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Abstract

In this paper (part three of the trilogy) we use low degreeG1 andG2 continuous regular algebraic
spline curves defined within parallelograms, to interpolate an ordered set of data points in the
plane. We explicitly characterize curve families whose members have the required interpolating
properties and possess a minimal number of inflection points. The regular algebraic spline curves
considered here have many attractive features: They are easy to construct. There exist convenient
geometric control handles to locally modify the shape of the curve. The error of the approximation is
controllable. Since the spline curve is always inside the parallelogram, the error of the fit is bounded
by the size of the parallelogram. The spline curve can be rapidly displayed, even though the algebraic
curve segments are implicitly defined. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the first two parts (Xu et al., 2000a, 2000b) of this trilogy of papers, we
have introduced the concept of a discriminating family of curves by which regular
algebraic curve segments are isolated. Using different discriminating families, several
characterizations of the Bernstein–Bézier (BB) form of the implicitly defined real bivariate
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polynomials over the plane triangle and the parallelogram are given, so that the zero
contours of the polynomials define smooth and single sheeted real algebraic (called regular)
curve segments. In this part three of the trilogy of papers, we use segments of low degree
algebraic curvesGmn(u, v)= 0 in tensor product BB form defined within a parallelogram
or rectangle to constructG1 and G2 splines. A tensor product BB-form polynomial
Gmn(u, v) = ∑m

i=0
∑n
j=0bijB

m
i (u)B

n
j (v) of bi-degree(m,n) has total degreem + n,

however, the class ofGmn(u, v) is a subset of polynomials of total degreem + n. G1

(respectivelyG2) continuity implies curve segments share the same tangent (curvature) at
join points (knots). In each of theG1 andG2 constructions, we develop a spline curve
family whose members satisfy given interpolation conditions. Each family depends on one
free parameter that is related linearly to the coefficients ofGmn(u, v).

Prior work on using algebraic curve spline in data interpolation and fitting focus on
using bivariate barycentric BB-form polynomials defined on plane triangles (see (Xu et al.,
2000a, 2000b) for references). Compared with A-spline segments defined in triangular
(barycentric) BB-form (Bajaj and Xu, 1999), these algebraic curve segments in tensor
product form have the following distinct features:

(1) They are easy to construct. The coefficients of the bivariate polynomial that define
the curve are explicitly given.

(2) There exist convenient geometric control handles to locally modify the shape of the
curve, essential for interactive curve design.

(3) The spline curves, for the rectangle scheme, areε-error controllable whereε is the
pre-specified width of the rectangle.

(4) These splines curves have a minimal number of inflection points. Each curve
segment of the spline curve has either no inflection points if the corresponding edge
is convex, or one inflection point otherwise.

(5) Since the required bi-degree(m,n) for G1 andG2 is low (in this paper, min{m,
n} � 2), the curve can be evaluated and displayed extremely fast. We explore both
display via parameterization as well as recursive subdivision techniques (see (Peters,
1994)).

(6) In the six spline families defined by Theorems 4.1–4.4, 5.1 and 5.2 in Sections 4
and 5, there are four cases with min{m,n} = 1. In these cases, rational parametric
expressions are easily derived. Hence, we have both the implicit form and the
parametric form. Such dual form curves prove useful in several geometric design
and computer graphics applications.

(7) In treating a nonconvex edge in the triangular scheme (see (Bajaj and Xu, 1999)),
we need to break the edge into two parts by inserting an artificial inflection point.
In the present parallelogram or rectangle scheme, we need not divide the edge and
the inflection point occurs only when necessitated by the end point interpolating
conditions.

These features make these error-bounded regular algebraic spline curves promising in
applications such as interactive font design, image contouring etc.

The rest of the paper is as follows. In Section 2 we show how a number of data fitting
problems reduce to interpolating or approximating a polygonal chain of line segments
with error bounds. Some notation and geometric conventions are introduced in Section 3.
In Section 4, we discuss the problem of polygonal chain approximation byG1 andG2
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D4-regular spline curves defined on parallelograms. In Section 5, we discuss the problem
of polygonal chain approximation byG1 D3-regular spline curves defined on rectangles.
Examples are given in Section 6. Section 7 concludes the paper. Proofs are detailed in
Appendix A.

2. Polygonal chains

A polygonal chain is an ordered sequence of polygonal line segments, where any three
adjacent points are not collinear. Several geometry processing tasks generate polygonal
chains for shape representation in 2D. Examples include shape or font design, fitting
from “noisy” data, image contouring, snakes (Kass et al., 1988) and level set methods
(Sethian, 1996). In this section, we mention a few of them that have some attached error or
uncertainty.

a. Noisy vertex data
The vertex data (position) comes from a multi-sampling process with possible error. The

error boundε is known in advance. Fig. 2.1 shows such a case. The white circles are the
repeatedly sampled points, the black dots are approximations of the sampled points. The
approximation of the point can be computed as the center of gravity or center of bounding
circular fits. The polygonal chain is obtained by connecting these black dots. The spline
curve to be constructed interpolates the vertices of the polygonal chain. Hence the error
around each vertex is bounded byε.

b. Noisy curve data
Suppose a curve is sampled within someε error band around the curve. The sampled

point sequence{vi} could be dense. To produce a polygonal chain to these points, we
use a “strip pasting” technique. Choose the strip width to be no less than 2ε. Then use
the minimal number of strips to cover the sample points (see Fig. 2.2). The vertices
of the polygonal chain are the intersection points of two mid-lines of adjacent strips.
A computational method for obtaining the minimal number strips can be found in
(Bhaskaran et al., 1993). A greedy method to obtain a minimal “strip pasting” uses an
adaptive piecewise linear least square fitting, starting from one end of the data. TheG1

D3-regular curves developed in Section 5 are very suitable to interpolate these polygonal
chains.

Fig. 2.1. Polygonal chain extracted from over-sampled points.
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Fig. 2.2. Polygonal chain from noisy curve data and using adaptive “strip pasting”: The white circles
are original sampled points with error, and the black dots are the vertices of an extracted polygonal
chain.

Fig. 2.3. From an image to polygonal chains.

c. Contour from an image
A 2D image can be treated as a piecewiseC0 bilinear function interpolating the intensity

values at each pixel. A linear isocontour of the function is a polygonal chain. Of course,
such a polygonal chain may be quite dense, hence a simplification step is often used
to obtain coarser or multiresolution representations. Fig. 2.3 shows an image and an
isocontour with two simplified polygonal chains. The simplification method is established
based on geometric error (Euclidean distance) control, that is, a point is removed if the
distance of the point to the line, that interpolates its two neighbor points, is less than a
givenε. Hence all original points are within anε-neighborhood of the simplified polygonal
chain. Again, theG1 D3-regular curves defined on rectangles with rectangle-width 2ε are
just the right family of curves to provide smooth approximation of these polygonal chains.
The two simplified polygonal chains in Fig. 2.3 are obtained by takingε to be 0.05 and
0.25, respectively.

d. Polygonal chain to polygonal chain
One polygonal chain can be produced from another polygonal chain by subdivision or

corner cutting. Fig. 2.4 shows four polygonal chains obtained by corner cutting with cutting
ratios 0.25 and 0.5, respectively and subdivision. When the cutting ratio is 0.5, then each
edge of the new polygonal chain isconvex (see the next section for the definition of a
convex edge) if the tangents at the vertices are taken to be the original edges. Smooth
approximations of these polygonal chains are suitable for triangular A-splines (Bajaj and
Xu, 1999) as well as ourD3-regular curves (see Section 5.1). The vertices of the polygonal
chain (c) are located away from the original edge by a specified distanceδ. We call this an
“offset corner cutting” scheme. The offset will make constructedD4-regular curves be in
a bounded neighborhood of the original vertices and hence appropriate for over-sampled
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Fig. 2.4. Polygonal chains (of black vertices) produced from polygonal chains (of white vertices):
(a) Corner cut with cutting ratio 0.25; (b) Corner cut with cutting ratio 0.5 yielding a convex polygon;
(c) Offset corner cut with cutting ratio 0.25; (d) Interpolatory subdivision.

noisy vertex data. For the same purpose, an interpolatory subdivision scheme (see, e.g.
(Warren, 1995)) could also be employed (see Fig. 2.4(d)) such as the 4-point rule with
mask(−1/16,9/16,9/16,−1/16) (see (Dyn et al., 1987)).

3. Some notations and preliminaries

Tensor BB form
The regular spline curve discussed in this paper consists of a chain of curve segments.

Each segment is defined by the zero contour of a bivariate polynomial

Gmn(u, v)=
m∑
i=0

n∑
j=0

bijB
m
i (u)B

n
j (v)

on a parallelogram[p1p2p3p4], where(u, v)T ∈ [0,1] × [0,1] relates to a pointp =
(x, y)T ∈ [p1p2p3p4] by the map

p = (p3 − p1)u+ (p2 − p1)v + p1. (3.1)

We assume thatp1,p2,p4,p3 are clockwise, any three of them are not collinear and
p1 −p2 = p3 − p4. From map (3.1), we have

[u,v]T = [p3 −p1,p2 − p1]−1[p− p1] =M[p− p1].

Derivative data
A polygonal chain is denoted by its vertices{vi}Ni=0. On each vertex, we assume that the

first (forG1 continuity) and the second (forG2 continuity) order derivatives are given. We
assume these derivatives are the evaluation results of an (unknown) parametric form curve
r(l) at l = li . Hence these derivatives are plane vectors denoted byr

(j)
i := r(j)(li), j = 1,2.

These derivatives can be estimated from the given data by some known techniques, such
as divided differences or local interpolation by parametric curve (see, for e.g., (Bajaj and
Xu, 1999)). Other types of data, for instance functional curve data or implicitly defined
curve data, could be converted to parametric data (see (Bajaj and Xu, 1999)). Furthermore,
without loss of generality, we assume that the parameterl is the arc length of the curve. It is
well known that, ifl is the arc length of the curve, the derivative vectors have the following
geometric interpretation:r(1)(l) is the tangent vector with unit length,r(2)(l) is the normal
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Fig. 3.1. (a) Decomposition ofr(k) onp3 −p1 andp2 −p1; (b) The decomposition ofMr(k) in the
local (u, v) system.

(i.e., r(1)(l)Tr(2)(l) = 0) and‖r(2)(l)‖ is the curvature. Ifl is not the arc length, we can
transform the derivatives by

r̃
(1)
i = r

(1)
i /

∥∥r(1)i ∥∥, r̃
(2)
i = r

(2)
i /

∥∥r(1)i ∥∥2 − (
r
(1)
i

T
r
(2)
i

)
r
(1)
i /

∥∥r(1)i ∥∥4

so thatr̃ (1)i andr̃ (2)i have the required properties.

Decomposition of derivative data
Let [p1p2p3p4] be a parallelogram. Then we can decompose vectorsr(1)(l) andr(2)(l)

onto the directionp3 − p1 andp2 − p1 (see Fig. 3.1), i.e.,

r(k)(l)= [p3 − p1,p2 − p1]
[
αk(l), βk(l)

]T =M−1[αk(l), βk(l)]T
. (3.2)

The decomposition coefficientsαk(l), βk(l) will be frequently used later without further
interpretation. It is easy to see thatαk(l) = 0 if r(k)(l) is parallel top2 − p1. Similarly,
βk(l) = 0 if r(k)(l) is parallel top3 − p1. Using map (3.1) and decomposition (3.2), we
may convert the curve construction problem on[p1p2p3p4] into that on[0,1] × [0,1] in
the(u, v)-system.

G1 and G2 continuity
Let Gmn(u, v) = 0 be the curve defined on[p1p2p4p3]. Suppose the curve is parame-

terized asr(l). ThenH(l) :=Gmn(u(l), v(l)) :=Gmn(M[r(l)− p1])≡ 0. Differentiating
H(l)= 0 aboutl once and twice, we have

r(1)(l)TMT∇Gmn = 0, (3.3)

r(2)(l)TMT∇Gmn + r(1)(l)TMT∇2GmnMr
(1)(l)= 0, (3.4)

where∇Gmn = [∂Gmn/∂u, ∂Gmn/∂v]T and∇2Gmn = ∇(∇Gmn)T. Condition (3.3) forces
the curveGmn(u, v) = 0 tangent with the curver(l), hence the curve isG1 continuous if
∇Gmn �= 0. Condition (3.4) forces the curveGmn(u, v)= 0 to be doubly tangent with the
curve r(l), hence the curve isG2 continuous. Higher order continuity formulas can be
derived by differentiating (3.4), but they will have more terms. In this paper, we consider
only continuity up toG2. Using decomposition (3.2), (3.3) and (3.4) become[

α1(l), β1(l)
]∇Gmn = 0, (3.5)[

α2(l), β2(l)
]∇Gmn + [

α1(l), β1(l)
]∇2Gmn

[
α1(l), β1(l)

]T = 0. (3.6)
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Fig. 3.2. Left: convex edge. Right: nonconvex edge. The lines with arrows are tangents.

Fig. 4.1. Parallelogram chain.

In the next two sections, we shall use these relations to constructG1 andG2 curves.

Convexity of an edge
For an edge[vi−1vi ] of a polygon chain{vi}Ni=0, if the vectorsr(1)i−1 andr(1)i at vi−1 and

vi lie on opposite sides of the linet (vi − vi−1), then the edge is calledconvex. Otherwise it
is nonconvex (see Fig. 3.2). In Fig. 4.1,[v0v1], [v3v4] and[v4v5] are convex edges,[v1v2]
and[v2v3] are nonconvex edges.

4. Polygonal chain approximation by D4-regular spline curves

Given an input polygonal chain{vi}Ni=0, we useD4-regular curves to smoothly
approximate it, by interpolating the vertices with given first (forG1 continuity) and the
second (forG2 continuity) order derivatives.

Step 1. Form a parallelogram chain
For each line segment (edge) of the polygonal chain, construct a parallelogram such

that (see Fig. 4.1, where the arrows are tangent vectors): (i) the line segment is one of
the diagonals of the parallelogram; (ii) the tangent line of a vertex is contained in the two
incident parallelograms.

For a convex edge[vi−1vi], the corresponding parallelogram can be formed by the
four pointsp2, vi−1, p3, vi , wherep2 is the intersection point of the two tangents,
p3 = vi−1 + vi − p2. For a nonconvex edge, take one point on each side of the edge
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Fig. 4.2. (a) Symmetric parallelogram about the tangent and the curve family for a convex edge. The
dotted curve isB∞. The shaded part isE1; (b) The curve family for a nonconvex edge. The dotted
curves areL0 andL∞. The shaded part isE2.

such thatp3 − vi−1 = vi − p2. These two points and the endpoints of the edge form the
parallelogram.

Assumption 4.1. For the convex edge[vi−1vi ], the tangent linesvi−1 + sr
(1)
i−1 and

vi + tr
(1)
i have intersection point at(s∗, t∗) with s∗ > 0.

It should be noted that under Assumption 4.1, it is always possible to construct a
parallelogram chain, and that this construction is not unique. In the construction ofG1

curves for convex edges, we shall allowp2 andp3 to vary along a line (see Fig. 4.2(a) and
relation (4.2) for varyingp2, p3 that depend on a parameterλ). In other cases, these points
are fixed.

Step 2. Construct D4-regular curves
For each parallelogram, construct aD4-regular curve, such that it interpolates the

endpoints of the line segment and has the given first order or second order derivatives. Let
Gmn(u, v)= 0 be the curve defined on[p1p2p4p3], wherep1 andp4 are the interpolation
points. In the following, we shall determine the minimalm andn, and provide the formulas
for computing the coefficients ofGmn(u, v) for G1 andG2 continuity. These formulas are
derived usingG1 andG2 conditions (3.5) and (3.6). The detailed algebraic derivation is
given in Appendix A.

4.1. A G1 curve spline family

A. Convex edge
Let [p1p4] be a convex edge, and[p1p2p3p4] be the parallelogram. Assumep1 =

r(a), p4 = r(b) for somea andb with a < b, and assumeβ1(a) > α1(a), β1(b) < α1(b).
Takem= n= 1.

1. Construction formulas.

b00 = b11 = 0, b10 = 1, b01 = 1− λ

λ
∈ (−1,0), λ > 1, (4.1)

p2 = λp′
2 + (1− λ)p′

3, p3 = (1− λ)p′
2 + λp′

3, (4.2)

wherep′
2 is the intersection point of the tangent lines ofp1 andp4 (see Fig. 4.2(a)),

p′
3 = p1 + p4 − p′

2 andλ is a free parameter.
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2. Reformulation. Letp = (p′
3−p1)s+ (p′

2−p1)t+p1. The curveG11(u, v)= 0 could
be redefined on the smaller parallelogram[p1p

′
2p

′
3p4] as:

Bλ:
[
4s − (s + t)2

]
λ2 − [

4s − (s + t)2
]
λ+ s(1− t)= 0. (4.3)

3. Bounding curves. Whenλ= 1, the curveG11(u, v) = 0 degenerates to straight lines
s = 0 (the edge[p1p

′
2]) and t = 1 (the edge[p′

2p4]), while whenλ = ∞, the curve
G11(u, v)= 0 degenerates to the curveB∞: 4s − (s + t)2 = 0.

4. Interpolation of an interior point. For any given pointp∗ = (p′
3 − p1)s

∗ + (p′
2 −

p1)t
∗ + p1 in the interior of the regionE1 enclosed by the curvesB1 andB∞, there exists

a uniqueλ ∈ (1,∞), that is

λ= 1

2
+ t∗ − s∗√

4s∗ − (s∗ + t∗)2
, (4.4)

such that the curveG11(u, v)= 0 interpolates the pointp∗.

Theorem 4.1. For a convex edge, there exists a degree (1,1) (m = n = 1) D4-regular
curve family G11(u, v) = 0, defined by (4.1)–(4.2), with a free parameter λ ∈ (1,∞), in
the region E1 enclosed by the curves B1 and B∞. Each curve in the family G1 interpolates
the endpoints of the edge. For any given point p in the interior of E1, there exists a unique
curve, defined by (4.1)–(4.2) and (4.4), in this family that interpolates the point p.

Note that the curveBλ defined by (4.3) on[p1p
′
2p

′
3p4] is not in the formG11. However,

if we transform it into barycentric form on the triangle[p1p
′
2p4], then we can show that

the curve isD1-regular on the triangle.
It is obvious that for fixedp2 andp3 that satisfy (4.2), there exists a unique curve

G11(u, v)= 0 thatG1 interpolates the edge.

Parameterization
FromG11(u, v)= 0, we obtain the parameterized expression

v = u

u− b01(1− u)
, u ∈ [0,1].

B. Nonconvex edge
We assumeβ1(a) � α1(a), β1(b) � α1(b). Takem = 1, n = 2. If β1(a) � α1(a),

β1(b)� α1(b), takem= 2, n= 1.

1. Construction formulas.

b00 = b12 = 0, b10 = 1, (4.5)

b01 = −1

2
δ � 0, b11 = −1

2
γ b02> 0, (4.6)

whereδ = α1(a)/β1(a), γ = α1(b)/β1(b) and b02 < 0 is a signed free parameter (see
Fig. 4.2(b) for the curve family).
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2. Bounding curves.

L0: u(1− v)− δ(1− u)v = 0,

L−∞: (1− u)v − γ u(1− v)= 0.

3. Interpolation of an interior point. For any given pointp = (u, v)T in the interior of
the regionE2 enclosed byL0 andL−∞, take

b02 = − (1− v)[u(1− v)− δ(1− u)v]
v[(1− u)v− γ v(1 − v)] , (4.7)

then the curve determined byb02 interpolates the pointp.

Theorem 4.2. For a nonconvex edge, there exists a degree (1,2) (or (2,1)) D4-regular
curve family, defined by (4.5)–(4.6) with a free parameter b02 ∈ (0,−∞), in the region E2
enclosed by L0 and L−∞, whose members G1 interpolate the endpoints of the edge. For
any given point p in E2, there exists a unique curve, defined by (4.5)–(4.7), in this family
that interpolates the point p.

Parameterization
Sincem= 1, n= 2, the curve can be expressed in rational parameterized form

u= − b01B
2
1(v)+ b02B

2
2(v)

B2
0(v)+ (b11 − b01)B

2
1(v)− b02B

2
2(v)

, v ∈ [0,1].

Shape control handles
For the given polygonal chain, the shape control handles are: (i) the direction of the

tangent vector at each vertex; (ii) an interpolating pointp in the regionE1, for convex
edges, orE2, for nonconvex edges.

4.2. A G2 curve spline family

A. Convex edge
Let [p1p4] be a convex edge and[p1p2p3p4] be the parallelogram. Again, we

assumeβ1(a) > α1(a), β1(b) < α1(b). Furthermore, we assume that the parallelogram
is constructed so thatα1(a)= β1(b)= 0. Now we need to takem= n= 2.

1. Construction formulas.

b00 = b01 = b12 = b22 = 0, b02 = −1, (4.8)

b10 = β1(a)
2

α2(a)
> 0, b21 = −α1(b)

2

β2(b)
> 0, (4.9)

4b11 = 2b10 + 2b21 + 1− b20, (4.10)

whereb20 is a free parameter (see Fig. 4.3(a) for the curve family).
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Fig. 4.3. (a)G2 curve family for a convex edge. The shaded part isE3; (b) G2 curve family for a
nonconvex edge. The shaded part isE4.

2. Interpolation of an interior point. Parameterb20 can be used to interpolate one point
(u, v)T in the interior of the parallelogram withu < v. ByG22(u, v)= 0, we have

b20 = B2
0(u)B

2
2(v)− b10B

2
1(u)B

2
0(v)− [b21B

2
2(u)+ b11B

2
1(u)]B2

1(v)

B2
2(u)B

2
0(v)

. (4.11)

3. Reformulation. Let α1 = 1 − v, α2 = v − u, α3 = u. RepresentG22(u, v) in the
barycentric coordinate form̃G22(α1, α2, α3) over the triangle[p1p2p4]:

G̃22(α1, α2, α3) :=
∑

i+j+k=3

aijkB
3
ijk(α1, α2, α3) (4.12)

with

a300= a210= a003= a012= 0, a111= 2b10 + 2b21 + b02 − b20

6
, (4.13)

a201= 2

3
b10, a102= 2

3
b21, a120= a021= 1

3
b02, a030= b02. (4.14)

Theorem 4.3. For a convex edge, say [p1p4], there exists a degree (2,2) convex curve
family in the triangle E3 = [p1p2p4], defined by (4.8)–(4.10), with b20 as a free parameter.
Each member in the family G2 interpolates the endpoints of the edge. If b20> 0, the curve
is D4-regular in the parallelogram [p1p2p4p3]. If b20 � 0, the curve, that is re-defined by
(4.12)–(4.14), isD1-regular on the triangle [p1p2p4]. For any given point p in the interior
of E3, there exists a unique curve, defined by (4.8)–(4.11), in this family that interpolates
the point p.

B. Nonconvex edge
Assumeβ1(a) � α1(a), β1(b) � α1(b) and the parallelogram is constructed so that

α1(a)= 0 or α1(b)= 0. That is, at least one of the tangent lines atp1 andp4 coincides
with one of the edges of the parallelogram (see Fig. 4.3(b)). Again, we takem= n= 2.

1. Construction formulas.

b00 = b22 = 0, b01 = −δb10, b21 = −γ b12, (4.15)

4b11 = 2(b12 + b01 + b10 + b21)− (b02 + b20), (4.16)
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b10 = 1

∆

{
α1(a)

[
β1(a)− α1(a)

][
γβ2(b)− α2(b)

]
+ 2α1(a)β1(a)

[
β1(b)− α1(b)

]2}
b20

− 1

∆

{
β1(a)

[
β1(a)− α1(a)

][
γβ2(b)− α2(b)

]}
b02, (4.17)

b12 = 1

∆

{
α1(b)

[
β1(b)− α1(b)

][
α2(a)− δβ2(a)

]
+ 2α1(b)β1(b)

[
β1(a)− α1(a)

]2}
b02

− 1

∆

{
β1(b)

[
β1(b)− α1(b)

][
α2(a)− δβ2(a)

]}
b20, (4.18)

whereδ = α1(a)/β1(a), γ = α1(b)/β1(b), ∆= [α2(a)− δβ2(a)][γβ2(b)− α2(b)], b02 =
−1 andb20> 0 is a free parameter (see Fig. 4.3(b) for the curve family).

2. Bounding curves. The bounding curves of the curve family are defined by taking
b20 = 0 and b20 = ∞. Let G22(u, v, b02, b20) be defined by (4.15)–(4.18). Then
G22(u, v, b02,0) = b02G22(u, v,1,0), G22(u, v,0, b20) = b20G22(u, v,0,1). Hence the
bounding curves areG22(u, v,1,0)= 0,G22(u, v,0,1)= 0.

Theorem 4.4. For a nonconvex edge, we have a one parameter D4-regular curve
family {b20G22 (u, v,0,1) − G22(u, v, 1,0) = 0: b20 > 0} whose members G2 in-
terpolate the edge and have only one inflection point. For any given point p =
(u∗, v∗)T in the interior of the region E4 enclosed by the curves G22(u, v,0,1) = 0 and
G22(u, v,1,0) = 0 in the parallelogram, there exists a unique curve in the family with
b20 =G22(u

∗, v∗,1,0)/G22(u
∗, v∗,0,1) that interpolates the point p.

Curve evaluation and display
SinceG22(u, v) could be expressed as

∑2
i=0 Bi(v)B

2
i (u) with B0(v) < 0,B2(v) > 0 on

(0,1), the curveG22(u, v)= 0 can be evaluated for eachv in (0,1) by finding the zeros of
a quadratic polynomial, hereBi(v)= ∑2

j=0bijB
2
j (v). For the case of a convex edge, it is

possible that the quadratic has two zeros in(0,1), and the correct one is such thatu < v.
For the nonconvex edge, the quadratic has exactly one zero in(0,1).

For intensive evaluation of the curve, the quarterly subdivision process forG22(u, v)

on the rectangle[0,1] × [0,1] could be used (see (Peters, 1994)) while discarding those
sub-rectangles on which the subdivision polynomials have only positive or negative
coefficients. On each sub-rectangle, a bilinear function, that interpolates function values on
the four vertices, is used to evaluate the curve intersection points. It follows from (Dahmen,
1986) that such a subdivision will have quadratic convergence. For example, ten steps of
subdivision will reduce the distance between the polynomial and the BB net to become
(1/210)2 ≈ 10−6 times the initial distance. By keeping a tree data structure, we achieve a
progressive display scheme for our curve splines.

Shape control handles
For the given polygonal chain, the shape control handles of the curve are:
(i) the direction of tangent vector at each vertex;
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(ii) the magnitude of the second order derivative vector (related to curvature) at each
vertex;

(iii) an interpolating point in the regionE3 for convex edges, orE4 for nonconvex edges.

5. Polygonal chain approximation by D3-regular curves

We shall useD3-regular curves to smoothly approximate the polygon by interpolating
the vertices together with the given tangents at the vertices. We could also interpolate
second order derivatives at the polygon vertices to achieveG2 continuity. Here we only
detailG1 continuity. TheG2 construction is very similar. The construction consists of the
following two steps:

Step 1. Form a rectangular chain
For each line segment (edge)[vi−1vi ] of the polygonal chain, construct a rectangle such

that (see Fig. 5.1, where the arrows are tangent vectors) the line segment is in the middle
of the rectangle. That is, two edges are parallel to the line segment at an equal distanceεi
from it, and the other two edges are orthogonal to the line segment and pass through the
endpoints of the line segment. Since the determined curve shall lie within the rectangle,εi
serves as a natural error controller of the approximation. The effect ofεi will be discussed
further in Section 5.2.

Assumption 5.1. For each edge[vi−1vi ], (vi − vi−1)
Tr
(1)
i−1> 0, (vi − vi−1)

Tr
(1)
i > 0.

Step 2. Construct the D3-regular curves
For each rectangle, construct aD3-regular curve, such that it interpolates the endpoints

of the line segment and has given first order derivatives. Let[p1p2p3p4] be a given
rectangle,v0 = (p1 + p2)/2, v1 = (p3 + p4)/2 be the interpolation points andr(1)0 , r

(1)
1

be the tangent vectors.

Fig. 5.1. Rectangular chain. The width of the rectangle for edge[vi−1vi ] is 2εi .
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Fig. 5.2. (a) Nonconvex curve; (b) Convex curves
(the solid curves). The shaded part isE5.

Fig. 5.3. (a) The caseα � β; (b) The case
α > β.

5.1. A G1 curve spline family

A. Convex edge
Suppose[v0v1] be a convex edge. From Assumption 5.1, we haveα1(a) > 0,α1(b) > 0.

Now assumeβ1(a) > 0, β1(b) < 0 (the caseβ1(a) < 0, β1(b) > 0 is similar) and take
m= 2, n= 1.

1. Construction formulas.

b00 = 1, b21 = −b20, b01 = −1, (5.1)

b10 + b11 = 2α = −2βb20, b20 = −αβ−1> 0, (5.2)

whereα = β1(a)/α1(a), β = β1(b)/α1(b), b11 is a free parameter (see Fig. 5.2(b) for the
curve family).

2. Limitations on free parameters. To make the curvesD3-regular and convex, we
enforce

b11< b
∗
11 := min

{√
−αβ−1,−1

2
+ α

[
1+ β−1]}. (5.3)

Theorem 5.1. For a convex edge, let G21(u, v, b11) be defined by (5.1)–(5.2), then we
have a convex D3-regular curve family {G21(u, v, b11) = 0: b11< b

∗
11}, whose members

G1 interpolate the endpoints of the edge. For any given point p = (u∗, v∗)T in the region
E5 enclosed by the curve G21(u, v, b

∗
11) = 0 and the line v = 1

2 there exists a unique
b11 satisfying G21(u

∗, v∗, b11)= 0 such that the curve G21(u, v, b11)= 0 interpolates the
point p.

B. Nonconvex edge
Assumeβ1(a)� 0,β1(b)� 0. Takem= 3, n= 1.

1. Construction formulas.

b00 = b30 = 1, b01 = b31 = −1, (5.4)

b10 + b11 = 4

3
α, b20 + b21 = −4

3
β, (5.5)

b11 + b20 = b10 + b21, (5.6)

b10 = b20 + 2

3
(α + β), b21 = b11 − 2

3
(α + β), (5.7)
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whereα = β1(a)/α1(a), β = β1(b)/α1(b), b20 or b11 is a free parameter (see Fig. 5.3 for
the curve family).

2. Limitations on free parameters. To ensure the curves areD3-regular and have only
one inflection point, we require

b20>max

{
b∗

20,
α − β − 2αβ

3α
,
β − α − 2β2

3β

}
whenα � β, (5.8)

b11<min

{
b∗

11,
β − α + 2α2

3α
,
α − β + 2αβ

3β

}
whenα > β, (5.9)

whereb∗
20 is the largest negative root ofh(b20) = 0, b∗

11 is the smallest positive root of
g(b11)= 0 with

h(b20) := 1+ 4b3
10 + 4b3

20 − 3b2
10b

2
20 − 6b10b20,

g(b11) := 1− 4b3
11 − 4b3

21 − 3b2
11b

2
21 − 6b11b21.

3. Interpolation to a normal. It should be noted that all the curves pass through the same
point (u∗, 1

2)
T with u∗ = α

α+β (see Fig. 5.3). Since

∇G31

(
u∗, 1

2

)
=

[
− 2αβ

α + β
,−2(α3 + β3)

(α+ β)3
− (6b20 + 4β)αβ

(α+ β)2

]T

,

by assigning a normal at(u∗, 1
2)

T, the uniqueb20 is determined.

Theorem 5.2. For a nonconvex edge, there exists a D3-regular curve family {G31(u, v)=
0} that has the following properties:

(i) Each curve in the family G1 interpolates the edge.
(ii) Each curve passes through the point (u∗, 1

2)
T.

(iii) There is only one curve in that family that has the given normal at (u∗, 1
2)

T.
(iv) The curve v = 1

2 and the curve given by b20 = b∗
20 (if α � β) or b11 = b∗

11 (if α > β)
are the two limit curves of the family.

Parameterization
Since the curve is defined byGm1(u, v)= ∑m

i=0bi0B
m
i (u)+v

∑m
i=0(bi0−bi1)Bmi (u)=

0, it follows from (3.1) that

p = (p3 − p1)u− (p2 − p1)

∑m
i=0bi0B

m
i (u)∑m

i=0(bi0 − bi1)B
m
i (u)

+ p1, u ∈ [0,1].

5.1.1. Shape control handles
For the given polygonal chain, the shape control handles of the curve are: (i) the direction

of the tangent vector at each vertex; (ii) an interpolating point in the regionE5, for convex
edges, or a normal at(u∗, 1

2)
T, for nonconvex edges.
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5.2. The effect of the size of rectangle

In the construction of rectangles in Step 1 at the beginning of this section, the widths of
the rectangles, namely 2εi , are arbitrarily chosen. One may ask: what is the effect of this
εi on the constructed curves for a given edge[vi−1vi ]? The conclusion is the following:
The curve family for smaller εi is a subset of the curve family for larger εi , for each of the
two cases discussed in Section 5.1. That is,εi will not change the shape of the curves but
changes the “number” of curves in the family. Whenεi > 0 becomes successively smaller,
more and more curves are expelled from the curve family, and the remaining curves (still
infinitely many) are successively close to edge (see Figs. 6.1(c) and (d)). To prove this
conclusion, supposeεi is magnified by a factorθ > 1, and suppose the notation on the
enlarged rectangle is the same as the original one but with an added prime. It is then easy
to see that

α′
1(l)= α1(l), β ′

1(l)= θ−1β1(l), u= u′, v = θ

(
v′ − 1

2

)
+ 1

2
.

Hence

B1
0(v)= 1

2
(1+ θ)B1

0(v
′)+ 1

2
(1− θ)B1

1(v
′),

B1
1(v)= 1

2
(1− θ)B1

0(v
′)+ 1

2
(1+ θ)B1

1(v
′).

Substituting these intoGm1(u, v), we have

Gm1(u, v)= θG′
m1(u

′, v′)= θ

m∑
i=0

1∑
j=0

b′
ijB

m
i (u

′)B1
j (v

′)

with

b′
i0 = (1+ θ)bi0 + (1− θ)bi1

2θ
, b′

i1 = (1− θ)bi0 + (1+ θ)bi1

2θ
.

Using these relations, we verify thatb′
ij satisfies all the relations asbij does. Therefore,

curveGm1(u, v)= 0 defined on the smaller rectangle is in the curve family defined on the
larger rectangle. Note that this statement holds for both the cases of the convex edge and
the nonconvex edge discussed in Section 5.1.

Note
In the six spline families we discuss in Sections 4 and 5, there are four cases with

min{m,n} = 1. In these cases, rational parametric expressions are easily derived. Hence,
for these cases, we have both the implicit form and the parametric form. For example,
theG1 D3-regular curve could be transformed into a parametric rational Bézier curve of
degree 4. The right figure of Fig. 5.4 shows the Bézier points of aG1 D3-regular curve
as well as the rectangle chain for the input polygonal chain (right figure). It is clear that
the rectangles enclose the curve more tightly than the convex hull of the Bézier points.
Furthermore, the shape of curve is easier to control using its implicit form than using its
parametric form, since the implicit form has one free parameter while the rational Bézier
of degree 4 has many more degrees of freedom. Also, the parameter change of the rational
Bézier form may lead the curve out of theG1 D3-regular curve family.
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Fig. 5.4. The left figure shows the input polygon. The right shows theG1 D4-regular curves and
Bézier points interpolating the vertices of the polygon within prescribed bounds.

6. Examples

To illustrate the data fitting flexibility of the spline curves introduced in the last two
sections, we provide several examples. In order to illustrate the features for each case, we
use first the following regular data:

{vi} = {
(1,1), (0,2), (−1,1), (1,−1), (0,−2), (−1,−1)

}
,{

r
(1)
i

} = {
(0,1), (−1,0), (0,−1), (0,−1), (−1,0), (0,1)

}
,{

r
(2)
i

} = {
(−1,0), (0,−1), (1,0), (−1,0), (−1,0), (1,0)

}
.

In each case, ten curves are plotted (see Figs. 6.1(a)–(d)) for ten different parameters to
show the curve family. The features of the curves shown in the figures coincide with the
analysis in Sections 4 and 5.

For the convex edge, theG1 curves (in Fig. 6.1(a)) within a parallelogram are located
away from the convex edge. In contrast, theG1 curves (Figs. 6.1(c), 6.1(d)) within a
rectangle are located near the convex edge. TheG2 curve family within a parallelogram
(Fig. 6.1(b)) has both these features.

For the nonconvex edge, theG1 curves (in Fig. 6.1(a)) within a parallelogram tend
to go directly from one vertex to the other. Hence the curves have sharp changes in the
tangent direction at the end points for the parameters near the boundary of its domain, even
though the curves are rather straight in the middle. TheG2 curves within a parallelogram
(Fig. 6.1(b)) do not have sharp changes in the tangent direction. TheG1 curves
(Figs. 6.1(c), 6.1(d)) within a rectangle closely follow the letterS, and additionally, all pass
through the same point. The curves in Fig 6.1(d) areG1 within the rectangle, but within a
smaller size (width = 2εi , andεi = 0.2, in contrast withεi = 1.0 in Fig. 6.1(c)) of rectangle.
As one can observe, these curves shrink towards the edges of the shrunken rectangle.

In summary,D3-regular andD4-regular curves have several common features and have
different features as well. For example, both of them can be sharp (rapid change of tangent
line) at the vertices. However,D4-regular curves can also be very flat (slow change of
tangent line) around vertices and sharp at other parts.D3-regular curves cannot be very flat
around vertices ifεi is small. These features can be utilized in shape design where sharp
and flat features are required.

The features of the curves introduced in this paper strongly suggest that these tensor-
product BB-form curve families serve a variety of geometric design and computer graphics
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Fig. 6.1. (a)G1 families on parallelograms. (b)G2 families on parallelograms. (c)G1 families on
rectangles withεi = 1.0. (d)G1 families on rectangles withεi = 0.2.

Fig. 6.2. The figure on the left shows a stack of input polygon contours of a human femur. The
middle and right show theG1 andG2 D4-regular curves interpolating the vertices of the contours,
respectively.

applications. Figs. 6.2 and 6.3 show some fitting examples from real data. Here the input
data are normalized into the cube[−3,3]3. The polygonal chains in Fig. 6.2 (left) are the
simplified contours stack of a human femur. Fig. 6.2 (middle and right) are the results
of G1 andG2 D4-regular curve approximation. The polygonal chains in the first row of
Fig. 6.3 are the simplified results of the polygonal chain shown in Fig. 2.3. The polygonal
chains in the third row of Fig. 6.3 are three fonts. The second and fourth rows are the curve
approximations.

7. Conclusions and future work

We have characterized the lowest bi-degree tensor BB-form polynomial to achieve
G1 andG2 continuous regular algebraic spline curves. Using the lowest bi-degree, we
constructed explicit spline curve families whose members satisfied givenG1 andG2

interpolation conditions. We also derived a geometric interpretation of each spline curve
family, so that the shape of the individual curves can be controlled intuitively.
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Fig. 6.3. The figures in the first row show the multiresolution representation of the input data
with geometry errors 0.01,0.05 and 0.25, respectively. The second row is the correspondingG1

D3-regular curves with rectangle chains, where the width of the rectangles are chosen to be 0.3. The
third and fourth rows are input polygons of three Chinese fonts and the correspondingG1 D4-regular
curves (with certainG0 vertices to capture the sharp features of the fonts).
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Fig. 7.1. Implicit space spline curve segment defined within (a) parallelepiped and (b) cubicoid, using
dual trivariate tensor product polynomial functions in BB-form.

Finally, we point out that theD3 and D4-regular curves used in this paper can
be extended to 3D space curves. The parallelogram and the rectangle become the
parallelepiped (see Fig. 7.1(a)) and the cubicoid (see Fig. 7.1(b)) volume cells, respectively.
TheG1 andG2 regular space spline curve segments are now defined by the intersection
of two zero contours of trivariate tensor product polynomial functions in BB-form within
each volume cell. Properties and data fitting schemes for these implicitly defined space
curves are currently being researched.

Appendix A

Proof of Theorem 4.1. Let [p1p4] be a convex edge, and[p1p2p3p4] be the parallel-
ogram that maps to the unit square by (3.1). Assumep1 = r(a), p4 = r(b) for some
a and b with a < b. It is easy to see that (see Fig. 3.1) the edge is convex if and
only if β1(a) > α1(a), β1(b) < α1(b) or β1(a) < α1(a), β1(b) > α1(b). Now we as-
sumeβ1(a) > α1(a), β1(b) < α1(b) (for the other case the discussion is the same, in
fact, we need only exchange the index ofp2 andp3). Using the interpolation condition
Gmn(0,0)=Gmn(1,1)= 0, we have

∇Gmn(0,0)= [mb10, nb01]T, ∇Gmn(1,1)= −[mbm−1,m, nbn,n−1]T. (A.1)

If we takem= n= 1, then by interpolatingp1 andp4 and the normalization condition, we
have (4.1) and then by (3.5) and (A.1) we haveα1(a)+β1(a)b01 = 0, α1(b)b01+β1(b)=
0. Henceb01 = −α1(a)/β1(a), b01 = −β1(b)/α1(b). Therefore, we require that

α1(a)α1(b)= β1(a)β1(b). (A.2)

Let n1 = −r(2)(a) and n4 = −r(2)(b) be the normal ofr(l). Then by (3.2) and the
orthogonal conditionr(2)(l)Tr(1)(l)= 0, we have

α1(a)n
T
1(p3 − p1)= −β1(a)n

T
1(p2 − p1),

α1(b)n
T
4(p2 − p4)= −β1(b)n

T
4(p3 − p4).

Hence (A.2) holds if and only if

nT
1(p3 − p1)n

T
4(p2 − p4)= nT

1(p2 − p1)n
T
4(p3 − p4) �= 0. (A.3)

This can be achieved if and only ifnT
1(p2 − p1) > 0 and the parallelogram issymmetric

about the normals. That is,p2 and p3 are on the line〈p1+p4
2 ,p′

2〉, wherep′
2 is the
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intersection point of the tangent lines ofp1 andp4 (see Fig. 4.2(a)). Letp′
3 = p1+p4−p′

2.
Then there exists aλ > 1 such that

p2 = λp′
2 + (1− λ)p′

3, p3 = (1− λ)p′
2 + λp′

3. (A.4)

Substitutingp2 andp3 into (A.3) and noting thatnT
1(p

′
2 − p1)= 0 andnT

4(p
′
2 − p4)= 0,

we can show that Eq. (A.3) holds, and

b01 = 1− λ

λ
. (A.5)

That is,b01 ∈ (−1,0) whenλ ∈ (1,∞). Let p = (p′
3 − p1)s + (p′

2 − p1)t + p1. Then by
(3.1) and (A.4) we have{

s = λu+ (1− λ)v

t = (1− λ)u+ λv
or

{
u= λs+(λ−1)t

λ+λ−1 ,

v = (λ−1)s+λt
λ−1+λ .

(A.6)

It follows from (A.5) and (A.6) that the curveG11(u, v)= b01B
1
0(u)B

1
1(v) + B1

1(u) B
1
0(v)= 0 can be rewritten as

Bλ:
[
4s − (s + t)2

]
λ2 − [

4s − (s + t)2
]
λ+ s(1− t)= 0.

Whenλ = 1, the curveG11(u, v) = 0 degenerates to the straight liness = 0 andt = 1,
while λ = ∞, the curveG11(u, v) = 0 degenerates to the curveB∞: 4s − (s + t)2 = 0.
Hence if we allow the pointsp2 andp3 to vary along the line〈p′

2p
′
3〉, that is,λ varies

in (1,∞), then we have a curve family between the limit curvesB1 andB∞ with λ as
parameter. For any given pointp∗ = (p′

3 −p1)s
∗ + (p′

2 −p1)t
∗ +p1 in the interior of the

regionE1 enclosed by the curvesB1 andB∞ (that is 4s∗ − (s∗ + t∗)2> 0,0< s∗ < 1,0<
t∗ < 1), there exists a uniqueλ ∈ (1,∞) defined by (4.4) such that the curveG11(u, v)= 0
interpolates the pointp∗. ✷
Proof of Theorem 4.2. It is easy to see that the edge is nonconvex if and only ifβ1(a)�
α1(a), β1(b) � α1(b) or β1(a) � α1(a), β1(b) � α1(b). We assumeβ1(a) � α1(a),
β1(b)� α1(b). As for the convex edge case, we are lead to requirement (A.2) ifm= n= 1.
This equality contradicts the nonconvex assumption. Hence we takem = 1, n = 2. If
β1(a)� α1(a), β1(b)� α1(b) we takem= 2, n= 1 and the discussion is similar. Then by
the interpolation condition and the normalization condition, we have (4.5). Relation (4.6)
follows from (3.5) and (A.1), whereb02< 0 is a free parameter. Therefore, we have aD4-
regular curve family withb02 ∈ (0,−∞), whose membersG1 interpolate the endpoints.
Whenb02 = 0, b02 = −∞ the limit curves are

L0: u(1− v)− δ(1− u)v = 0, L−∞: (1− u)v− γ u(1− v)= 0.

Both L0 andL−∞ are conics and each of themG1 interpolates one endpoint andG0

interpolates the other. For any given pointp = (u, v)T in the interior of the regionE2
enclosed byL0 andL−∞, there is a uniqueb02 defined by (4.7) such that the curve
determined byb02 interpolates the pointp. ✷
Proof of Theorem 4.3. Let [p1p4] be a convex edge and[p1p2p3p4] be the parallelo-
gram. Again, we assumeβ1(a) > α1(a), β1(b) < α1(b). Furthermore, we assume that the
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parallelogram is constructed so thatα1(a)= β1(b)= 0. Now we need to takem= n= 2.
Since

∇G22(0,0)=
[
b10

b01

]
, ∇G22(1,1)= −2

[
b12

b21

]
, (A.7)

∇2G22(0,0)= 2

[
b20 − 2b10 2(b11 − b01 − b10)

2(b11 − b01 − b10) b02 − 2b01

]
, (A.8)

∇2G22(1,1)= 2

[
b02 − 2b12 2(b11 − b21 − b12)

2(b11 − b21 − b12) b20 − 2b21

]
, (A.9)

we have, from the interpolation and normalization conditions and (3.5)–(3.6), relations
(4.8) and (4.9). Note thatα2(a) > 0, β2(b) < 0. Now b11 andb20 are free. One way to
choose them is to takeb20 = 1, hence the curve isD4-regular for anyb11. This parameter
could be used to interpolate any single point in the interior of the parallelogram. However,
the resulting curve may not be convex. If we require the curve be convex (note the edge
is convex), we assume the curve is cubic. That is, the leading coefficient ofG22(u, v) is
zero which gives (4.10). Now we have a one parameter curve family, whose memberG2

interpolates the edge, withb20 being the free parameter. This degree of freedom can be
used to interpolate one point(u, v)T in the interior of the parallelogram withu < v. That
is, takeb20 as (4.11).

It is easy to see that ifb20> 0, the curve isD4-regular. In the following we shall show
that if b20 � 0, then the curve isD1-regular in the triangle[p1p2p4]. Let (α1, α2, α3)

T be
the barycentric coordinate of(u, v)T in the triangle[p1p2p4]. Thenα1 = 1−v, α2 = v−u,
α3 = u. RepresentG22(u, v) in the barycentric coordinate form̃G22(α1, α2, α3) over the
triangle[p1p2p4]:

G̃22(α1, α2, α3) :=
∑

i+j+k=3

aijkB
3
ijk(α1, α2, α3),

we get (4.13)–(4.14). Hencea201 > 0, a102 > 0, a120 < 0, a021 < 0 and a030 < 0.
Therefore,G̃22(α1, α2, α3) = 0 is D1-regular. If b20 → ∞, the curve degenerates to
boundary lines of[p1p2p4]. ✷
Proof of Theorem 4.4. Since the edge is nonconvex, we haveβ1(a) � α1(a), β1(b) �
α1(b) or β1(a) � α1(a), β1(b) � α1(b). Now we assumeβ1(a) � α1(a), β1(b) � α1(b)

and the parallelogram is constructed so thatα1(a) = 0 or α1(b) = 0. Again, we take
m = n = 2 and the interpolation implies thatb00 = b22 = 0. It follows from (3.5)–(3.6)
and (A.7)–(A.9) that

b01 = −δb10, b21 = −γ b12, (A.10)

α2(a)b10 + β2(a)b01 + α1(a)
2(b20 − 2b10)

+ 4α1(a)β1(a)(b11 − b01 − b10)+ β1(a)
2(b02 − 2b01)= 0, (A.11)

−α2(b)b12 − β2(b)b21 + α1(b)
2(b02 − 2b12)

+ 4α1(b)β1(b)(b11 − b21 − b12)+ β1(b)
2(b20 − 2b21)= 0, (A.12)
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whereδ = α1(a)/β1(a), γ = α1(b)/β1(b). Again, we assumeG22(u, v) is cubic. That is,
the leading coefficient is zero, which yields

4b11 = 2(b12 + b01 + b10 + b21)− (b02 + b20). (A.13)

Substituting (A.10) and (A.13) into (A.11) and (A.12) and then solving (A.11) and (A.12)
for the unknownsb10 and b12, we have (4.17) and (4.18), whereb02 and b20 are free
parameters. From the construction of the parallelogram chain and the assumptions on the
derivatives we know that

α2(a)− δβ2(a) > 0, γβ2(b)− α2(b) > 0.

Hence∆> 0 andb10> 0,b12< 0 if b02< 0, b20> 0. It follows from (A.10) thatb01 � 0,
b21 � 0. Hence the curve isD4-regular. Since the total degree ofG22 is three, the curve has
only one inflection point. By normalizingb02 to be−1, we have one free parameter.✷
Proof of Theorem 5.1. Suppose[v0v1] is a convex edge. As (3.2), letr(1) = α1(p3 −
p1) + β1(p2 − p1). From the construction of the rectangular chain, we haveα1(a) > 0,
α1(b) > 0. Now assumeβ1(a) > 0, β1(b) < 0 (the caseβ1(a) < 0, β1(b) > 0 is similar)
and takem = 2, n = 1. Then from theG0 and normalization conditions we have (5.1).
Since

∇G21

(
0,

1

2

)
= [b10 + b11,2b01]T, ∇G21

(
1,

1

2

)
= −[b10 + b11,2b20]T,

(3.5) givesb10 + b11 = 2α = −2βb20, whereα = β1(a)/α1(a), β = β1(b)/α1(b). Then
we have (5.2). Hence we get a curve family withb11 as a free parameter. In order to have
the curve to beD3-regular, we require (see Lemma 2.3 of (Xu et al., 2000b))

b11<
√
b01b21 = √

b20 =
√

−αβ−1.

Then byb10 = −b11 + 2α >−√−αβ−1 = −√
b00b20, the curve isD3-regular. However,

the curve may not be convex (see Fig. 5.2(a)). If we further enforce (5.3), then the curve
is convex. In fact, whenb11 = −1

2 + α
[
1+ β−1

]
, the curve is a conic and hence convex.

Whenb11 satisfies (5.3), then the curve is below this conic curve (see Fig 5.2(b)) and again
the curve is convex (see Theorem 3.1 of (Bajaj and Xu, 1999)).✷
Proof of Theorem 5.2. Assumeβ1(a) � 0, β1(b) � 0 (the caseβ1(a) � 0, β1(b) � 0
is similar) and takem= 3, n= 1. Note that the curve will intersect the linev = 1

2 at least
three times, hencem= 3 is the minimal degree inu. Takeb00 = b30 = 1, b01 = b31 = −1,
then theG0 condition is satisfied. Since

∇G31

(
0,

1

2

)
=

[
3

2
(b10 + b11),−2

]T

,

∇G31

(
1,

1

2

)
=

[
−3

2
(b20 + b21),−2

]T

,

condition (3.5) yields (5.5). Again, we assume the leading coefficient ofG31(u, v) is zero,
which leads to (5.6). Hence we have (5.7). It follows from Lemma 2.4 of (Xu et al., 2000b)
that the considered curve isD3-regular if and only if
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h(b20) := 1+ 4b3
10 + 4b3

20 − 3b2
10b

2
20 − 6b10b20> 0,

g(b11) := 1− 4b3
11 − 4b3

21 − 3b2
11b

2
21 − 6b11b21> 0.

Let b∗
20 be the largest negative root ofh(b20) = 0, b∗

11 be the smallest positive root of
g(b11)= 0. Then it is easy to check that if

b20> b
∗
20, whenα � β; or b11< b

∗
11, whenα > β, (A.14)

the curve isD3-regular. Furthermore, it should be noted that all the curves pass through
the same point(u∗, 1

2)
T with u∗ = α

α+β (see Fig. 5.3). Since

∇G31

(
u∗,

1

2

)
=

[
− 2αβ

α + β
, −2(α3 + β3)

(α + β)3
− (6b20 + 4β)αβ

(α + β)2

]T

,

by assigning a normal at(u∗, 1
2)

T, the uniqueb20 is determined. Ifb20 or resultingb11
satisfy (A.14), then the curve isD3-regular. To ensure that the curve has a minimal number
of inflection points, we require that the curve is below the tangent linev0 + tr(1)0 and is

above the tangent linev1 + tr(1)1 . On the linev0 + tr(1)0 ,G31(u, v) is a polynomial of degree
3 with the constant and linear terms being zero, since the curve is tangent with the line.
From this we get 2(α − β)+ 3α(b11 − b10) < 0. Substituting the second tangent line into
G31(u, v), we obtain 2(α − β)+ 3β(b20 − b21) > 0. Using (5.5) and (5.6), we obtain

b11<
β − α+ 2α2

3α
, b20>

α − β − 2αβ

3α
,

b20>
β − α− 2β2

3β
, b11<

α − β + 2αβ

3β
.

Combining these with (A.14), we have (5.8) and (5.9).✷
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