu et al. / Computer Aided Geometric Design 17 (2000) 485–501 497

Fig. 18. TheD3-regular curves.

Fig. 19. TheD4([p1p2p3p4],p1,p4)-regular curves.

Theorem 4.7. For m= 3 andn6 3,G3,n(u, v)= 0 isD3([p1p2p3p4], [p1 p2], [p3p4])-
regular if and only if(4.3)holds and

∆(s) := B0(s)
2B3(s)

2− 3B1(s)
2B2(s)

2− 6B0(s)B1(s)B2(s)B3(s)

+4B0(s)B2(s)
3+ 4B1(s)

3B3(s) > 0, ∀s ∈ S, (4.4)

whereS = {s ∈ [0,1]: B1(s) > 0, B2(s) < 0}.

As in Theorem 4.3, condition (4.4) can be checked using Sturm’s theorem.

Theorem 4.8. Let Gmn(u, v) be defined as(2.3) and Bk(s) = ∑m
i=0C

m
i C

n
k−i βi,k−i

Bm+nn+2i−k(s) (see Fig.14(d)). If there exists an integerl (0< l <m+n) such thatBk(s)6 0
for all s ∈ [0,1] and 06 k < l; Bk(s) > 0 for all s ∈ [0,1] and l < k 6m+ n (see Fig.
15(d)), and

∑l−1
k=0Bk(s) < 0,

∑m+n
k=l+1Bk(s) > 0 on (0,1), then the curveGmn(u, v) = 0

isD4([p1p2p3p4],p1,p4)-regular in the unit square.

The proof of the theorem is given in Appendix A.
TheD4([p1p2p3p4],p1,p4)-regular curves are between the pointq1 and pointq4 and

away fromq1 andq4 (see Fig. 19(a)). They can pass throughq2 or q3 and can be tangent
to the edges at the vertices (see Figs. 19(b)–(e)).

5. Display of regular algebraic curves

Displaying parametric curves is undoubtedly easier than displaying implicit algebraic
curves. Here we show that fast display (graphing) algorithms exist for our regular curve
families. For general degree curves these algorithms depend on a root finding routine for
real univariate polynomial equations. If the degree of the polynomial is less than 5 (these
are the most useful and important cases in CAGD), closed form solutions exist.
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For the D1([p1p2p3],p3, [p1p2])-regular curve defined by Theorem 4.1, we can
evaluate the curve as follows: For a givens ∈ [0,1], determinet as in the proof of
Theorem 4.1, then use (A.1) to compute(α1(s, t), α2(s, t), α3(s, t))

T. To generate an
ordered sequence of points on the curve for the computer graphics display, first choose
a sequence{si} (0 = s0 < s1 < · · · < sl = 1), then compute{ti} and finally the points
{(α1(si , ti), α2(si, ti ), α3(si, ti )

T}. Connecting these points by lines yields a piecewise
linear approximation of the curves. For theD2([p1p2p3],p2,p3)-regular curve defined
by Theorem 4.4, formula (A.3) gives a closed form for evaluating(α1, α2, α3)

T, where
s ∈ [0,1] is given arbitrarily andt is determined as in the proof of Theorem 4.4. For the
D4([p1p2p3p4],p1,p4)-regular curve defined by Theorem 4.8, we use (A.5) to evaluate
the curve. The display algorithms of theD3([p1p2p3p4], [p1p2], [p3p4])-regular curves
defined by Theorem 4.5 are similar.

6. Conclusions

We have introduced the concept of a discriminating family. Some concrete families are
given. Using these families, we have characterized the bivariate BB-form polynomials
on the triangle and the quadrilateral such that their zero contours areD-regular. The
characterizations obtained are conditions imposed on the coefficients of the BB-form. The
validity of these conditions can be checked within finite steps of computation. Furthermore,
these discriminating families also serve as the tools to efficiently evaluate theD-regular
curves for display.

Using these discriminating families, many regular curves are obtained. In addition to the
D1-regular curve family that has been used in an earlier paper (Bajaj and Xu, 1999), the
D2-regular,D3-regular andD4-regular curve families are newly introduced. The curves
in each family have different features. TheD1-regular curves are always betweenp3 and
[p1p2]. TheD2-regular curves are betweenp1 andp2. TheD3-regular curves are between
[p1p2] and[p3p4], while theD4-regular curves are betweenp1 andp4. These different
features may serve different purposes in the diverse applications of CAGD.

In the literature, many attempts have been made in using algebraic curves defined on
a triangle. The introduction of theD3-regular andD4-regular curve families provides the
capability for using algebraic curves defined on a quadrilateral.

In part II and part III of this trilogy of papers, we will exploit the use of these curve
families in interpolation, approximation and scattered data fitting.

Appendix A

The proof of Theorem 4.1. For a givens ∈ [0,1], let{
s = α2/(α1+ α2),

t = α3.

That is,{
α1= (1− t)(1− s),
α2= (1− t)s,
α3= t .

(A.1)
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Then

Fn(α)=
n∑
k=0

∑
i+j=n−k

βijk
n!

i!j !k!α
i
1α
j

2α
k
3 =

n∑
k=0

Bnk (t)
∑

i+j=n−k
βijkB

n−k
j (s)

=
n∑
k=0

Bk(s)B
n
k (t).

For a givens, sinceBk(s)> 0 for k < l, Bk(s)6 0 for k > l and there is a strict inequality
in each of them,Fn(α)= 0 has exactly one roott ∈ (0,1) by Lemma 2.1. This(s, t)T gives
us a uniqueα by (A.1). 2
The proof of Theorem 4.4. The cases = 0, when the curve inD2([p1p2 p3],p2,p3)

degenerates to straight linesα2 = 0 andα3 = 0, needs to be considered separately. For
instance, if the coefficientsβ2i,0,2m−2i , i = 0,1, . . . ,m, have a one-time sign change, we
let α2= 0, and then

F2m(α)=
∑

2i+k=2m

β2i,0,kB
2m
2i,0,k(α1,0,1− α1)=

m∑
i=0

β2i,0,2m−2iB
2m
2i (α1).

Hence the equationF2m(α)= F2m(α1,0,1−α1)= 0 with α1 as the unknown has one root
in [0,1]. The case thatβ2i,2m−2i,0, i = 0,1, . . . ,m, has a one-time sign change is similar.
Now supposes ∈ (0,1]. Let{

s = α2α3/(α
2
1 + α2α3),

t = α3/(α2+ α3).
(A.2)

Then it follows from the second equality of (A.2) thatα2= (1−α1)(1− t), α3= t (1−α1).
Substituting these into the first equality of (A.2), we have(1− s)(1− t)t (1− α1)

2= sα2
1,

from which we get

α1=
√
(1− s)(1− t)t√

s +√(1− s)(1− t)t ,

α2=
√
s(1− t)2√

s +√(1− s)(1− t)t ,

α3=
√
st2√

s +√(1− s)(1− t)t .

(A.3)

For j − k = 2n (that isj + k = 2n+ 2k),

B2m
2m−j−k,jk(α)=C2m

jk α
2(m−n−k)
1 α

j

2α
k
3

=C2m
jk

sn+k(1− s)m−n−ktm−n(1− t)m+n
(
√
s +√(1− s)(1− t)t)2m

= C2m
jk

C2m
m−k,n+k

Bm+nn+k (s)B2m
m−n(t)

(
√
s +√(1− s)(1− t)t)2m .
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Then

F2m(α)=
m∑

n=−m

∑
j−k=2n

β2m−j−k,jkB2m
2m−j−k,jk(α)

= 1

(
√
s +√(1− s)(1− t)t)2m

m∑
n=−m

Bn(s)B
2m
m−n(t).

It follows from the assumption of the theorem that, for a givens, Bn(s)6 0 for n < l, and
Bn(s)> 0 for n > l, and there is a strict inequality in each of them. Then by Lemma 2.1
F2m(α)= 0 has exactly one roott ∈ (0,1) for any givens ∈ (0,1]. This (s, t)T gives us a
unique(α1, α2, α3)

T by (A.3). 2
The proof of Theorem 4.8. We claim that every member in the family of hyperbola will
intersect the curveGmn(u, v) = 0 once and only once. Whens = 0 or s = 1, the curve in
that family degenerates to the boundary of the unit square, and our claim is trivially true.
Now we supposes ∈ (0,1). Let

s = u(1− v)
u(1− v)+ (1− u)v ,

t = uv

uv + (1− u)(1− v) ,
(A.4)

wheret ∈ (0,1). It is not difficult to show, from (A.4), that
u=

√
st√

st +√(1− s)(1− t) ,

v =
√
(1− s)t√

(1− s)t +√s(1− t) .
(A.5)

Hence

Gmn(u, v)=
m∑
i=0

n∑
j=0

βijB
m
i (u)B

n
j (v)

=
m∑
i=0

n∑
j=0

βijC
m
i C

n
j

√
Bm+nn+i−j (s)

√
Bm+ni+j (t)√

Cm+ni+j C
m+n
n+i−j µ(s, t)m ν(s, t)n

=
m+n∑
k=0

m∑
i=0

Cmi C
n
k−iβi,k−i

√
Bm+nn+2i−k(s)

√
Bm+nk (t)√

Cm+nk Cm+nn+2i−k µ(s, t)m ν(s, t)n

= 1

µ(s, t)m ν(s, t)n

m+n∑
k=0

βk(s)

√
Bm+nk (t),

whereµ(s, t)=√st +√(1− s)(1− t), ν(s, t)=√(1− s)t +√s(1− t),

βk(s)=
m∑
i=0

Cmi C
n
k−iβi,k−i

√
Bm+nn+2i−k(s)

/√
Cm+nk Cm+nn+2i−k,
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andβij = 0 for j < 0 or j > n. HenceGmn(u, v)= 0 is equivalent to

m+n∑
k=0

βk(s)

√
Bm+nk (t)= 0.

Under the assumptions of this theorem and Lemma 2.2,βk(s)6 0 for k = 0,1, . . . , l − 1,
βk(s) > 0 for k = l + 1, . . . ,m + n there exist strict inequalities in each set of the
inequalities. It follows from Lemma 2.1 thatGmn(u, v)= 0 has a single roott in (0,1) for
any givens ∈ (0,1). Hence the hyperbolic inD4 has only one intersection with the curve
Gmn(u, v)= 0 in the unit square. The intersection point is defined by (A.5). Therefore the
curveGmn(u, v)= 0 in the unit square is regular.2
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