
Adaptive Fairing of Surface Meshes by Geometric Diffusion 

Chandrajit I;. Bajaj * Guoliang Xu t 
Department of Computer Sciences, 

University of Texas, Austin, TX 78712 
State Key Lab. of Scientific and Engineering Computing, 

ICMSEC, Chinese Academy of Sciences, Beijing 
Email: bajaj@cs.utexas.edu Email: xuguo@lsec .cc. ac. cn 

Abstract 
In triangulated surface meshes ,  there are o f ten  very  n o -  
ticeable size variances ( the  vertices are distributed un- 
evenly).  T h e  presented noise  of such  surface meshes  
i s  therefore composite of vusi? frequencies. In this pa- 
per,  we  solve a dif fusion pa;-tial differential equation 
numerically f o r  noise  removal of arbitrary triangular 
manifolds us ing  a n  adaptive t i m e  discretization. T h e  
proposed approach is simple and i s  easy t o  incorpo- 
rate i n t o  a n y  u n i f o r m  t imes tep  dif fusion implementa-  
t i o n  wi th  significant improvements  over evolution re- 
sults with the  u n i f o r m  t i m e s k p s .  As a n  additional al- 
ternative t o  the  adaptive discretization in the  t i m e  di- 
rection, we  also provide a n  approach f o r  the  choice of 
a n  adaptive d i f fus ion  t e n s o r  in the  dif fusion equation. 

K e y  words: Adapt ive  d i f f w i o n ,  Loop's subdivision, Heat 
equation. 

1 Introduction 
The solution for triangular sur face mesh denoising (fair- 
ing) is achieved by solving a partial differential equa- 
tion (PDE), which is a generalization of the heat equa- 
tion customized to surfaces. The heat equation has 
been successfully used in the image processing for about 
two decades. The literature on this PDE based ap- 
proach to image processing is large (see [l, 10, 11, 171). 
It is well known that the solution of heat equation 
&p - A p  = 0, based on the Laplacian A ,  a t  time T 
for a given initial image po is the same as taking a con- 
volution of the Gauss filter G,(z) = A e x p  (-$) 
with standard deviation CT = &? and image po. Tak- 
ing the convolution of G, and image po is performing 
a weighted averaging process to PO.  When the stan- 
dard deviation ~7 become larger, the averaging is taken 
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Fig 1.1: The left figure in the top row shows the initial 
geometry mesh. The right top figure illustrates the result 
of thc adaptive timestep smoothing after 4 fairing steps 
with 7 = 0.016. The two figures in the bottom row are the 
results of the uniform timestep t = 0.001 smoothing after 
1, and 4 fairing steps, respectively. 

over a larger area. This explains the filtering effect 
of the heat equation to  noisy images. The general- 
ization of the heat equation for a surface formulation 
has recently been proposed in [4, 51 and shown to be 
very effective even for higher-order methods [3]. The 
counterpart of the Laplacian A is the Laplace-Beltrami 
operator Ah, (see [7]) for a surface M .  However, un- 
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like the 2 0  images, where the grids are often struc- 
tured, the discretized triangular surfaces are often un- 
structured. Certain regions of the surface meshes are 
often very dense, with a wide spectrum of noise distri- 
bution. Applying a single Gauss-like filter to such sur- 
face meshes would have the following side effects: (1) 
the lower frequency noise is not filtered (under- fa ir ing)  
if the evolution period of time is suitable for removing 
high frequency noise, (2) detailed features are removed 
unfortunately, as higher frequency noise (over-fairing) 
if the evolution period of time is suitable for removing 
low frequency noisy components. The bottom row of 
Fig 1.1 illustrates this under-fairing and over-fairing ef- 
fects. For the input mesh on the top-left, two fairing 
results are presented at two time scales. The first fig- 
ure exhibits the under-fairing for the head. The second 
figure exhibits the over-fairing for the ears, eyes, lips 
and nose. Hence, a phenomena that often appears for 
the triangular surface mesh denoising is that whenever 
the desirable smoothing results are achieved for larger 
features, the smaller features are lost. Prior work has 
attempted to solve the over-fairing problem by using 
an anisotropic diffusion tensor in the diffusion equa- 
tion [3, 41. However, this is far from satisfactory. The 
aim of this paper is to overcome the under-fairing and 
over-fairing dilemma in solving the diffusion equation. 

There are several situations where the produced tri- 
angular surface meshes have varying triangle density. 
One typical case is geometric modeling, where the de- 
tailed structures are captured by several small triangles 
while the simpler shapes are represented by fewer large 
ones. We may call such triangular meshes as feature- 
adaptive. Another case is the results of physical simu- 
lation, in which the researcher is interested in certain 
regions of the mesh. In these regions, accurate solu- 
tions are desired, and quite often finer meshes are used. 
For example, in the acoustic pressure simulation [15], 
the interesting region is the ear canal for human hear- 
ing. Hence, more accurate and finer meshes are used 
there. We call such meshes as error-adaptive. One 
additional case arises from the multiresolution repre- 
sentation of surfaces, for example using wavelet trans- 
forms or direct mesh simplifications. Each resolution of 
the representation is a surface mesh that approxiinates 
the highest resolution surface. The approximation er- 
ror is usually adaptive and can vary over the entire 
surface. For instance, the mesh simplification scheme 
in [2], which is driven by the surface normal variation, 
results in meshes that are both feature-adaptive and 
error-adaptive. 

Previous Work. For PDE based surface fairing or 
smoothing, there are several' methods that have been 
proposed (see [3, 4, 5 ,  61) recently. Desbrun et a1 in 

[5, 61 also use Laplacian, which is discretized as the 
umbrella operator in the spatial direction. In the time 
direction discretization, they propose to  use the semi- 
implicit Euler method to  obtain a sta.ble numerical 
scheme. Clarenz et a1 in [4] generalize the Laplacian 
to the Laplace-Beltrami operator AM,  and use linear 
finite elements to discretize the equation. In [3], the 
problem is reformulated for 2-dimensional Riemannian 
manifold embedded in Rk aiming at smooth geomet- 
ric surfaces and functions on surfaces simultaneously. 
The C1 higher-order finite element spa.ce used is de- 
fined by the Loop's subdivision (box spline). One of 
the shortcomings of all these proposed methods that 
we address here is their non-adaptivity. All of them 
use uniform timesteps. Hence they quite often suffer 
from under-fairing or over-fairing problems. 

Our Approach. For a feature-adaptive or error- 
adaptive mesh, the ideal evolution strategy would be 
to correlate the evolution speed relative to the mesh 
density. In short, we desire the lower frequency errors 
use a faster evolution rate and the higher frequency er- 
rors succumbs to a slower evolution rate. To achieve 
this goal, we present a discretization in the time di- 
rection which is mesh adaptive. We use a timestep 
T ( z )  which depends on the position 5 of the surface. 
The part of the surface that is coarse uses larger T ( z ) .  
The idea is simple and it is easy to incorporate it into 
any uniform timestep diffusion implementation. The 
improvements achieved over the evolution results with 
uniform timestep are significant. The top row of Fig 1.1 
shows this adaptive time evolution improvement over 
the uniform timestep evolution results, shown in the 
bottom row. The right top figure is the smoothing re- 
sult of the mesh on the left top after 4 fairing steps. 
As an alternative to the adaptive discretization in time 
direction, we also provide an approach for the adap- 
tive choice of the diffusion tensor in the diffusion PDE 
equation. 

The remaining of the paper is organized as follows: 
Section 2 summarizes the diffusion PDE model used, 
followed by the discretization section 3. In the spa- 
tial direction, the discretization is redized using the 
C' smooth finite element space defined by the limit 
function of Loop's subdivision (box spline), while the 
discretization in the time direction is adaptive. The 
conclusion section 4 provides examples showing the su- 
periority of the adaptive scheme. 

2 Geometric Diffusion Equation 
We shall solve the following nonlinear system of parabolic 
differential equations (see [3, 41): 

a d t )  - A h f ( t ) m )  = 0, (2.1) 
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where AM(t) = divM(t) o V ~ l i ( ~ )  is the Laplace-Beltrami 
operator on M ( t ) ,  M ( t )  is the solution surface at time 
t and z ( t )  is a point on the surface. V M ( ~ )  is the gra- 
dient operator on the surface. This equation is a gen- 
eralization of heat equation: &p - Ap = 0 to  surfaces, 
where A is the Laplacian. To enhance sharp features, 
a diflusion tensor D, acting on the gradient, has been 
introduced (see [3, 41). Then (2.1) becomes 

& 4 t )  - diVM(t)(DVM(t)z(t)) = 0. (2.2) 
The diffusion tensor D := D ( x )  is a symmetric and pos- 
itive definite operator from T z M  to T,M. Here T,M 
is the tangent space of M at 3'. The detailed discussion 
for choosing the diffusion tensor can be found in [3, 41 
for enhancing sharp features. In this paper, we do not 
address the problem of enhancing sharp features. How- 
ever, we shall use a scalar diffusion tensor for achieving 
an adaptive diffusion effect. The divergence divM11, for 
a vector field $ E T M  is defined as the dual operator 
of the gradient (see [12]): 

(divMv, 4)hr = -(U, Vfir4)TM (2.3) 

for any $J E C r ( M ) ,  where Cr(M) is a subspace of 
C" ( M ) ,  whose elements have compact support. T M  is 
the tangent bundle, which is a collection of all the tan- 
gent spaces. The inner product ( d , $ ) ~  and ( u , w ) ~ ~  
are defined by the integration of q5$ and uTv over M ,  
respectively. The gradient of a smooth function f on 
M is given by 

VMf = [ t l ,  t2 ]G-' [ :w, I T ,  (2.4) 

where 

g22 -912 ] , G = [ 911 g12 ] 
G-l = [ -g21 911 Q21 9 2 2  

and gzj = (&) &. z(& , & )  is a local parameteriza- 
tion of the surface. G is known as the first fundamental 
form. For a vector field X = E:=l Xi& E T M ,  an 
explicit expression for the divergence is given by (see 
PI, Page 84) 

l 2  t9 
d a a  i=l %i 

divM X = ___ --(-Xi). 

Then it is easy to derive that 

divM ( h O ~ f )  = (Vfirf)rVMh + h A M  f, (2.5) 

where f, h are smooth function on M. From (2.4), (2.5) 
and the fact that A M X  = 2H(:c)n(z), we could rewrite 
(2.2) as 

& ~ ( t )  = V D ( z )  + 20(2 )H(z )n ( z ) ,  (2.6) 

where H ( z )  and n(z) are the mean curvature and the 
unit normal of M ,  respectively. Equation (2.6) im- 
plies that the motion of the surface M ( t )  can be de- 
composed into two parts: One is the tangential dis- 
placement caused by VD(z ) ,  and the other is the nor- 
mal displacement (mean curvature motion) caused by 
2 D ( z ) H  (2). ( E ) .  

Using (2.3), the diffusion problem (2.2) could be 
reformulated into the following variational form 

Find a smooth z ( t )  such that 
(atzc(t), O ) M ( t )  + (DVM(t)z(t), Vh/ ( t )GM(t )  = 0, 
M ( 0 )  = M ,  

(2.7) 
{ 

for any 8 E C r ( M ( t ) ) .  This variational form is the 
starting point for the discretization. 

We already know that the equation (2.1) describes 
the mean curvature motion. Its regularization effect 
could be seen from the following equation (see [4], [13]) 

-$Area(M(t)) = - J M ( t )  H'dx, 
$Volume(M(t)) = - J f i I ( t )  Hdx ,  (2.8) 

where Area(M(t)) and Volume(M(t)) are the area of 
M ( t )  and volume enclosed by M ( t ) ,  respectively, H is 
the mean curvature. From these equations, we see that 
the evolution speed depends on the mean curvature of 
the surface but not on the density of the mesh. Hence 
if the mesh is spatially adaptive, the dense parts that 
have detailed structures, have larger curvatures, which 
very possibly be over-faired. 

3 Discretization 
We discretize equation (2.7) in the time direction first 
and then in the spatial direction. Given an initial value 
x (0 ) ,  we wish to have a solution x ( t )  of (2.7) at t = 
T(z (0 ) ) .  Using a semi-implicit Euler scheme, we have 
the following time direction discretization: 

( Find a smooth z ( T )  such that 

for any 8 E Cr(Ad(0)). If we want to go further along 
the time direction, we could treat the solution at  t = 
T ( E )  as the initial value and repeat the same process. 
Hence, we consider only one time step in our analysis. 

3.1 Spatial Discretization 
The function in our finite element space is locally pa- 
rameterized as the image of the unit triangle 

7-= { ( 5 1 , < 2 )  E RZ : < I  L 0,<2 L 0 , t I  +G 5 I}. 
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That is, (1 - & - &, , &) are the barycentric coordi- 
nate of the triangle. Using this parameterization, pur 
discretized representation of M is M = UaZ1 7,, 7, n 
‘& = 8 for Q! # p,  where % is the interior of 7,. Each 
triangular patch is assumed to  be parameterized locally 
as xa : 7 4 Z; ([I,&) ++ za(&,&). Under this 
parameterization, tangents and gradients can be com- 
puted directly. The integration on surface M is given 

k 

by 

The integration on triangle 7 is computed adaptively 
by numerical methods. 

3.1.1 Finite Element funct ion Space  

Let Md be the given initial triangular mesh, xi, i = 
1 , .  . . , m be its vertices. We shall use C1 smooth quar- 
tic Box spline basis functions to span our finite element 
space. The piecewise quartic basis function at  vertex 
xi, denoted by 4i, is defined by the limit of Loop’s sub- 
division for the zero control values everywhere except 
at  xi where it is one (see [3] for detailed description 
of this). For simplicity, we call it the Loop’s basis. 
Let e j ,  j = 1, . . . , mi be the 2-ring neighborhood ele- 
ments. Then if e j  is regular (meaning its three vertices 
have valence 6) ,  explicit Box-spline expressions exist 
(see [14, 161) for 4i on e j .  Using these explicit Box- 
spline expression, we derive the BB-form expression for 
the basis functions +i. These expressions could be used 
to evaluate C#J~ in forming the linear system (3.3). If ei 
is irregular, local subdivision is needed around ei until 
the parameter values of interest are interior to  a regu- 
lar patch. .4n efficient evaluation method, that we have 
implemented, is the one proposed by Stam [14]. 

Compared with the linear finite element space, us- 
ing the higher-order C1 smooth finite element space 
spanned by Loop’s basis does have advantages. The ba- 
sis functions of this space have compact support (within 
2-rings of the vertices). This support is bigger than 
the support (within 1-ring of the vertices) of hat basis 
functions that are used for the linear discrete surface 
model. Such a difference in the size of support of basis 
functions makes our evolution more efficient than those 
previously reported, due to  the increased bandwidth of 
the affected frequencies. The reduction speed of high 
frequency noise in our approach is not that drastic, but 
still fast, while the reduction speed of lower frequency 
noise is not slow. Hence, the bandwidth of affected fre- 
quencies is wider. A comparative result showing the 
superiority of the Loop’s basis function is given in [3]. 

Let V M ( ~ )  be the finite dimensional space spanned 
by the Loop’s basis functions {q5i}zl. Then VM(O) C 
Cl(M(0)). Let z(0) = zi(O)4i E h!(O), z (T)  = 
ELl xi(Ti)bi, and 6 = $ j .  Then equation (3.1) is 
discretized in V&(o) as 

for j = l , . . .  ,m ,  where zi(0) := zi is the i-th vertex 
of the input mesh Md, Ti = T(Zi(0))  and ?i(O) is a 
surface point corresponding to vertex 2; (0). Equation 
(3.2) is a linear system for unknowns zi(Ti). 

3.2 Adaptive Timestep 
We first use adaptive timesteps to achieve the adaptive 
evolution effect. In this case the diffusion tensor D 
is chosen to be identity, but T ( z )  is not a constant 
function. Now (3.2) can be written in the following 
matrix form: 

Note that both M and L are symmetric. Since q51, 42,  
. . .  , +nL are linearly independent and have compact 
support, M is sparse and positive definite. Similarly, C 
is symmetric and nonnegative definite. Hence, M + C 
is symmetric and positive definite. 

The coefficient matrix of system (3.3) is highly sparse. 
An iterative method for solving such a system is desir- 
able. We solve it by the conjugate gradient method 
with a diagonal preconditioning. 

Defining adap t ive  t imesteps.  Now we illustrate 
how T(x) is defined. At each vertex xt of the mesh 
M d ,  we first compute a value d, > 0, which measures 
the density of the mesh around x,. We propose two 
approaches for computing it: 

1. d, is defined as the average of the distance from 
x, to  its neighbor vertices. 

2. d, is defined as the sum of the areas of the tri- 
angles surrounding 5,. 

To make the d:s relative to the density of the mesh 
but not the geometric size, we always resize the mesh 
into the box [-3, 313. The experiments show that both 
approaches work well, and the evolution results have no 
significant difference. This value d, is used as control 
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value for defining timestep that is the same as defining 
the surface point: 

m 

T ( z )  = T D ( Z ) ,  D ( z )  := diqjL, (3.5) 
z=1 

where T > 0 is a user specified constant. Hence, T is a 
function in the finite element space V M ( ~ ) .  Note that 
since T is not a constant any more, it is involved in the 
integration in computing the stiffness matrix M .  Since 
T ( z )  E V M ( O ) ,  it is C 2 ,  except a t  the extraordinary ver- 
tices, where it is C1. However, T ( z )  may also be noisy, 
since it is computed from the noisy data. To obtain a 
smoother T ( x ) ,  we smooth repeatedly the control value 
d, at the vertex 2% by the following rule: 

J=1 

where dIo) = d, for i = 1,. . . , m, d i k )  in the sum are 
the control values a t  the one-ring neighbor vertices of 
.E,, n, is the valence of zL, 1 ,  and n(n,)  are given as 
follo\vs: 

The smoothing rule (3 .6)  is in fact for computing the 
limit value of Loop's subdivision (see [9], pp 41-42) ap- 
plying to the control values di" )  at  the vertices. In our 
examples, we apply this rule three times. Experiments 
show that even more times of smoothing of di are not 
harmful, but the influence to t,he evolution results are 
minor. The smoothing effect o,f (3 .6)  could be seen by 
rewriting it in the following form 

The left-handed side could be regarded as the result 
of applying the forward Euler method to  the function 
d,  (t), the right-handed side is the umbrella operator 
(see [ 5 ] ) .  Hence, (3 .6)  is a discretization of the equation 

= A D .  Since nl lL  < 1, the stability criterion for 
(3.6) is satisfied. 

A different view of adapt ive  timestep approach 

Consider the following diffusion PDE 

where D(x)  is a function defined by (3.5). Again, equa- 
tion (3 .7)  describes the mean curvature motion with 
a compression factor D ( z ) .  If we use a semi-implicit 

Euler scheme to  discretize the equation with constant 
timestep T ,  we could arrive at the same linear system 
as (3.3). Hence, solving the equation (2.1) with an 
adaptive timestep TD(z)  is equivalent t o  solving equa- 
tion (3.7) with a uniform timestep T .  But (3.7) may be 
easier to  handle in the theoretical analysis. 

3.3 Uniform Timestep and Adaptive 
Diffusion Tensor 

Now we use uniform timestep r but a non-identity dif- 
fusion tensor D ( z ) .  This D ( z )  is the same as the one 
defined in (3.5), but we should regard it as D ( z ) I ,  
where I is the identity diffusion tensor. The discretized 
equation (3.2) then becomes 

(3.8) 
E::l (Xz(7) - zz(0)) ( 4 2 > 4 3 ) M ( O )  + 
E,"=, ~ ( 7 )  (7DVnr(o)4L7 V n ~ ( o ) @ j ) ~ ~ ( ~ )  = 0. 

From this, a similar linear system as (3.3) is obtained 
with 

We know that D ( z )  is a smooth positive function that 
characterizes the density of the surface mesh. The ef- 
fect of this diffusion tensor is suppressing the gradient 
where the mesh is dense, and hence slows down the cvo- 
lution speed. Comparing equation (3.3) with equation 
(3.8), we find that they are similar (since T D  = T ) ,  
though not equivalent. Indeed, if D ( x )  is a constant 
on each triangle of M ,  then they are equivalent. In 
general, D ( z )  is not a constant, but approximately a 
constant on each triangle, hence the observed behav- 
ior of (3 .3)  and (3.8) are often similar. The bottom 
row figures in Fig 4.1 exhibit this similarity, where the 
left and right figures are the evolution results using 
an adaptive timestep and an adaptive diffusion ten- 
sor, respectively. Since the results of the two adaptive 
approaches are very close, in the other examples pro- 
vided in this paper, we use only the adaptive timestep 
approach. 

Homogeniza t ion  Effect of D 
It follows from (2.6) that the non-constant diffusion 

tensor D ( z )  causes tangential displacement of the ver- 
tices. For the diffusion tensor D ( z )  defined in the last 
sub-section, we know that it is adaptive to  the density 
of the mesh in the sense that it takes smaller values at 
denser regions of the mesh. Consider a case where a 
small triangle is surrounded by large triangles. In such 
a case, function D ( z )  is small on the triangle and larger 
elsewhere. This implies that  the gradient of D(z) on 
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the small triangle points t o  the outside direction, and 
the tangential displacement makes the small triangle 
become enlarged. If the density of the mesh is even, 
then D ( z )  is near a constant. Then the tangential dis- 
placement is minor. Hence, the adaptive diffusion ten- 
sor we use has homogenizing effect. Such an effect is 
nice and important, as it avoids producing collapsed or 
tiny triangles in the faired meshes. 

3.4 Algorithm Summary 
For a given initial mesh, stopping control threshold val- 
ues ~i > 0, i = 1 , 2  and r > 0, the adaptive timestep 
evolution algorithm could be summarized via the fol- 
lowing pseudo-code: 

Compute function and derivative values of di on  the 
integration points; 

Compute di; 
Smooth di b y  (3.6); 
Compute matrices M and C b y  (3.4); 
Solve linear system (3.3); 
Compute .ti@); 

} while (none of (3.10)-(3.11) is satisfied); 

do { 

Note that the evolution process does not change the 
topology of the mesh. Hence the basis functions could 
be computed before the multiple iterations. 

We use two of the three stopping criteria proposed 
in [3] for terminating the evolution process: Let 

IIH(t, z)ll’dz/ 1 I l ~ ( O , ~ ) l l ” ~ >  s,,,,, Af (0) 

where H ( t ,  x) is the mean curvature vector at  the point 
z and time tD(rc). The stopping criteria are 

R ( t )  = 

(3.10) 
(3.11) 

where 
computed by divided differences. 

are user specified control constants, X ’ ( t )  is 

4 Conclusions and Examples 
We have proposed two simple adaptive approaches in 
solving the diffusion PDE by the finite element dis- 
cretization in the spatial direction and the semi-implicit 
discretization in the time direction, aiming to solving 
the under-fairing/over-smooth problems that beset the 
uniform diffusion schemes. The implementation shows 
that the proposed adaptive schemes work very well. 

Fig 4.1: The left top figure is the initial geometry mesh. 
The right top figure is the faired mesh after 3 fairing it- 
erations with uniform timestep t = 0.0011. The left and 
right figures in the bottom row are the faired meshes after 
3 fairing iterations with adaptive timestep and alternatively 
adaptive diffusion tensor with uniform timestep T ,  = 0.025, 
respectively. 

Fig 4.1 and Fig 4.2 are used to  illustrate the dif-. 
ference between the uniform timestep evolution ancl 
the adaptive timestep evolution. Since the adaptive 
timestep is not uniform, we cannot compare the evo- 
lution results for the same time. The comparing crite- 
rion we adopted here is we evolve the surface, starting 
from the same input, to arrive at similar smoothness 
for the rough/detailed features and compare the de- 
tailed/rough features. In Fig 4.1, the left figure in the 
top row is the input mesh, the right top figure uses 
uniform timestep, the left and right figures in the bot- 
tom row use adaptive timestep and adaptive diffusion 
tensor with a uniform timestep, respectively. Compar- 
ing the three smoothing results, we can see that the 
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Fig 4.2: The top figure is the initial geometry mesh. The 
second and the third figures are the faired meshes after 2 
and 4 fairing iterations with uniform timestep t = 0.0001. 
The last two are the faired meshes after 2 and 4 fairing 
iterations with adaptive timestep and T = 0.0016. 

large features look similar, but the toes of the foot are 
very different. The evolution results of the adaptive 
timestep and the adaptive diffusion tensor are much 
more desirable. Fig 4.2 exhibits the same effect. The 
top figure is the input, the next two are the results of 
the uniform timestep evolution. Comparing these to 
the bottom two figures, which1 are the results of the 
adaptive timestep evolution, many detailed features on 
the back and the snout of the crocodile are preserved 
by the adaptive approach. Furi,hermore, the large fea- 
tures of the uniform timestep (evolution (compare the 
tails of the crocodiles) are less fairer than that of the 
adaptive timestep evolution, eben though the detailed 
features are already over-faired 
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