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Abstract

In this paper (part one of a trilogy), we introduce the concept of a discriminating family of regular
algebraic curves (real, nonsingular and connected). Several discriminating families are obtained
which yield different characterizations of the Bernstein—Bézier (BB) bivariate polynomials over the
plane triangle and the quadrilateral domain such that their zero contours are smooth and connected.
These regular curve segments in BB basis can be smoothly joined together to form algebraic curve
splines or A-splines. Algorithms for the efficient graphics display of these new A-spline families are
also provided 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider an algebraic curve defined by a real polynomial equation in Bernstein—Bézier
(BB) form over a plane triangle or a quadrilateral. Notwithstanding the overwhelming
popularity of parametric curves in computer aided geometric design (CAGD), one is
increasingly aware that curves defined by implicit equations are useful for certain CAGD
operations (Bajaj, 1993). The primary drawback for the widespread use of the implicit
algebraic curves is that the real curve may have singularities (e.g., cuspidal cubic), and
may be disconnected (e.g., hyperbola) in a given region of the plane. For example, if we fit
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Fig. 1. (a) The points to be fitted; (b) The fitting curve.
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Fig. 3. Cubic: The real dots are pos-
itive. Shaded are negative. Empty are
zero.

Fig. 2. The coefficients on the lines,
that parallel taL, increase.

a cluster of points as shown in Fig. 1(a) with a quadratic, we often lead to the result shown
in Fig. 1(b), if no additional conditions are imposed on the curve.

Hence, for some applications in CAGD, such as data fitting or shape design, it is natural
to require that the curve be connected in a specified region.

In this paper (part | of Ill), we focus on isolating a regular piece of an algebraic
curve that is defined on a given triangle or a given quadrilateral in BB-form. We
introduce the concept of a discriminating family of regular algebraic curve segments
(real, nonsingular and connected). Several discriminating families are obtained which yield
different characterizations of the Bernstein—Bézier (BB)-form bivariate polynomials over
the plane triangle and the quadrilateral domain such that their zero contours are smooth
and single-sheeted. Furthermore, using these discriminating families, we can efficiently
evaluate the algebraic curve segments for display. In parts Il and Il of this trilogy of
papers, we consider the problems of interpolation and approximation by splines of regular
algebraic curve segments (Xu et al., 2000) and their applications in scattered and dense
data fitting (Bajaj and Xu, 2000).

As mentioned earlier, the main difficulties in dealing with real algebraic curves are
the problems of real singularities and discontinuities. In attempts to overcome these
difficulties, Sederberg in (Sederberg et al., 1985) set conditions on the coefficients of the
BB-form of an implicitly defined bivariate polynomial on a triangle in such a way that if the
coefficients on the lines that are parallel to one side,/seyf the triangle all increase (or
decrease) monotonically in the same direction, then any line parallehidl intersect the
algebraic curve segment at most once (see Fig. 2). In (Sederberg et al., 1988), Sederberg,
Zhao and Zundel give another similar set of conditions which guarantees the single-
sheeted property of their TPAC by requiring theag > 0, that Bo;, Bn—1.; < 0, and that
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the directional derivative of PAC (piecewise algebraic curves) with respect to any direction

s = au be non-zero within the triangle domain, whefe denotes the Bézier coefficients.
Papers of Paluszny and Patterson (1992, 1993) consfrtigind G2 continuous cubic
algebraic splines by using the cubiites, a2, 3) = fa0102e3 + o103 — Brooricts —
Boziesaz + Priiaaoas With f2o1 > 0, 102> 0, B120> 0, Boz1 > 0, and(aa, oz, a3)T

being barycentric coordinates (see Fig. 3). All the above characterizations dealing with BB
triangles can be regarded as special cases of (Bajaj and Xu, 1999) in which the coefficients
of the BB-form have a one-time sign change. The present paper is an extension of our paper
(Bajaj and Xu, 1999) and deals with the BB-form on both the triangle and the quadrilateral.
For the BB-form on the quadrilateral, a characterization for the single-sheeted purpose is
given in (Patrikalakis and Kriezis, 1989) and is similar to Sederberg’s in (Sederberg et al.,
1988). In particular, if the coefficients increase or decrease monotonically in they
direction, then any line that is parallel to theor y axis will intersect the curve at most
once. This is again a special case of our characterization in this paper.

2. Notation and mathematical preliminary

Let p; = (xi, yi)' e R2fori =1,..., k. Then[p1p>... px] denotes thelosed convex
hull of {p,-}i.‘:l. Thatis,[p1p2...pil={p eR% p= Zlea,-pi, 0<o; <1, Zf:lai =
1}. If 0 < «; < 1, then the set defined is tlopen convex hulbf {p,-}f.‘zl, denoted by
(p1p2...px). If a; € (—o0, 00), then the set defined is tiadfine hullof {p;}%_,, denoted
by (p1p2, ..., pr)- If k =3 andpi, p2 and p3 are affine independent, thép1 pop3] is a
triangle andx = (a1, a2, @3)" are known as barycentric coordinates which relate with the
Cartesian coordinates, y)" by

o1 | 1 Y2 =3, X3— X2 | | X — X3
o2 A(p]n P2, p3) y3— Y1, X1 — X3 y—y3

andaz =1 — a1 — ap with

P1 p2 p3
A(p1, p2, p3) = det
11
On a triangle, the algebraic curve will be defined by the zero contour of
Fa@)= Y BBl with B () = Cliatades, (2.1)
i+j+k=n
where
n!
cl .=
T i (=i — e — )

(see Fig. 4 for cubic). Ik = 4 and any three op; (i =1,...,4) are affine independent,
then[p1p2p3p4] is a quadrilateral. We shall assumg p2, p4 and p3 are clockwise, and
map| p1p2p3pa] to the unit squaré = [0, 1] x [0, 1] in theuv-plane by

p=(p1+ pa— p2— p3)uv+ (p3 — pDu + (p2 — p1)v + p1. (2.2)
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Fig. 4. Cubic coefficient index on the Fig. 5. Bi-cubic coefficient index on
triangle[p1 p2p3l. the quadrilateral p1 p2 p3p4l.

If p1+ pa= p2+ p3, i.e., [p1p2p3p4] is a parallelogram, then (2.2) is linear. On a
guadrilateral, the algebraic curve is defined by the zero contour of

Gun(u,v) = > Bij B () B} (v) (2.3)

i=0 j=0

with B! (s) = C's' (L —s)"~" (see Fig. 5 for bi-cubic).

We could imagine that the discussion of the problem of isolating a single piece from
the zero contour of}, («) or G, (u, v) should relate to the problem of root isolation of a
one-variable polynomial. Indeed, in our development, we are always led to the problem of
judging a univariable polynomial equation having zero roots or one root in a given interval.
The following set of lemmas is designed to solve this decision problem for different cases.
For polynomials of low degree{ 3), we could give necessary and sufficient conditions.
For other cases, we give sufficient conditions only.

Lemma2.1. Let F(x) = ) ;o B;B!'(x). If there exist an integek (0 < k < n) such

thatg; >0fori=0,....,.k—1andB; <O0fori =k+1,...,n, and there is at least
one strict inequality in each set of the inequalities, then for any ¢eal 0, the function

Fo(x) =70 Bi[B!'(x)]* has only one zero in the intervéd, 1).

Proof. If « =1, the lemma follows from theariation diminishing propertysee p. 54 in
(Farin, 1990)). Since, (x) = (1 — x)"* }!_qcit’ with ¢; = (C!)*B; andt = ()% €
(0, 00), then under the assumption of the lemma, the sequeneeg, .. ., ¢, has a one-time
sign change. It follows from Descarte’s sign rule that the funclidh o c;#' has only one
zero in(0, c0). Therefore F, (x) has only one zero if0, 1) (see Fig. 6). O

Lemma 2.2. 37 o Bi[B!(x)]* >0 (or > 0) on [0, 1], if and only if Y74 B; (Cf)"“1 X
B!'(x) =0 (or > 0) on[0, 1], wherea > 0.

Proof. Letr = Then forx € [0, 1] we haver € [0, 1] and

n n o T oa - n ﬂi(cl{z)axia(l_x)(n—i)a
gﬂ’[lg" @ =[=+A-0T" ) — g

i=0
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Fig. 6. F(x)(real line curve) and Fig. 7. Positive quadratic curve with a
Fy (x)(dotted line curve) fon = 4. negative coefficient.

Fig. 8. Lemma 2.4: Necessary and sufficient conditions for a cubic to have one 28rd)n

= [x“ +(1- x)“]n Zﬁi(C?)”‘lB{’(t)-
i=0
The lemma follows directly from this equality.0

Lemma 2.3. Let F(x) = 21.2:0 Bi Biz(x). ThenF(x) > 0on (0, 1) if and only if
(i) B; >0(j=0,1,2) and at least one of; is positive, or
(i) Po>0, 1 <0, B2 >0andpf < fop.

Proof. Itis obvious thatF'(x) > 0 on (0, 1) if condition (i) holds. Now suppose condition

(i) is satisfied. Then fromF’(r) = 0 we getr = (Bo — B1)/(Bo+ B2 — 2B1). Since

F"(r) = 2(Bo + B2 — 2B1) > 0, r is a minimum point of F(x) in (0,1) with the
minimum value(BoB2 — ﬁf)/(ﬁo + B2 — 2B1). HenceF(x) > 0 on [0, 1] (see Fig. 7).

This completes the proof of the sufficient part of the lemma. The necessary part can be
proved similarly. O

Lemma2.4. LetF(x) = Z?:o Bi Bl.3(x) with 8o < 0, B3 > 0. ThenF(x) has a single zero
in (0, 1) if and only if

(i) pr<Oorp2>0,o0r

(i) B1>0,82<0and

A= B2BZ — 3B2B7 — 6B0B1B2B3 + 4Bobs + 48363 > 0.

Proof. (See Fig. 8.) If1 < 0 or g2 > 0, then the sequenc{ef}i}?zo has one-time sign
change. It follows from th&ariation diminishing propertysee p. 54 in (Farin, 1990)) that



490 G. Xu et al. / Computer Aided Geometric Design 17 (2000) 485-501
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Case (i), (a) Case (i), (b)
y y )
2 F(x)
H ~ S ‘ : X
(0,0) e (10) T(o,O) (1.0)
Case (i), (b) Case (iii)

Fig. 9. Lemma 2.5: Necessary and sufficient conditions for a cubic to be positive.

F(x) has a single zero iD, 1). Suppose1 > 0 or 82 < 0. ThenF (x) has no zero outside
[0, 1]. Let F(x) = (1—x)3G (1), with G (1) = o+ 3B1t +3Bat% + Bat® andr = x /(1 — x).
Then sinceG(—1) = (Bo — B3) + 3(B2 — B1) # 0, F(x) has one zero if0, 1] if and only
if G(t) has one zero ifi—oo, 00). It is well known thatG (r) has one zero itt—oo, o) if
and only if its discriminantA /(43) > 0. O

Lemma 2.5. Let F(x) = Y.2_o B B3(x). Then

(i) F(x) >0o0n[0,1]if and only if(a) Bo >0, B3>0, B1 > 0and B, > 0 or (b)
Bo>0,B3>0andA > 0.

(i) F(x)>0o0n(0,1](or[0,1))andF(0) =0 (or F(1) =0)if and only if(a) Bo = 0,
B3>0 (or B3=0po>0), p1>0andp2>0o0r (b) fo=0, p3>0 (or f3=0
Bo>0)and A > 0.

(i) F(x)>00n(0,1) andF(0) = F(1) =0ifandonlyifp=B3=0,81>0,82=>0
andp1 + B2 > 0.

The proof of this lemma is similar to that of Lemma 2.4, and so we omit it here.

3. Discriminating families

Consider first the classical one variatdlé function (it is of course defining a smooth
curve)y = g(x), x € [a, b]. The smoothness of the cury&x, y) :=y — g(x) =0 can be
tested by considering if every straight line= «, o € [a, b], intersects the curve only once
(see Fig. 10(a)). The cases shown in Figs. 10(b)—(c) could not happen.

The essential point behind this observation is that if each line in théxseta: o €
[a, b]} intersects the curve only once, then the curve is regular. That is, the family of these
lines can be used to judge the regularity of a curve. Furthermore, in paper (Bajaj and Xu,
1999), we have used straight lines

la()=1-1)(B,1-B,00"+1(0,0,1)7, r €[0,1]: B (0, 1)}
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Fig. 10. (a) Single-valued regular function; (b) Multi-valued non-regular function; (c) Function not
differentiable.
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p3
Fig. 11. Closed pieceRq and R, of the boundaries of a triangle and a quadrilateral.

P P
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Fig. 12. (a) The lined1; (b) The quadratic familyD.

in a triangle (see Fig. 12(a)) to intersect the curve. The conclusion we obtained there was
that under certain conditions on the coefficients of a bivariate polynafial), each line
in this family will intersect the curvé;, = 0 only once in the triangle, and so the curve is
regular. Again, this set of lines is used to judge the regularity of the curve. In this section,
we extend these observations to introduce a general concept of a discriminating family.
The purpose of the extension is that we want to find more algebraic curves that can be
distinguished as regular.

The questions we raise are:

(1) Can we find simple discriminating families?

(2) Do simple conditions exist for the algebraic curve under which the curve can be

judged as regular by the discriminating families?

To answer the first question, we give some examples of discriminating families after
Definition 3.1. These families are then used to judge the regularities of various curves in
the subsequent section. Hence, the answers to both the problems are affirmative.

Definition 3.1. For a given triangle or quadrilaterd, let Ry and R, be two closed
pieces of boundary oR with R1 N Ry = (see Fig. 11). LeD = {As(x,y) =y (x,y) —
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s8(x,y) =0: s € [0, 1]} be an algebraic curve family withas a parameter aidx, y) > 0
on R\ {R1, R2} such that

(1) Each curve inD passes througR; andRy;

(2) Each curveinD is regular in the interior oR;

(3) ForVp € R\ {R1, R>}, there exists one and only one& [0, 1] such thatA,(p) = 0.
Then we sayD is a discriminating family orR, denoted byD (R, R1, R2).

In the following, we shall give four examples of discriminating families. The first two
are defined on the triangle, the other two are defined on the quadrilateral.

Example 3.1. Let
D1(Ip1p2p3l, p3. [p1p2]) = {e2 — s(a1 + a2) = 0: 5 € [0, 1]},

where (a1, a2, a3) " is the barycentric coordinate with respect to the triarigiep, pal.

It is easy to see thab1([p1p2p3l, p3, [p1p2]) consists of straight lines (see Fig. 12(a))
in the triangle[ p1p2p3] that connect the poinps and all the points ofp1p2]. Hence
D1([p1p2p3], p3, [p1p2]) is obviously a discriminating family.

Example 3.2. Let
Da([p1p2p3l, pa2, p3) = {(1 - s)azas — sa? = 0: s € [0, 11},

D>([p1p2p3l, p2, p3) consists of quadratics (see Fig. 12(b)) and it is a discriminating
family. The proof of this conclusion follows from Theorem 4.1.

Example 3.3. Let

D3([p1p2p3pal. [pip2l. [p3pal) = {v=s: s €[0, 1]},
thenD3([ p1p2p3pal, [p1p2], [p3p4)) is a discriminating family (see Fig. 13(a)).

Example 3.4. Let

D4([p1p2p3pal, p1, pa) = {(1— )u(L—v) —s(1—u)v =0: s € [0, 1]}.

Then D4([ p1p2p3p4l, p1, pa) consists of hyperbola (see Fig. 13(b)) and it is a discrimi-
nating family. The proof of this fact follows from Theorem 4.5.

Fig. 13. (a) The lined3; (b) The hyperbolic familyD,.
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Definition 3.2. For a given discriminating familypo (R, R1, R2), let f(x, y) be a bivariate
polynomial (or a C! continuous function orR \ {R1, R2}). If the curve f(x,y) =0
intersects with each curve iD(R, R1, R2) exactly once in the interior oR, we say
the curve f = 0 is regular with respect t@(R, R1, R2) (concisely stated as being
D(R, R1, Rp)-regular)).

Here we need to make the meaningimtersect onceprecise. Letp* = (x*, y*)T be
a point on the curvei;(x, y) = 0. Since the curve is regular, we represent it locally as
y = h(x) (orx = g(y)) in the neighborhood op*. The termintersect onceneansc* is a
single zero off (x, h(x)).

It is easy to show that &(R, R1, R2)-regular curvef =0 is regular. Infact, iV f =0
at a point(x*, y*)T on the curve, them* will be a double zero off (x, h(x)) since

d * *\) /(% _
af(x Lh(x®) =[L A 5]V =0,

here h(x) is the same as the function defined in the above paragraph. Therefore,
D(R, R1, R2)-regular is a sufficient condition of the regularity.

4. Regular curve segments

In this section we characterize the regular curve segments defined on a triangle or a
guadrilateral by the discriminating families introduced in Examples 3.1-3.4 in the last
section. The goal is to arrive at the following statement:

For the BB-form polynomiaF defined on a triangle or a quadrilateral and a specific
discriminating familyD, if certain conditions are satisfied, then= 0 is D-regular. The
“certain conditions” here will be the conditions imposed on the coefficienss. ¢for the
purpose of practical use, we require that the validity of these conditions can be checked
within finite steps of computation. The next theorem deals with the polynomials on the
triangle and theD4 discriminating family.

Theorem 4.1. For the triangle [p1p2p3l], let F,(x) be defined ag2.1) and By (s) =
Ziﬂ-:n_k ,BijkB;?"‘(s) (see Fig.14(a)) If there exists an integet (0 <[ < n) such
that Bi(s) > 0 for all s € [0,1] andk < I; Bx(s) < Oforall s €[0,1] andk > [ (see
Fig. 15(a))and 45 Bi(s) > 0, Y%, 1 Be(s) < 00n (0, 1), then the curver, () = 0'is
D1([p1p2p3l, p3. [p1p2])-regular.

The proof of the theorem is given in Appendix A.

Note that Bx(s) depends on only the coefficienfs ,—;_«x on the control points
,%pl + "—,;;kpz + %p3 for fixed k andi =0, ...,n — k. These control points are on the
line segment™* p; + & p, "=k py + £ p3] (see Fig. 14(a)). This comment applies to other
theorems in this section, but with lines that are in different directions (see Fig. 14).

As an application of the theorem, we find that the curve®i p1p2p3l, p2, p3) are
D1([p1p2p3], p1, [p2p3])-regular. Hence they are regular. Then it is easy toRgés a

discriminating family. Here the interesting thing is that starting with a naive discriminating
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(a) (b) (© (d)

Fig. 14. The coefficients oBy(s) are on a line. (a)D1-regular curve; (b)Dy-regular curve;
(c) D3-regular curve; (d)D4-regular curve.

+  + - - - -
T,
"&,"‘&
o,
+\ .
+ 4 - - + +

(¢ (d)

Fig. 15. The positive (real thick lines) and negative (dotted thick lidgs)). (a) D1-regular curve;
(b) Dy-regular curve; (c)p3-regular curve; (d)D4-regular curve.

® P P3

Fig. 16. TheD1([p1p2p3l. p3. [p1p2])-regular curves.

family, with the help of the corresponding characterization theorem we obtain other non-
trivial discriminating families.

Note that a sufficient condition for a Bernstein polynompal’_, 8 B!'(s) to be
nonnegative or[0, 1] is that the coefficientg; are nonnegative. Hence we have the
following corollary:

Corollary 4.1 (see Theorem 3.1 of (Bajaj and Xu, 199%0r the triangle[p1p2p3], let
F,(a) be defined ag2.1). If there exists an integér(0 < I < n) such thag;;x > 0 for k <

I and B;jx < 0 for k> 1 and there is at least one strict inequality in each set of the
inequalities, then the curvE, (o) = 0is D1([p1p2p3], p3, [p1p2])-regular.

The D1([p1p2p3l, p3, [p1p2])-regular curves are between the popy and the line
segment p1p2] and away fronmps (if Boo, # 0) and the open linép1 p2) (see Fig. 16(a)).
They can pass througby and/orp, (see Fig. 16(b)) and furthermore, the curves can be
tangent to the linép1 p3] and/or the ling p2 p3] at p1 and/orp2 (see Fig. 16(c)).
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P, 1 1
(i) (i) (i)

Fig. 17. The four cases in Theorem 4.2. THe';"* —" and “0” in the circles denote the corresponding
coefficients are positive or non-negative, negative or non-positive and zero, respectively.

The conditions in Theorem 4.1 and Corollary 4.1 are easy to check and hence are
very useful in constructing regular algebraic curves. However, these are not necessary
conditions of regularity. Using Lemma 2.3, Lemma 2.4 and Lemma 2.5 we obtain
necessary and sufficient conditions for regular quadratic and cubic curves.

Theorem 4.2. Assume: = 2 and Boo2 < 0. ThenFa(«) = 0is D1 ([ p1p2p3], p3, [p1p2])-
regular if and only if one of the following conditions hol@ee Fig.17):
(i) B200> 0, Bozo> 0 and B110 > 0 or B2, < B2ooBozo (F2 = O is betweenps and
[p1p2]).
(i) B200=0, Bo20> 0, B110=> 0 andp101 < 0 (F2 = 0 passes througlp1).
(iii) B200> 0, Bo20=0, 110> 0 andBo11 < O (F2 = 0 passes throughp>).
(iv) B200=Po20="0, 110> 0, B101 < 0 and fo11 < 0 (F2 = 0 passes througlp; and
p2)-

Theorem 4.3. Assume: = 3 and Bgo3 < 0. Let S = {s € [0, 1]: B1(s) <0, Ba(s) > 0}.
Then F3(a) = 0 is D1([p1p2p3l, p3, [p1p2])-regular if and only if the following two
conditions hold

Bo(s) >0, Vse(0,1), (4.1)
A(s) := Bo(s)?B3(s)? — 3B1(s)?Ba(s)? — 6Bo(s) B1(s) Ba(s) Ba(s)
+ 4Bo(s)Bo(s)® + 4B1(s)3Ba(s) >0, VseS. (4.2)

Note that conditions (4.1) and (4.2) in the theorem can be checked in a finite number of
steps. Lemma 2.5 gives the necessary and sufficient conditiomfey > 0 on (0, 1).
For condition (4.2), we first note that is either an empty set or an interval or the
union of two intervals, and can be computed easily sindga and B, are polynomials
of degree two and one, respectively. Hence (4.2) can be checked by Sturm’s theorem.
Let Ag(s), A1(s), ..., As(s) be the Sturm sequence df(s) and (a, b) be an interval of
S. ThenA(s) > 0 on (a, b) if and only if the number of sign changes of the sequence
Ao(a), A1(a), ..., As(a) is the same as the number of sign changes of the sequence
Ao(b), A1(b), ..., Ae(b).

Now we are going to considdp,-regular curves.
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Theorem 4.4. Let Fou (@) = D o4 j 4 k—om P2i.jk By (@) and

Bu(s)= Y CH/CH"\ ixBom—j—k jk Bl ()
j—k=2n

(see Fig.14(b)). If there exists an integelr (—m < [ < m) such thatB,(s) < 0 for all
sel0,1]andn <I; B,(s) >0forall sc[0,1] andn > I; and Y' B, (s) <0,

Y i1 Bn(s) > 00n (0, 1) (see Fig.15(b)), then the curvez, (o) = 0is D2([p1p2p3l,
P2, p3)-regular.

The proof of the theorem is given in Appendix A.

Just as Corollary 4.1 is derived from Theorem 4.1, we have similar corollaries from
Theorem 4.4 and Theorems 4.5, 4.8 below. We do not repeat them here.

Now we consider the algebraic curves defined on a quadrildterabpsps]. We shall
characterize the coefficiengs; such that the curve,,, (i, v) = 0 in the unit square is
a regular curve segment. This curve segment will be transformed to the given quadrilateral

[p1p2p3pal by (2.2).

Theorem 4.5. Let G,,, (1, v) be defined aqg2.3) and B;(s) = Z’}zoﬁij B?(s) (see
Fig. 14(c)). If there exists an integer(0 < [ < m) such thatB; (s) < Oforall s € [0, 1] and
0<i <[; Bi(s) >0forall s € [0,1] and/ < i <m (see Fig.15(c))and Y 'Z¢ Bi(s) <O,
> is;4+1Bi(s) > 0 0n (0, 1), then the curveG,, (u, v) = 0 is D3([p1p2p3pal. [p1p2l,
[p3pal)-regular.

The proof of the theorem is similar to the triangle case (see the proof of Theorem 4.1),
and we omit it here.

Using Theorem 4.5, we can see that the curveBjrare D3-regular. Hence it is easy to
see thatD4 is a discriminating family.

The D3([p1p2p3pal, [ p1p2], [p3pal)-regular curves are between the liigeg2] and the
line [¢3q4] (see Fig. 18(a)). They can pass throgglor g2 or g3 or g4 (see Fig. 18(b)) and
furthermore, the curves can be tangent to the edges at the vertices (see Figs. 18(c)—(d)).
The above theorem implies that if the coefficients have a one-time sign changeiinthe
v direction, then the curve inside the unit square is regular.

Again, Theorem 4.5 gives sufficient conditions f6¥,,, («, v) = 0 to be D3([p1p2
p3pal, [pip2], [p3pal)-regular. Now we give necessary and sufficient conditions for the
casemn,n < 3.

Theorem 4.6. For m =2 andn < 3, G2,,(u, v) = 0is D3([p1p2p3pal, [p1p2], [p3pal)-
regular if and only if

Bo(s) <0, Ba(s) >0, Vse(0,1),
Boo— Bmo <0,  Bow — Bmn <O.

(4.3)

Since By (s) is a degree: polynomial, the lemmas in Section 2 give necessary and
sufficient conditions foBg(s) < 0, Ba(s) > 0.
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9 q, q, 9, q,

q,q [ q, % q,
(b) (c) (d)

Fig. 18. TheD3-regular curves.

q, d

q S 9, q — q

< 93 q1’; a, % a5 ql'é: - 95 Q-'E
(a) (b) (© (d)

a;

Fig. 19. TheD4([p1p2p3p4l, p1. p4)-regular curves.

Theorem 4.7. For m = 3andn < 3, G3,,(u, v) = 0is D3([p1p2p3pal, [p1 p2], [p3pal)-
regular if and only if(4.3)holds and

A(s) := Bo(s)%B3(s)? — 3B1(s)?B2(s)? — 6Bo(s) B1(s) B2(s) B3(s)
+4Bo(s)B2(s)® + 4B1(s)°B3(s) > 0, VseS, (4.4)
whereS = {s € [0, 1]: B1(s) > 0, Ba(s) < 0}.

As in Theorem 4.3, condition (4.4) can be checked using Sturm’s theorem.

Theorem 4.8. Let G, (u,v) be defined ag2.3) and By (s) = Y Lo C"C}_; Bik—i

B,’l’;frz’}_k (s) (see Figl4(d)). If there exists an integér(0 < [ < m +n) such thatB; (s) <0
forall s € [0,1] andO0 < k < I; Bi(s) > Oforall s €[0,1] and! < k < m + n (see Fig.
15(d)), and Y"4— Bi(s) < 0, Y7/ 1 B(s) > 0 on (0, 1), then the curves,,, (u, v) = 0

is D4([p1p2p3p4l, p1, pa)-regular in the unit square.

The proof of the theorem is given in Appendix A.

The Da([p1p2p3pal, p1, pa)-regular curves are between the pajatand pointgs and
away fromg; andgs (see Fig. 19(a)). They can pass througtor g3 and can be tangent
to the edges at the vertices (see Figs. 19(b)—(e)).

5. Display of regular algebraic curves

Displaying parametric curves is undoubtedly easier than displaying implicit algebraic
curves. Here we show that fast display (graphing) algorithms exist for our regular curve
families. For general degree curves these algorithms depend on a root finding routine for
real univariate polynomial equations. If the degree of the polynomial is less than 5 (these
are the most useful and important cases in CAGD), closed form solutions exist.
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For the Di([p1p2p3l, p3, [p1p2])-regular curve defined by Theorem 4.1, we can
evaluate the curve as follows: For a givere [0, 1], determiner as in the proof of
Theorem 4.1, then use (A.1) to compuiei(s, 1), a2(s, 1), @3(s, 1))'. To generate an
ordered sequence of points on the curve for the computer graphics display, first choose
a sequencés;} (0=s0 < s1 < --- < s = 1), then computds;} and finally the points
{(a(si, 1), o (si, 1i), 3(si, ;) T}. Connecting these points by lines yields a piecewise
linear approximation of the curves. For ti® ([ p1p2p3], p2, p3)-regular curve defined
by Theorem 4.4, formula (A.3) gives a closed form for evaluatiag a2, 3)", where
s € [0, 1] is given arbitrarily and is determined as in the proof of Theorem 4.4. For the
Da([p1p2p3pal, p1, pa)-regular curve defined by Theorem 4.8, we use (A.5) to evaluate
the curve. The display algorithms of th&s([ p1p2papal, [p1p2], [ p3pal)-regular curves
defined by Theorem 4.5 are similar.

6. Conclusions

We have introduced the concept of a discriminating family. Some concrete families are
given. Using these families, we have characterized the bivariate BB-form polynomials
on the triangle and the quadrilateral such that their zero contour®argular. The
characterizations obtained are conditions imposed on the coefficients of the BB-form. The
validity of these conditions can be checked within finite steps of computation. Furthermore,
these discriminating families also serve as the tools to efficiently evaluate-tiegular
curves for display.

Using these discriminating families, many regular curves are obtained. In addition to the
Ds-regular curve family that has been used in an earlier paper (Bajaj and Xu, 1999), the
D»-regular, D3-regular andD4-regular curve families are newly introduced. The curves
in each family have different features. Tha-regular curves are always betwegnand
[p1p2]. The Do-regular curves are between and p2. The D3-regular curves are between
[p1p2] and[pspa4], while the D4-regular curves are betwegn and ps. These different
features may serve different purposes in the diverse applications of CAGD.

In the literature, many attempts have been made in using algebraic curves defined on
a triangle. The introduction of thBs-regular andD4-regular curve families provides the
capability for using algebraic curves defined on a quadrilateral.

In part Il and part 11l of this trilogy of papers, we will exploit the use of these curve
families in interpolation, approximation and scattered data fitting.

Appendix A

The proof of Theorem 4.1. For a givens € [0, 1], let
{s = a2/ (a1 + a2),

r=aua3.
That is,
a1=1-01-y),
{azz 1—1)s, (A1)
o3 =t1.
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Then

F (Ol) Z Z ﬂl]k i 'k' l ZaB_ZBk(t) Z ,BijkB?_k(S)

k=0i+j=n—k i+j=n—k

= ZBk<s)B£<r).

k=0

For a givens, sinceBy (s) > 0 fork <, Bi(s) < 0 fork > [ and there is a strict inequality
in each of themF;, («) = 0 has exactly one roote (0, 1) by Lemma 2.1. Thigs, 1)" gives
us a uniquex by (A.1). O

The proof of Theorem 4.4. The cases = 0, when the curve imD2([p1p2 p3l, p2, p3)
degenerates to straight lines = 0 andaz = 0, needs to be considered separately. For
instance, if the coefficient8y; 0.2n—2i, i =0, 1,..., m, have a one-time sign change, we
letwp =0, and then

m
2n 2n
Fom () = E B2i,0k B30 (@1,0,1—a1) = E B2i.0.2m—2i B5" (a1).
2i+k=2m i—0

Hence the equatioRy,, (&) = Fo,, (a1, 0, 1 — a1) = O with o1 as the unknown has one root
in [0, 1]. The case thaBy 2n—2i0, i =0,1,...,m, has a one-time sign change is similar.
Now suppose € (0, 1]. Let

{ s = a3/ (0 + apa3), (A.2)
t=az/(a2 + a3).

Then it follows from the second equality of (A.2) thgt= (1—a1)(1—1), az=1(1—a1).

Substituting these into the first equality of (A.2), we hate- s)(1 — 1)t (1 — a1)? = saf,

from which we get
VA==t
T st/ A=s A=D1

_ 2

Vs —1) ’ (A.3)

Vs +J/A=s)A— 1)t

Vsi2
Vs +/A=9HT =01
Forj — k =2n (thatisj + k = 2n + 2k),

o =

a3 =

B 2m

_ 2m Z(m n—k)
2m—j— k,k(“)

Cik g 2“3
n+k(1_s)m n— ktm—n(l_t)m+n

2m S
K (/A=A =2
c BI'Y'(s)B2" (1)

c2 " enik W5 VA=) T =102
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Then

Fan(@)= Y > Bom—jkjkBom_; i jx(@)
n=-—m j—k=2n
B 1
s+ VA=A -2

It follows from the assumption of the theorem that, for a give®,, (s) <0 forn <1, and

B, (s) > 0 forn > [, and there is a strict inequality in each of them. Then by Lemma 2.1
Fo, () = 0 has exactly one roote (0, 1) for any givens € (0, 1]. This (s, )" gives us a
unique(a, a2, @3)" by (A.3). O

> Bu(s)BI, ().

n=-—m

The proof of Theorem 4.8. We claim that every member in the family of hyperbola will
intersect the curvé,,,, (u, v) = 0 once and only once. When=0 ors = 1, the curve in
that family degenerates to the boundary of the unit square, and our claim is trivially true.
Now we suppose € (0, 1). Let

_ u(l—o)
S_u(l—v)—l—(l—u)v’ (A.4)

uv

= wv+ L—u)(1—-v)’
wherer € (0, 1). It is not difficult to show, from (A.4), that

U= \/E
st VA=s A -1 (AS5)
JaA =91 '

T Ao+ sa-n
Hence

Gun (1, 0) =) Bij Bl () B} (v)

i=0 j=0

n By C OB (), B 1)

i mt
i=0 j=0 Clni]ncz:_ln_] uis, )™ v(s, "

C,-mCZ_,-ﬁi,k—i\/B,TE’}_k (S)\/B]zn+n o

k=0i=0 /CrTCI L (s, )" v(s, 1)

m+n

= ! m+n
T (s, 0" (s, " k; ﬁk@)\/ﬂ,

whereu(s, 1) = /st + VA= 5)A—1), v(s, 1) =/ A=)t +/s@A—1),

m
Be(s) = 2 CI i fisin B ) [ Gl Cli
i=0
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andg;; =0for j <0orj > n. HenceG, (1, v) = 0 is equivalent to

m-+n

> Bi(s)y/ Bt (1) =0.
k=0

Under the assumptions of this theorem and Lemmag.@) <0fork=0,1,...,1 -1,

Bi(s) >0 fork =1+ 1,...,m + n there exist strict inequalities in each set of the
inequalities. It follows from Lemma 2.1 thét,,, (1, v) = 0 has a single roatin (0, 1) for

any givens € (0, 1). Hence the hyperbolic ib4 has only one intersection with the curve
Gumn(u,v) = 0in the unit square. The intersection point is defined by (A.5). Therefore the
curveG, (u, v) = 0 in the unit square is regular.c
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