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Abstract

We present a uni�ed anisotropic geometric di�usion PDEmodel for smooth-
ing (fairing) out noise both in triangulated 2-manifold surface meshes in IR3

and functions de�ned on these surface meshes, while enhancing curve features
on both by careful choice of an anisotropic di�usion tensor. We combine the
C1 limit representation of Loop's subdivision for triangular surface meshes
and vector functions on the surface mesh with the established di�usion model
to arrive at a discretized version of the di�usion problem in the spatial direc-
tion. The time direction discretization then leads to a sparse linear system of
equations. Iteratively, solving the sparse linear system, yields a sequence of
faired (smoothed) meshes as well as faired functions

Key words: Surface function di�usion; Loop's subdivision; Riemannian man-
ifold, Texture Mapping.

1 Introduction

Problem Considered. Given a discretized triangular surface mesh Gd � IR3 (ge-
ometric information) and a discretized function-vector Fd � IR��3. Each of the
function-vector values is attached to one and only one vertex of the surface mesh.
We assume that both the geometric and surface function information su�er from
noise. Our primary goal is to smooth out the noise and to obtain faired geometry as
well as faired surface function data at di�erent scales. Our secondary goal is to con-
struct continuous (non-discretized) representations for the smoothed geometry and
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surface function data. Our tertiary goal is to provide approaches for visualizing the
smoothness of both the geometric and physical information during the smoothing
process. In this paper, we use terms faring and smoothing interchangeably.

Motivation Quite often, discretized surfaces under investigation su�er from noise
or errors in geometry (see Fig 1.1). For surfaces and attribute functions that come
from the reconstruction of physical objects, the noise comes from the sampling
error of the imaging equipment, such as CT, MRI, ultrasound or 3D laser scanners.
If the surfaces and function on surfaces (e.g. air velocity on an airfoil) are the
result of numerical computation (e.g. �nite element simulations), the errors come
from the numerical sensitivity of the algorithm or model discretization. The use
of lossy compression is prevalent in streaming geometry and textures for Internet
gaming and eCommerce visualization applications. The lossy compressed geometry
and texture data when decoded often su�er from noise caused from the inaccuracy
in spatial distribution of the mesh density (topology) and the quantization of the
numerical vertex coordinate data.

The errors of the geometric data and surface function data may often be coher-
ent. For example, if the surface function data comes from the numerical solution of
some physical phenomena over a domain, the errors in the geometric data certainly
cause errors in the solution. In such a case, it might be rational to combine the ge-
ometry and surface function data together, and to consider the smoothing problem
uniformly. Another point of view is to look at the surface function data as graphs.
If we consider a grey-scale image I(x; y) de�ned on the xy-plane as a surface in
IR3, then the image is given by the graph (x; y; I(x; y)). Similarly, if we consider
a scalar function f(x; y; z) de�ned on a surface G as a hyper-surface in IR4, then
the surface is given by the graph (x; y; z; f(x; y; z)) for (x; y; z) 2 G. In most cases,
when the surface geometry and function on surface data errors are not coherent,
the smoothing is performed separately.

Previous Work. The existing approaches for surface fairing can be classi�ed
roughly into two categories: optimization and evolution. In the �rst category,
one obtains a minimization problem that minimizes certain objective functions
[10, 12, 20, 25, 31], such as thin plate energy, membrane energy [16], total cur-
vature [17, 32], or sum of distances [19]. Using local interpolation or �tting, or
replacing di�erential operators with divided di�erence operators, the minimization
problems are discretized to arrive at �nite dimensional linear or nonlinear systems.
Approximate solutions are then obtained by solving the systems.

The main idea of evolution is borrowed from the solution of the linear heat
conduction equation @t� � �� = 0 for equilibrating spatial variation in concen-
tration, where � := divr is the Laplace operator. This PDE (partial di�erential
equation) based evolution technique was originally transplanted to image processing
(see [21, 22, 30]. In [30], 453 relevant references are listed) from the area of numer-
ical solution of PDE. This was extended to smoothing or fairing noisy surfaces (see
[3, 4, 6]). For surfaces, the counterpart of the Laplacian � is the Laplace-Beltrami
operator �M (see [7]). One then obtains the geometric di�usion equation

@tx��Mx = 0 (1.1)

for surface point x(t) on the surface M(t).
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Fig 1.1: First column: Fairing the geometry of the head model of Picard(146,036 trian-

gles). The second and third �gures in this column are the meshes after 1 and 4 steps

of fairing. Second column: Fairing texture coordinates while the geometry is �xed. The

second and third �gures of this are the fairing results after 1 and 4 iterations. In all the

examples in this paper, the timestep � is 0.001.
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Taubin [29] discussed the discretized operator of the Laplacian and related ap-
proaches in the context of generalized frequencies on meshes. Kobbelt [15] consid-
ered discrete approximations of the Laplacian in the construction of fair interpola-
tory subdivision schemes. This work was extended [16] to arbitrary connectivity for
purposes of multiresolution interactive editing. Desbrun et al. [4] use an implicit
discretization of geometric di�usion to obtain a strongly stable numerical smoothing
scheme. Clarenz et al. [3] introduced anisotropic geometric di�usion to enhance fea-
tures while smoothing. All these are based on a discretized surface model. Hence,
the �rst and second order derivative information, such as normals, tangents and cur-
vatures, are estimated using some local averaging or �tting scheme. Computational
methods of normals and curvatures for discrete data were carefully studied recently
by Desbrun et al in [6]. They used the proposed methods to mesh smoothing and
enhancement.

Similar to surface di�usion using the Laplacian, another class of PDE based
methods called 
ow surface techniques have been developed which simulate di�erent
kinds of 
ows of surface (see [33] for references) using the equation @tx�v(x; t) = 0,
where v(x; t) represents the instantaneous stationary velocity �eld.

In 2D image processing, Sochen [27] and Yezzi [13] treated images as high-
dimensional surfaces and processed them based on projected curvature motion 
ows.
A similar treatment was adopted by Desbrun et al [5] for denoising bivariate data
embedded in high dimensional spaces while preserving the edges. Curvature 
ows
were also used in [26] (Chapter 16) for image enhancement and noise removal

For fairing functions on surfaces, Kimmel [14] used geodesic curvature 
ow to
smooth images painted on a surface. We should point out that many of the above
surface fairing methods can be extended to the problem of fairing functions on
surfaces if each component of the vector function is smoothed independently. For
example, the signal processing approach for meshes proposed in [11] has been used
to smooth the coordinates of texture mapping. In this paper we provide a new
approach when vector-function data on a surface is treated simultaneously, both
together and independently of the surface data.

Our Approach and Contributions.
a. Establishing a uni�ed di�usion model. In this paper, we simply call a tri-

angular surface mesh with function values on each of the vertices of the mesh an
attributed triangular mesh. We treat 3-dimensional discrete surface data and (��3)-
dimensional function data on the surface as a discretized version of a 2-dimensional
Riemannian manifold embedded in IR�. We establish a PDE di�usion model for
such a manifold. Though the derivation of the model involves Riemannian geometry,
the outcome we obtained is simple and easy to understand.

b. Discretizing in a smooth function space. We combine the limit function
representation of Loop's subdivision for triangular meshes with an established dif-
fusion model to arrive at a discretized version of the di�usion problem. The input
attributed triangular mesh serves as the control mesh of Loop's subdivision. Solv-
ing the discretized problem, a sequence of smoothed attributed triangular meshes
as well as smoothed functions are obtained. What makes our discretization dis-
tinct from previous work is we are smoothing globally smooth functions instead of
discrete functions. Working with a smooth function model of �nite dimension (in-
stead of linear elements), related quantities, such as gradients, tangents, normals
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and curvatures, can be computed exactly and naturally from the smooth function
representation. Hence our current framework is more accurate.

c. Anisotropic di�usion. We construct an anisotropic di�usion tensor in the
di�usion model which makes the di�usion process have the e�ect of enhancing sharp
features while �ltering out noise. If k = 3, this di�usion tensor is the same the one
given in [3]. The second column in Fig 1.2 shows the di�erence between applying
and not applying an anisotropic di�usion tensor.

The function on a surface de�ned by Loop's subdivision is in a �nite dimensional
space. The base functions of this space have compact support (within 2-rings of the
vertices). This support is bigger than the support (within 1-ring of the vertices) of
hat basis functions that are used for the discrete surface model. Such a di�erence
in the size of support of basis functions makes our evolution more eÆcient than
those previously reported, due to the increased bandwidth of a�ected frequencies.
The reduction speed of high frequency noises of our approach is not that drastic,
but still fast, and the reduction speed of lower frequency noises is not that slow.
Hence, the bandwidth of a�ected frequencies is wider. The second row of Fig 1.2
provides an example to illustrate this di�erence. Both of the �gures start from
the same noisy input (the top-left �gure) and a fairing of three steps (timestep
0:001) is applied with the identity di�usion tensors. The left �gure, which is the
result of linear �nite element implementation, smoothes out more detailed features
(see the ears, eyes, lips and nose) than the right, which is the result our approach,
and at the same time the large scale features (see the head) of the left are less
smooth than that of the right. It should be pointed out that the larger support of
basis functions leads to more nonzero (�ve times more in average) elements in the
sti�ness matrix of the �nite element discretization. This implies more computations
are required in both forming the matrix and solving the linear system. However,
the test results show that the condition of the discretized linear system of our
approach is often better than that of the linear element approach. For the example
we mentioned above, our approach needs 23, 18, 16 and 17 iterations for solving the
linear systems by the Gauss Seidel methods for the time steps 1; � � � ; 4, within the
L1 error 9 � 10�6. The linear element approach needs 57; 67; 73 and 77 iterations,
respectively. This is understandable. Since the support of the basis functions of
the linear element is small, the tiny triangles will cause very small elements in the
matrix of the discretized linear system, which worsens the condition of the system.
Such a problem is relatively moderate in our approach.

The evolution process produces not only a sequence of attributed triangular
meshes at di�erent time steps, but also a sequence of smooth functions. By sampling
these smooth functions, new attributed triangular meshes at a resolution higher than
that of the original mesh can be produced. Furthermore, gradient and curvature at
any point can be computed easily.

2 The Di�usion Model

The di�usion model that we are going to use is a generalization of the heat equation
@t���� = 0 in Euclidean space to a 2-dimensional manifold embedded in IR�. Such
a generalization to 3D surface has been given by Clarenz et al [3]. The generalization
to a 2-dimensional manifold embedded in IR� is similar. First, we establish the
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Fig 1.2: The �rst �gure in the �rst row is the initial geometry mesh. The second �gure is

the fairing result after 3 iteration steps of our implementation with time length t = 0:001

and with an anisotropic di�usion tensor to preserve the sharp features around the eyes,

nose, mouth and ear. The left and right �gures in the second row are the fairing result by

the linear �nite element implementation and our approach, respectively, after 3 iteration

steps with time length t = 0:001, and with an identity di�usion tensors.
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di�usion model for continuous geometry G � IR3 and continuous surface functions
F � IR��3. The discretization of the continuous model is then discussed in x4.
Suppose we are given ��3 (� � 3) functions f(x) = (f1(x); f2(x); � � � ; f��3(x)) 2 F ,
x 2 G. We assume that surface G is a two dimensional manifold embedded in IR3.
We will combine the geometric position x and function f(x) together to form a �
dimensional vector (x; f(x)). We use M to indicate the graph f(x; f(x)) 2 IR� :
x 2 Gg. Therefore, we may consider M as a two-dimensional manifold embedded
in IR�. Working with such a manifold for establishing the di�usion model, some
concepts, such as tangents, gradients, Laplacian, curvatures and integrations, that
are well understood for surface, must be de�ned properly. Fortunately, these ideas
are already very well developed in the �eld of Riemannian Geometry (see [7, 23, 34]).
In the following, we shall borrow the required terminologies and concepts from that
�eld and reformulate them to �t our di�usion problem.

Tangent Space of Di�erential Manifold. Let M � IR� be a two-dimensional
manifold, and fU�; x�g be the di�erentiable structure. The mapping x� with x 2
x�(U�) is called a parameterization of M at x. Denoting the coordinate U� as
(�1; �2), then the tangent space TxM at x 2 M is spanned by f @

@�1
; @
@�2

g. For a

given point x 2 x�(U�) � M , the tangent vector components @
@�1

and @
@�2

depend

upon �, but TxM does not. The set TM = f(x; v); x 2 M; v 2 TxMg is called a
tangent bundle.

Riemannian Manifold. To de�ne integration on M , a Riemannian metric (inner
product) is required. A di�erentiable manifold with a given Riemannian metric is
called a Riemannian Manifold. A Riemannian metric h ; ix of M is a symmetric,
bilinear and positive-de�nite form on the tangent space TxM . Since M is a sub-
manifold of Euclidean space IR�, we use the induced metric:

hu; vix = uTv; u; v 2 TxM:

Integration. Let f be a function onM , and let f��g� be a �nite partition of unity
on M with support �� � U�. Then de�neZ

M

fdx :=
X
�

Z
U�

�� f(x�)
q
det(gij)d�1 d�2; (2.1)

where gij =
D

@
@�i
; @
@�j

E
x
. Then we can de�ne the inner product of two functions on

M and two vector �elds on TM as

(f; g)M =

Z
M

fgdx; f; g 2 C0(M);

(�;  )TM =

Z
M

h�;  idx; �;  2 TM:

Gradient. Suppose f 2 C1(M). The gradient rMf 2 TxM of f is de�ned by the
following conditions:

tTi rMf =
@(f Æ x)

@�i
; i = 1; 2; (2.2)
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where ti =
@x
@�i

are the tangent vectors. Note that rMf is invariant under the

surface local reparameterization. From (2.2), we have

rMf = [ t1; t2 ]G
�1
h

@(fÆx)
@�1

; @(fÆx)
@�2

iT
; (2.3)

where

G�1 =
1

detG

�
g22 �g12

�g21 g11

�
; G =

�
g11 g12
g21 g22

�
;

and G is known as the �rst fundamental form.

Divergence. The divergence divM for a vector �eld  2 TM is de�ned as the
dual operator of the gradient (see [23]):

(divMv; �)M = �(v;rM�)TM ; 8� 2 C10 (M); (2.4)

where C10 (M) is a subspace of C1(M), whose elements have compact support.

Di�usion Model. Using the notations introduced above, we can formulate the
geometric di�usion model as the following nonlinear system of parabolic di�erential
equations:

@tx(t) ��M(t)x(t) = 0; (2.5)

where �M(t) = div Æ rM(t) is known as the Laplace-Beltrami operator on M(t).
However, to be able to enhance sharp features, a di�usion tensor D, acting on the
gradient, is introduced. Hence the �nal model we use is

@tx(t) � divM(t)(DrM(t)x(t)) = 0; (2.6)

M(0) = M; (2.7)

where M(t) is the solution manifold at time t, x(t) is a point on the manifold, and
the di�usion tensor D := D(x) is a symmetric and positive de�nite operator from
TM to TM . The di�usion tensor D(x) has a signi�cant in
uence on the shape of
the di�used surface and functions on the surface. If D(x) = I , an identity operator,
then (2.6) becomes @tx(t) = 2H(x), since �Mx = 2H(x) (see [35], page 151), where
H(x) is the mean curvature vector at x. Hence the equation described is the mean
curvature motion (MCM). The mean curvature motion has a displacement in the
mean curvature vector direction, but not in the tangent direction. If D(x) is not an
identity operator, tangential displacement occurs. The details of the discussion for
choosing the di�usion tensor are in x5. Using (2.4), the di�usion problem (2.6)-(2.7)
can be reformulated as the following variational form8<

:
Find a smooth x(t) such that
(@tx(t); �)M(t) + (DrM(t)x(t);rM(t)�)TM(t) = 0; 8� 2 C10 (M(t))
M(0) =M:

(2.8)

Other Alternatives of the Di�usion Model. In establishing the di�usion
model, we have combined the geometry and physics together. This combination
is under the assumption that both the geometric and physical data have errors and
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the two errors are coherent. In practice, this assumption may not always be valid.
Considering the two aspects of having errors or not, and whether the errors are
coherent or not, we have �ve possibilities: (a). Both the data have errors and the

errors are coherent. (b). Both the data have errors and the errors are not coherent.
(c). Only the physical data has errors. (d). Only the geometric data has errors.
(e). None of them have errors. Case (a) is what we previously assumed. If the
errors are not coherent as in case (b), then the smoothing process should be con-
ducted separately. Let G(t) � IR3 and F (t) � IR��3 denote the geometry and the
physics information at time t, respectively. Then (2.8) becomes the following two
problems:8<

:
Find a smooth g(t) 2 IR3 such that
(@tg(t); �)G(t) + (DrG(t)g(t);rG(t)�)TG(t) = 0; 8� 2 C10 (G(t));
G(0) = G;

(2.9)

and 8<
:

Find a smooth f(t) 2 IR��3 such that
(@tf(t); �)G(t) + (DrG(t)f(t);rG(t)�)TG(t) = 0; 8� 2 C10 (G(t));
F (0) = F;

(2.10)

whereG(t) is the solution of (2.9) at time t. Case (e) does not need to be considered.
In case (c), we separate the geometry and physics. We use the notation G = G(t) to
denote the geometry, and again use F (t) � IR��3 to denote the physics information.
Then (2.8) becomes8<

:
Find a smooth f(t) 2 IR��3 such that
(@tf(t); �)G + (DrGf(t);rG�)TG = 0; 8� 2 C10 (G);
F (0) = F;

(2.11)

where f(t) 2 F (t) is the function of F (t). Since G is �xed, the system (2.11) is
linear. In case (d), we need only to solve problem (2.9).

3 Subdivision Surfaces

We shall discretize the proposed di�usion problem in a function space which is
de�ned by the limit of Loop's subdivision. This section describes only the relevant
results on surface subdivision. It will be clear soon that these results are valid on
the subdivision of functions de�ned on surfaces.

Subdivision schemes generate smooth surfaces via a limit procedure of an iter-
ative re�nement starting from an initial mesh which serves as the control mesh of
the limit surface. Several subdivision schemes for generating smooth surfaces have
been proposed. Some of them are interpolatory, i.e., the vertex positions of the
coarse mesh are �xed, while only the newly added vertex positions need to be com-
puted (see e.g., [17] for quadrilateral meshes, [9, 36] for triangular meshes), while
others are approximating (see e.g., [2, 8] for quadrilateral meshes, [18] for triangular
meshes). Approximating schemes compute both the old and new vertex positions.
Generally speaking, approximating schemes produce better quality surfaces than
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those produced by interpolatory schemes. Hence, in this work, we shall use an
approximating scheme for triangular meshes proposed by Loop [18]. This scheme
produces C2 limit surfaces except at a �nite number of isolated points where the
surface is C1.

The limit surfaces of a subdivision scheme are de�ned by an in�nite iteration
procedure. There is no close form for the limit surface in general. This makes
the exact evaluation of the surface at any point diÆcult. Fortunately, for Loop's
scheme, a fast method exists for evaluating the limit surface (see [28]). For the
purpose of numerically computing the area-integration, evaluation at any surface
point is required. This is another reason for choosing Loop's scheme.

3.1 Loop's Subdivision Scheme

In Loop's subdivision scheme, the initial control mesh and the subsequent re�ned
meshes consist of triangles only. In the re�nement, each triangle is subdivided lin-
early into 4 sub-triangles. Then the vertex position of the re�ned mesh is computed
as the weighted average of the vertex position of the unre�ned mesh. Consider a
vertex xk0 at level k with neighbor vertices xki for i = 1; � � � ; n (see Fig 3.1), where
n is the valence of vertex xk0 . The coordinates of the newly generated vertices x

k+1
i

on the edges of the previous mesh are computed as

xk+1i =
3xk0 + 3xki + xki�1 + xki+1

8
; i = 1; � � � ; n; (3.1)

where index i is to be understood in modulo by n. The old vertices get new positions

x k+1

x kx k

x k x k

x k

x kx k

0

1

2

34

5

6

x k+1 x k+1

x k+1

x k+1x k+1

x k+1

4 3

2

1

0

6

5

Fig 3.1: Re�nement of triangular mesh around a vertex.

according to

xk+10 = (1� na)xk0 + a
�
xk1 + xk2 + � � �+ xkn

�
; (3.2)

where a = 1
n

h
5
8 �

�
3
8 +

1
4cos

2�
n

�2i
. Note that all newly generated vertices have a

valence of 6, while the vertices inherited from the original mesh at level zero may
have a valence other than 6. We will refer to the former case as ordinary and to the
later case as extraordinary.
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3.2 Evaluation of Regular Surface Patches

To obtain a local parameterization of the limit surface for each of the triangles in
the initial control mesh, we choose (�1; �2) as two of the barycentric coordinates
(�0; �1; �2) and de�ne T as

T = f(�1; �2) 2 IR
2 : �1 � 0; �2 � 0; �1 + �2 � 1g: (3.3)

The triangle T in the (�1; �2)-plane may be used as a master element domain.
Consider a generic triangle in the mesh and introduce a local numbering of vertices
lying in its immediate 1-ring neighborhood (see Fig 3.2). If all its vertices have a
valence of 6, the resulting patch of the limit surface is exactly described by a single
quartic box-spline patch, for which an explicit closed form exists. We refer to such
a patch as regular. A regular patch is controlled by 12 basis functions:

x(�1; �2) =

12X
i=1

Ni(�1; �2)xi; (3.4)

where the label i refers to the local numbering of the vertices that is shown in Fig
3.2. The surface within the shaded triangle in this �gure is de�ned by the 12 local
control vertices. The basis Ni are given as follows (see [28]):

N1 =
1
12 (�

4
0 + 2�30�1);

N2 =
1
12 (�

4
0 + 2�30�2);

N3 =
1
12

�
�40 + �41 + 6�30�1 + 6�0�

3
1 + 12�20�

2
1 + (2�30 + 2�31 + 6�20�1 + 6�0�

2
1)�2

�
;

N4 =
1
12 [6�

4
0 + 24�30(�1 + �2) + �20(24�

2
1 + 60�1�2 + 24�22)

+ �0(8�
3
1 + 36�21�2 + 36�1�

2
2 + 8�32) + (�41 + 6�31�2 + 12�21�

2
2 + 6�1�

3
2 + �42)];

(3.5)

where (�0; �1; �2) are barycentric coordinates of the triangle with vertices numbered
as 4; 7; 8, and �0 = 1 � �1 � �2. Other bases are similarly de�ned. For exam-
ple, replacing (�0; �1; �2) by (�1; �2; �0) in N1; N2; N3; N4, we get N10; N6; N11; N7.
Replacing (�0; �1; �2) by (�2; �0; �1) we get N9; N12; N5; N8.

3.3 Evaluation of Irregular Surface Patches

If a triangle is irregular, i.e., at least one of its vertices has a valence other than 6,
the resulting patch is not a quartic box spline. We assume extraordinary vertices
are isolated, i.e., there is no edge in the control mesh such that both its vertices are
extraordinary. This assumption could be ful�lled by subdividing the mesh once.
Under this assumption, any irregular patch has only one extraordinary vertex. For
evaluation of irregular patches, we use the scheme proposed by Stam [28]. In this
scheme the mesh needs to be subdivided repeatedly until the parameter values of
interest are interior to a regular patch. We now summarize the central idea of Stam's
scheme. First, it is easy to see each subdivision of an irregular patch produces three
regular patches and one irregular patch (see Fig 3.3). Repeated subdivision of the
irregular patch will produce a sequence of regular patches. The surface patch is
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101112
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u = 0

v = 0 w = 0 

u = 1

v = 1w = 1

Fig 3.2: The vertex numbering of a regular patch with 12 control points. Over the shaded

triangle, the regular patch is de�ned.

1

2

3

4

n+1

n+2

n+3

n+4

n+5

n

n+6

v

w

1

2

3

4

n n+1

n+2

n+3

n+4

n+5
n+6

n+7

n+8

n+9

n+10

n+11

n+12

v

w

v

w

v

w

Fig 3.3: The vertex with empty circle is extraordinary. After one subdivision, the irregular

patch (dark shaded part) is split into one irregular patch (dark shaded part) and three

regular patches (light shaded parts).

piecewise parameterized. The subdomains T k
j are given as follows:

T k
1 = f(�1; �2) : �1 2 [2�k; 2�k+1]; �2 2 [0; 2�k+1 � �1]g;
T k
2 = f(�1; �2) : �1 2 [0; 2�k]; �2 2 [2�k � �1; 2

�k]g;
T k
3 = f(�1; �2) : �1 2 [0; 2�k]; �2 2 [2�k; 2�k+1 � �1]g:

(3.6)

These subdomains are mapped onto T by the transform

tk;1(�1; �2) = (2k�1 � 1; 2n�2); (�1; �2) 2 T k
1 ;

tk;2(�1; �2) = (1� 2k�1; 1� 2k�2); (�1; �2) 2 T k
2 ;

tk;3(�1; �2) = (2k�1; 2
k�2 � 1); (�1; �2) 2 T k

3 :

Hence T k
j form a tiling of T except for the point (�1; �2) = (0; 0). The surface patch

is then de�ned by its restriction to each triangle

x(�1; �2)jTk
j
=

12X
i=1

xk;ji Ni(tk;j(�1; �2)); j = 1; 2; 3; k = 1; 2; � � � ; (3.7)

where xk;ji are the properly chosen 12 control vertices around the irregular patch
at the level k that de�ne a regular surface patch. Using the vertex numbering and
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local coordinate system shown in Fig 3.3, it is easy to see that the three set control
vertices are

fxk;1i g12i=1= [xk3 ; x
k
1 ; x

k
n+4; x

k
2 ; x

k
n+1; x

k
n+9; x

k
n+3; x

k
n+2; x

k
n+5; x

k
n+8; x

k
n+7; x

k
n+10];

fxk;2i g12i=1= [xkn+7; x
k
n+10; x

k
n+3; x

k
n+2; x

k
n+5; x

k
n+4; x

k
2 ; x

k
n+1; x

k
n+6; x

k
3 ; x

k
1 ; x

k
n];

fxk;3i g12i=1= [xk1 ; x
k
n; x

k
2 ; x

k
n+1; x

k
n+6; x

k
n+3; x

k
n+2; x

k
n+5; x

k
n+12; x

k
n+7; x

k
n+10; x

k
n+11]:

Hence, the main task is to compute these control vertices. As usual, the subdivision
around an irregular patch is formulated as a linear transform from the level k � 1
1-ring vertices of the irregular patch to the related level k vertices, i.e.,

Xk = AXk�1 = � � � = AkX0; ~Xk+1 = ~AXk = ~AAkX0;

where Xk = [xk1 ; � � � ; x
k
n+6]

T ; ~Xk = [xk1 ; � � � ; x
k
n+6; x

k
n+7; � � � ; x

k
n+12]

T ; and A

and ~A are de�ned by the subdivision rule. Hence, k + 1 subdivisions lead to the
computation of Ak. When k is large, the computation can be very time consuming.
A novel idea proposed by Stam is to use the Jordan canonical form A = SJS�1.
The computation of the Ak amount to computing Jk, which makes the cost of the
computation nearly independent of k and hence very eÆcient. The beauty of the
scheme is explicit forms of S and J exist. We refer to [28] for details.

4 Discretization

In Riemannian geometry, di�erentiable functions are smooth and C1. However,
our discretized version of the di�usion problem will be in the class C1. As we
mentioned earlier, the functions are de�ned by the limit of Loop's subdivision. Such
a function is C2 smooth everywhere except at the extraordinary vertices, where it is
C1. The function is locally parameterized as the image of the unit triangle de�ned
by T = f(�1; �2) 2 IR2 : �1 � 0; �2 � 0; �1+�2 � 1g . That is, (1��1��2; �1; �2) is the
barycentric coordinate of the triangle. Using this parameterization, our discretized
representation ofM isM =

Sk
�=1 T�;

�T�\�T� = ; for � 6= �, where �T� is the interior
of the triangular function patch T�. Each triangular function patch is assumed to
be parameterized locally as

x� : T ! T�; (�1; �2) 7! x�(�1; �2): (4.1)

Unlike the di�erentiable structure of a manifold, our parameterization has no over-
lap. Each point p 2M has unique parameter coordinates, except at the boundary of
the patches. Under this parameterization, tangents and gradients can be computed
directly. The integration (2.1) is replaced byZ

M

fdx :=
X
�

Z
T

f(x�(�1; �2))
q
det(gij)d�1 d�2: (4.2)

The integration on the triangle T is computed adaptively by numerical methods.
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4.1 Spatial Discretization

LetM l
d be the limit function of the initial control meshMd. Then, instead of solving

the problem (2.8), we solve the following alternative problem8<
:

Find x(t) 2 V k
M(t); such that

(@tx(t); �)M(t) + (DrM(t)x(t);rM(t)�)TM(t) = 0; 8� 2 VM(t)

M(0) =M l
d;

(4.3)

where VM(t) � C1(M(t)) is a �nite dimensional space spanned by the basis functions
f�i(x)gmi=1. �i(x) is de�ned by the limit of the Loop's subdivision for the zero
control values everywhere except at xi where it is one. Hence the support of �i(x)
is local and it covers the 2-ring neighborhood of vertex xi. Let ej , j = 1; � � � ;mi

be the 2-ring neighborhood elements. Then if ej is regular, the explicit box-spline
expression as in (3.4) exists for �i(x) on ej . Using (3.5), we could derive the BB-
form coeÆcients for base �i (see Fig. 4.1.b). All these coeÆcients have a factor

1
24 .

Hence, the function value at xi is
1
2 . Note that the base �i derived is the same as

the triangular C2 quartic base given by Sabin (see [24]). These expressions could
be used to evaluate �i(x) in forming the linear system (4.6). If ei is irregular, local
subdivision, as described in x3.3, is needed around ei until the parameter values of
interest are interior to a regular patch. Let x(t) =

Pm

i=1 xi(t)�i(x), xi(t) 2 IR�,

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

x i

0
0

0

0 0 0 0

0 0
0

1 0

0 0

0

0 0
0

0

12
1212

10

0 

3
6

8 8

6 44
4 3 22

11 11

0 
0 0 0 0 

0 0 

0 

0 0 0 

0 0 0 0 0 

0 0 0 0 

0 

0 0 0 0 

(a) (b)

Fig 4.1: The quartic B�ezier coeÆcients (each has a factor 1=24) of basis function. The

coeÆcients on the other �ve macro-triangles are obtained by rotating the top macro-

triangle around the center to the other �ve positions.

and � = �j(x). Then (4.3) may be written as8<
:

Pm
i=1 x

0

i(t) (�i(x); �j (x))M(t)+Pm
i=1 xi(t)(DrM(t)�i(x);rM(t)�j(x))TM(t) = 0;

xj(0) = xj ;

(4.4)

for j = 1; � � � ;m, where xj is the j-th vertex of the initial mesh Md. (4.4) is a set
of nonlinear ordinary equations for the unknown functions xi(t), i = 1; � � � ;m.

4.2 Time Discretization

Given a time step � > 0, suppose we have an approximate solution at t = n� . Now
we want to get approximate solution at the next time step t = (n+1)� by the semi-
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implicit Euler scheme. Let Xn be approximation of x(n�). Then the semi-implicit
discretization of (4.4) is�

Xn+1 �Xn; �i
�
M(n�)

+ �
�
DnrM(n�)X

n+1;rM(n�)�i
�
TM(n�)

= 0; (4.5)

for i = 1; � � � ;m. Let x(t) =
Pm

i=1 xi(t)�i(x). Then (4.5) can be written as a linear
system:

(Mn + �Ln(Dn))X((n+ 1)�) =MnX(n�); (4.6)

where X(t) = [x1(t); � � � ; xm(t)]T , X(0) = [x1; � � � ; xm]T ,

Mn =
�
(�i; �j)M(n�)

�m
i;j=1

;

Ln(Dn)) =
�
(DnrM(n�)�i;rM(n�)�j)TM(n�)

�m
i;j=1

:

Note that both Mn and Ln(Dn) are symmetric. Since �1; �2; � � � ; �m are linearly
independent and have compact support, Mn is sparse and positive de�nite. Sim-
ilarly, Ln(Dn) is symmetric and nonnegative de�nite. Hence, Mn + �Ln(Dn) is
symmetric and positive de�nite.

The coeÆcient matrix of the system (4.6) is highly sparse. An iterative method
for solving such a system is desirable. We solve it by Gauss Seidel iteration if
the time step � < 350=N , and otherwise by the conjugate gradient method with
a diagonal preconditioning. Here N is the number of triangles of the mesh. The
choice of the switch point 350=N is based on the experiment.

It should be mentioned that the derived system (4.6) is valid for solving problems
(2.8){(2.11), though it is derived for (2.8) only. Note that X(t) is an m� k matrix.
If the Riemannian metric is de�ned by the scalar product in IR3, then the �rst 3
columns of X(t) are the solution of (2.9), and the last ��3 columns are the solution
of (2.10) and (2.11). For all the cases we mentioned in x2, the coeÆcient matrix of
the system as well as the left-hand side are computed in the same way. The only
di�erence is we do not need to compute the �rst three columns of the left-hand side
for problem (2.11), since the geometry is �xed.

Stopping Criteria. We need to determine a time moment T (T > 0), where
the evolution procedure stops. Since the evolution procedure is a mean curvature
motion, we can determine T by examining the reduction rate of the mean curvature.
For a given mesh, which part is noise that should be smoothed out is subjective. The
information at time t is not enough to judge whether the smoothing is satisfactory.
Therefore, we always compare the evolution e�ect with the initial state. Let

H(t) =

Z
M(t)

kH(t; x)k2dx
.Z

M(0)

kH(0; x)k2dx;

where H(t; x) is the mean curvature vector at the point x and time t. We shall use
the derivative (see (4.8)) of H(t) to test the stable state of the evolution. If the
data is not very noisy and the shape of the mesh is not complicated, such as the
sphere data, H(t) reduces slowly. In this case, the stopping criterion (4.8) works
well. However, the derivative sometimes can not help us make the right judgment.
For instance, if the shape of a mesh is complicated, even though it is not noisy, H(t)
still reduces fast for quite a long time and then slows down. Using the derivative
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of H(t) in such a case will lead to a late termination, which makes the mesh over-
smoothed (the features are lost). In this case, we prefer to use H(t) itself to control
the termination (see (4.9)). If the data is very noisy (high frequency noise), H(t)
reduces fast at the beginning of the evolution and slows down quickly. In this case,
examining how much the derivate is reduced relative to H0(0) is more reasonable
(see (4.7)). Of course, there are an in�nite number of cases between these extremes.
These considerations make us choose the following three stopping criteria.

jH0(t)=H0(0)j � �1; or (4.7)

jH0(t)j � �2; or (4.8)

H(t) � �3; (4.9)

where �i are user speci�ed control constants. Based on experience, we choose �1 =
0:005, �2 = 8:0, �3 = 0:2. The evolution stops if one of the three conditions is
satis�ed. If the data is very noisy, condition (4.7) is most likely satis�ed �rst. If
the data is smooth, and the shape is simple, condition (4.8) is most likely satis�ed
�rst. The remaining case may �rst be satis�ed by condition (4.9).

Choice of Timestep � . Suppose the �nal result we want is at time T . This
time moment can be approached through several time steps. Though the semi-
implicit discretization is stable, the timestep has a signi�cant e�ect on the linear
system derived. If the timestep is large, the iteration method for solving the system
converges slowly. On the contrary, if the timestep is very small, the surface will have
no signi�cant change, therefore more steps are required. We determine � according
to the change rate of the surface size. Denote the x, y and z components of the
surface point x(t) and the functional components on surface as x1(t), � � � , xk(t).
Then from (4.3), we have

(@txi(t); xi(t))M(t) = �(DrM(t)xi(t);rM(t)xi(t))TM(t); i = 1; � � � ; k:

Since D is positive de�nite, we have

@(x(t); x(t))M(t)

@t
= 2(@tx(t); x(t))M(t) = �2

kX
i=1

Ei(t) � 0; (4.10)

where Ei(t) = (DrM(t)xi(t);rM(t)xi(t))TM(t) � 0, and E(t) :=
Pk

i=1 Ei(t) is
called the energy of the surface M(t) at time t. If D = 1 and k = 3, it is not
diÆcult to show, by (2.3), that E(t) = 2Area(M(t)).

From (4.10), we know that if k = 3, the surface size S(M(t)) decreases in the
speed 4Area(M(t)). For one step evolution, the surface size decreases approxi-
mately by the amount of 4�Area(M(t)). If we want the size of the surface to
decrease around one percent of the Area(M(t)), then we should choose � = 0:0025
approximately. Such an amount of change in size is signi�cant visually. In our ex-
periment, even � = 0:0001 the change is still visually signi�cant at the early stage of
the evolution. But at later stages, the change becomes increasingly less signi�cant.
Usually, we choose � around 0:001 and determine the number n of iterations by
n� � T .

16



5 Anisotropic Di�usion Tensor

The aim of anisotropic di�usion is to enhance sharp features in one direction and
smoothing in another direction. To this end, we need to introduce the concepts
of principal curvatures and principal directions of a 2-manifold M � IR�. Let n
be a normal vector �eld on M . Let An be the second fundamental tensor with
respect to n (see [35] pages 119-121). Then An is a self-adjoint map from TM to
TM . The principal curvatures k1(x), k2(x) and principal directions e1(x), e2(x)
with respect to n is de�ned as the eigenvalues and the orthonormal eigenvectors
of An. However, the principal curvatures and principal directions are not uniquely
de�ned since the normal vector �eld is not so for k > 3. We will choose a vector
�eld h = H(x)=kH(x)k, which is the normalized mean curvature vector �eld of
the manifold M and is uniquely de�ned. Here H(x) is the mean curvature vector
given by (6.2). Considering the di�usion equation described is the mean curvature
motion, choosing this vector �eld is natural.

We will now illustrate how to compute the principal curvatures and principal
directions with respect to h. Due the space limitation, the detailed derivations are

given in [1]. Let ti =
@
@�i

, tij =
@2

@�i@�j
, [~e1; ~e2] = [t1; t2]W and

W =

"
g
�

1

2

11 �g12[g11det(G)]�
1

2

0 g11[g11det(G)]
�

1

2

#
; Ah = �W T [t1; t2]

T

�
@h

@�1

@h

@�2

�
W: (5.1)

Then ~e1 and ~e2 are orthonormal and Ah, a symmetric 2� 2 matrix, is the matrix
representation of An. Let Ah = S diag[k1; k2] S

T , with STS = I , then k1 and k2
are the principal curvatures and e1 and e2, de�ned by [e1; e2] = [~e1; ~e2]S, are the
corresponding principal directions of Ah. To give an explicit expression for Ah, let
gijk = tTi tjk , gijkl = tTijtkl, then we can derive that

Ah =W T ~AhW=(2det(G)kH(x)k);

where ~Ah is 2� 2 symmetric matrix de�ned by

~Ah = [A1u;A2u]� g22A11 � g11A22 + 2g12A12

A1 =

�
g111 g211
g112 g212

�
; A2 =

�
g112 g212
g122 g222

�
;

u = G�1
�
AT
1 [g22; �g12]

T +AT
2 [�g12; g11]

T
	
;

Akl = (gijkl)
2
ij=1, (k; l) = (1; 1); (2; 2); (1; 2).

Now we can de�ne our anisotropic di�usion tensor. Let ��;1, ��;2 be the principal
curvatures, and e�;1(x), e�;2(x) be the principal directions ofM� at point x(t). Then
any vector z could be expressed as

z = �e�;1(x) + �e�;2(x) +N�(x):

where N�(x) is the normal component of z. Then de�ne D := D� by

D�z = �g(��;1)e�;1(x) + �g(��;2)e�;2(x) +N�(x);
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Fig 5.1: The �rst column: The �rst �gure is a bumpy input mesh (32,786 triangles). The

second and third �gures are the faired meshes after 4 fairing iterations, with the identity

and an anisotropic di�usion tensor, respectively. For the anisotropic di�usion tensor, we

choose � = 2, � = 0:001. The second column (mean curvature plots): The �rst �gure is the

input mesh (25,600 triangles) with two noisy functions on the surface. The functions are

not smooth (but continuous) at the planes x = 0, y = 0 and z = 0. The second and third

�gures are the results after 4 fairing iterations, with identity and an anisotropic di�usion

tensor (� = 2:5, � = 0:001), respectively.
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where g(s) is de�ned by

g(s) =

(
1; s � �;�
1 + (s��)2

�2

��1
; s > �;

(5.2)

M�(t) is the solution of (2.8) at time � with D = 1 and initial value M(t). � is a
given parameter which detects the sharp feature. The reason we use M�(t), instead
of M(t), to compute the di�usion tensor is the evaluation of the shape parameters
on a noisy function might be misleading with respect to the original but unknown
function. Hence we pre�lter the current function M(t) by the mean curvature
motion before we evaluate the shape parameters. Fig 5.1 shows the e�ect of the
anisotropic smoothing.

6 Smoothness Visualization

6.1 Iso-Contour Plot

For a function f(x) de�ned on a smooth surface M , a iso-contour or iso-curve is
de�ned as fx 2 M : f(x) = cg for a given constant c, which is called the iso-value.
The smoothness of the iso-contours could re
ect the smoothness of the function.
Hence, a simple approach for visualizing the smoothness of the function on a surface
is to plot a family of iso-contours for a given sequence of iso-values fcigni=1. In our
problem, we have a function vector x(t) 2 IR� instead of one scalar function. One
way to visualize them together is to plot iso-contours for kx(t)k2. Fig 6.1 shows
both the geometry (the �rst column) and the function (the second column) di�usion
e�ects. In this example and the other examples in this section, a scalar function
value at vertex pi = (xi; yi; zi) of the given mesh is speci�ed as x

2
i +jyij+sin(zi)+�i,

where �i = (�1)i0:3di=(i(mod 5)+ 1:0) are regarded as the noise with the di as the
average distance of the one-ring neighbor vertex positions to pi.

6.2 Riemannian Curvature Plot

It is well known the curvature at any point is a good measurement of the speed of
motion of a surface, in its normal direction and away from its tangent plane. The
counterpart of Gaussian curvature for a surface is Riemannian curvature for a Rie-
mannian manifold (see [7, 34]). To visualize the smoothness of both the geometric
and surface function data, the Riemannian curvature can be computed and coded

into color. Let ti =
@
@�i

, tij =
@2

@�i@�j
. Then we derived the following formula for

Riemannian curvature (see [1] for detail):

K(x) =
tT12T12t12 � tT11T12t22 + tT11t22 � tT12t12

kt1k2kt2k2 � (tT1 t2)
2

; (6.1)

where T12 = [t1; t2]G
�1[t1; t2]

T . It is easy to check that K(x) coincide with the
Gaussian curvature if k = 3. Fig 6.2 shows both the geometry di�usion e�ect
(the �rst column) and the geometry & function di�usion e�ect (the last column,
Riemannian curvature plot).
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Fig 6.1: First column: The �rst �gure is the input noisy geometry (102,208 triangles), the

second and third �gure are the geometry di�usion results after 1 and 4 fairing iterations,

respectively. Second column: The iso-contour plots of the function kxk2 on the smoothed

head. The three �gures show the results after 0, 1 and 4 fairing iterations, respectively.
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Fig 6.2: First column: The �rst �gure is a noisy input geometry (25,600 triangles), the

second and third are the geometry di�usion results after 1 and 6 fairing iterations. Second

column: The �rst is the Riemannian curvature plots on the noisy surface with a given

noisy function. The second and the third are the results of 1 and 9 fairing iterations for

both the surface and the function on surface.

6.3 Mean Curvature Plot

It is known that �Mx = 2H(x) (see [35], page 151), where H(x) is the mean
curvature vector. The di�usion equation (2.5) describes the mean curvature 
ow.
Hence, the mean curvature plot is the right choice for visualizing the smoothness
of the data. For a 2-dimensional Riemannian submanifold M of IR�, the mean
curvature vector is well de�ned (see [35] page 119). We arrive at the following
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simple form (see [1])

H(x) =
[g22t11 + g11t22 � 2g12t12]

?

2(g11g22 � g212)
; (6.2)

where [ � ]? denotes the vector component that is orthogonal to the tangent space
(the normal component of the vector). Di�ering from the classical mean curvature
for a surface, the mean curvature vector is a vector in the normal space. For
k = 3, H(x)Tn(x), which is the length (with a sign) of H(x), is the classical mean
curvature. Here n(x) represents the unit normal of the surface at x. The �gures
in the second column of Fig 6.3 show the plot of kHk. In this example both the
geometry and surface function data are smoothed.

7 Conclusions and Examples

We have presented a PDE based anisotropic di�usion approach for fairing noisy
geometric surface data and function vector data on the surface. The �nite element
discretization of the di�usion problem is realized by the combination of the limit
function representation of Loop's subdivision together with the di�usion model.

Additional examples given in Fig 7.1 show the application of the di�usion process
to the surface texture maps (2D texture vector coordinates at each of the vertices of
the surface triangulation). To show the regularizing e�ect of the di�usion process,
the textures chosen are 512 � 512 images with regular patterns. The texture for
the bunny is a net-like pattern woven from strips. The texture for the torus model
consists of alternating blue and green squares with a red disc in each of the squares.
The �rst row is the initial texture map. The second and third are after one and �ve
fairing iterations of the texture vector coordinates.

Finally, we summarize, in Table 7.1, the time consumed by some of the examples.
The third column is the time (in seconds) for forming the sti�ness matrix (one time
step). The fourth column is the required number of iterations for solving the linear
systems by the Gauss Seidel method. The last column is the average time per
Gauss Seidel iteration. We separate the total time into two parts, because the cost
for forming the matrix is �xed, while the time for solving the linear system depends
greatly on the used solver. For the sake of comparison, how the cost relates to the
number of triangles, the times are only for the evolution of the geometry. These
computations were conducted on a SGI Onyx2, using a single processor.
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for careful reading of this paper, and Lei Xu for creating the texture images.
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