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Abstract

In this paper, we describe a compression scheme for encoding time-
varying isosurfaces and amorphous volumetric features (volumes
within specified value ranges) in a unified way, which allows for
on-line reconstruction and rendering. Since the size of even one
frame in a time-varying data set is very large, transmission and on-
line reconstruction are the main bottlenecks for interactive visual-
ization of time-varying volume and surface data. To increase the
run-time decompression speed and compression ratio, we decom-
pose the volume into small blocks and encode only the significant
blocks that contribute to the isosurface and volumetric features. The
result shows that our compression scheme achieves high compres-
sion ratio with fast reconstruction, which is effective for client-side
rendering of time-varying isosurfaces with amorphous volumetric
features.

Keywords: Compression, Wavelet Transform, Time-Varying Vol-
ume Visualization, Hardware-Acceleration, Isocontouring.

1 Introduction

As computing power and scanning precision rapidly increases,
scientific simulations and measurements generate more and more
densely sampled time-varying volume data which have very large
sizes. For example, the size of an oceanographic temperature
change data set tested in this paper is 237MB/frame (2160 � 960 �
30 float type) � 115 frames, and the gas dynamics data set is
64MB/frame (256 � 256 � 256 float type) � 144 frames. To visual-
ize these data, volume rendering and isocontouring are performed
frame by frame, so that a user can navigate and explore the data set
in space and time. Each rendering technique has its own strength.
For example, while volume rendering can display amorphous volu-
metric regions specified by the transfer function with transparency,
isocontouring can provide the geometric shape of the surface spec-
ified by an isovalue. Both techniques are often combined for better
understanding of the overall structure in a volumetric data set.

While current state-of-the-art graphics hardware allows very fast
volume and surface rendering, transfer of such large data between
data servers and browsing clients can become a bottleneck due to
the limited bandwidth of networks. Therefore, an efficient data
management scheme is an important factor in the rendering per-
formance. To reduce the size of the data set, it is natural to exploit
temporal and spatial coherence in any compression scheme. How-
ever, since the data size of even a single frame is very large, run-
time decompression can be a bottleneck for interactive playback.
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From this motivation, we developed a unified compression
scheme for encoding time-varying isosurfaces and associated vol-
umetric features. The inputs to compress a temporal sequence
of isosurfaces and associated volumetric features are k isovalues
isoi � i � 1 � � k, l value ranges � ra � rb � i � i � 1 � � l and discretized time-
varying volume data V . The data V , containing T time steps can be
represented as V � 	 V1 � V2 � � � � � VT 
 , where Vt � 	 f t

i � j � k � i � j � k are in-
dices of x � y � z coordinates 
 is the volume at time step t, containing
data values f t

i � j � k at the indices i � j � k. Our primary goal is to

 compress time-varying isosurface and volume features in a
unified way.

 reduce the size of time-varying volumetric data with minimal
image degradation.

 allow real-time reconstruction and rendering with PC graphics
hardware acceleration.

We are going to borrow the idea of MPEG compression to effi-
ciently exploit spatial and temporal coherence in data sets. How-
ever, direct extension of MPEG for 2D video compression to time-
varying isosurface and feature compression is not suitable for sat-
isfying our goals. Since MPEG encodes and decodes every block
in each frame of the volumetric time-varying data, unnecessary re-
gions within the data may also be encoded and decoded.

We adopt a block-based wavelet transform with temporal encod-
ing in our compression scheme. The wavelet transform is widely
used for 2D and 3D image compression. By truncating insignificant
coefficients after wavelet transformation, these schemes achieve
high compression ratio while keeping minimal image distortion.
However, complete transformation of each frame is a waste of
space and time resources, because function values not contribut-
ing to the given isosurfaces and volumetric features do not need to
be encoded. In addition, the contributing values which have small
changes over time do not need to be updated. Therefore encoding
and decoding only the values significant in space and time instead
of the full volume can improve both compression ratio and decom-
pression speed.

Each frame of volume is classified as either an intra-coded frame
or a predictive frame. The intra-coded frames can be decompressed
independently while the predictive frames are the differences from
the previous frame. Assuming that different blocks have different
temporal variance, we can sort the blocks based on their temporal
variance and truncate insignificant blocks to achieve higher com-
pression ratios and faster decompression speeds.

In addition to efficient compression, fast reconstruction and ren-
dering of the isosurface and volumetric features are also achieved.
By attaching seed cells in the compressed stream of each volume
frame, the rendering browser can construct the isosurfaces in min-
imal time. The fast speed comes from removing the search phase
for finding at least one cell intersecting with each isosurface compo-
nent. Since the isosurface is fixed, we need to store only one seed
cell per isosurface component, which hardly affects the compres-
sion ratio. We can also compress the selected set of components
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in isosurfaces and volumes, and their evolution by using the fea-
ture tracking

�
method [Silver and Wang 1997]. The reconstructed

features can be rendered in real-time using PC graphics hardware.
Figure 1 shows the overall architecture of our real-time volu-

metric video display system. The algorithm requires the features
to be defined before compression. These features can be identi-
fied manually or by automatic feature detection tools [Pfister et al.
2001]. To save disk storage space and to overcome the limitation of
I/O bandwidth in network systems, a series of compressed frames
are read from data source servers to browsing clients. Once each
compressed frame is read, it is decompressed in software. The re-
constructed image array is used for accelerated isocontouring and
also sent to the texture memory in the graphics hardware for dis-
playing volumetric features. This architecture can allow users to
explore and interact with isosurfaces embedded in the amorphous
volumetric features in space and time, which is our ultimate goal.

The remainder of this paper is organized as follows. First, the
related work is described. Then, in section 3, volumetric video
displaying architecture is described. In section 4, volumetric video
compression scheme supporting interactive decompression is pro-
posed. Section 5 describes our scheme for interactive browsing
of compressed time-varying features. Experimental results are de-
scribed in section 6. Finally, in section 7, we give a conclusion.

2 Related Work

Visualization of time-varying volume data has been a challenging
problem. Compression, time-based data structures, and high per-
formance visualization systems have been introduced to cope with
overwhelming data sizes and heavy computation requirements.

Compression Compression is extremely useful for large data
manipulation, especially for transmission of data from servers to
browsing clients. Since scientific data tend to be very large and
have lots of redundancy, people prefer to use compressed data for
efficient use of the memory and I/O bandwidth. A number of algo-
rithms for image and surface compression have been developed.

Papers on single resolution and progressive compression of tri-
angulated surfaces (e.g. isosurfaces) include those by [Taubin and
Rossignac 1998; Khodakovsky et al. 2000]. A compression scheme
specialized for isosurface [Zhang et al. 2001] utilizes the unique
property of an isosurface that only the significant edges and func-
tion values defined on a vertex are required to be encoded.

Most of image compression techniques are geared towards
achieving the best compression ratio with minimal distortion in the
reconstructed images. JPEG and MPEG [Gall 1991] are developed
for compressing still images and 2D video data with controllable
size and distortion tradeoff. Embedded coding algorithms such as
embedded zero tree wavelet(EZW) [Shapiro 1993] and set parti-
tioning in hierarchical trees(SPIHT) [Said and Pearlman 1996] are
useful for progressive transmission and multimedia applications.

For 3D image compression, Ihm et al. [Ihm and Park 1998]
described a wavelet-based 3D compression scheme for visible hu-
man data and later extended it to 3D RGB image compression for
interactive applications such as light-field rendering and 3D tex-
ture mapping [Bajaj et al. 2001b]. Compression ratio can be im-
proved by capturing and encoding only significant structures and
features in the data set [Bajaj et al. 2001a; Machiraju et al. 1998].
In those compression schemes the primary goal is fast random ac-
cess to data, while maintaining high compression ratios.

[Guthe and Straser 2001] applied the MPEG algorithm to time-
varying volume data using wavelet transformations. They com-
pare the effects of motion compensation and the usage of different
wavelet basis functions. [Lum et al. 2001] exploits texture hard-
ware for both rendering and decompression. Since data is trans-

ferred in the compressed format between different memory sys-
tems, I/O time is significantly saved.

Time Based Data Structure Time-Space Partitioning(TSP)
Tree is introduced and accelerated later by using 3D texture map-
ping hardware [Ellsworth et al. 2000] for fast volume rendering of
time-varying fields. The efficiency comes from skipping insignif-
icant rendering operations and reusing the rendered images of the
previous time step.

[Shen 1998] proposed the Temporal Hierarchical Index (THI)
Tree data structure for single resolution isocontouring of time-
varying data, by an extension of his ISSUE algorithm [Shen et al.
1996]. The THI tree provides a compact search structure, while re-
taining optimal search time. Hence, expensive disk operations for
retrieving search structures are reduced. Sutton et.al. [Sutton and
Hansen 1999] proposed Temporal Branch-on-Need Tree by extend-
ing octrees for minimizing unnecessary I/O access and supporting
out-of-core isosurface extraction in time-varying fields.

[Shamir et al. 2000] developed an adaptive multi-resolution data
structure for time dependent polygonal meshes called T-DAG(Time-
Direct Acyclic Graph). T-DAG is a compact representation which
supports queries of the form (time-step,error-tol), and returns an
approximated mesh for that time step, satisfying the error tolerance.

High Performance Visualization System [Ma and Camp
2000] describes a remote visualization system under the wide area
network environment for the visualization of time-varying data sets.
Current state-of-the-art graphics hardware enables real-time vol-
ume and isosurface rendering [Westermann and Thomas 1998] and
decompression [Lum et al. 2001].

Isosurface Extraction A large amount of research has been
devoted in the past for fast isosurface extraction from 3D static vol-
ume data. The Marching Cubes algorithm [Lorensen and Cline
1987] visits each cell in a volume and performs appropriate local
triangulation for generating the isosurface. To avoid visiting un-
necessary cells, accelerated algorithms [Cignoni et al. 1997] mini-
mizing the time to search for contributing cells are developed.

The contour propagation algorithm is used for efficient isosur-
face extraction [Bajaj et al. 1996; Howie and Black 1994]. Given
an initial cell that contains an isosurface component, the remainder
of the component can be traced by contour propagation. This prop-
erty significantly reduces the space and time required for search-
ing cells containing the isosurface by using a small number of
seed cells. Multiresolution [Gerstner and Pajarola 2000] and view-
dependent techniques [Zhang et al. 2002] are useful to reduce the
number of triangles in an isosurface.
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Figure 1: Volumetric video displaying process
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3 Volumetric Video System

Like widely used 2D video systems, a volumetric video system dis-
plays a sequence of 3D images over time, frame by frame. While
in a 2D video, users can only look at continually updated 2D im-
ages in a passive way, a volumetric video, or time-varying volume
visualization system allows them to explore and navigate the 3D
data in both space and time. Considering that most scientific sim-
ulations generate dynamic volume data, volumetric video systems
are especially helpful for scientific data analysis.

A naive way for displaying time-varying 3D volume data is to
repeat reading each frame from the data server and rendering the
volume with the given visualization parameters. Since most time-
varying scientific data sets are very large and have high spatial and
temporal coherence, it is natural to apply compression for reduc-
ing storage overheads and transmission times. However, run-time
decompression of data encoded by standard static and time-varying
image compression schemes may become a bottleneck in real-time
playback of volumetric video because they usually decompose an
image into blocks and decode every block during decompression.
During compression, we order the blocks based on their signif-
icance and encode only significantly changing blocks. This in-
creases the run-time decompression speed as we have limited the
number of blocks to decode.

A two-stage strategy is adopted to enable interactive navigation
and exploration of very large time dependent volume data. In the
first stage on the server side, the large time-dependent volume is an-
alyzed and processed on a high performance server so that results
of this volumetric processing is an intermediate multi-resolution,
time-dependent volumetric representation of interesting features
(isosurface, volume within a range) of the data, generated and
stored in a compressed format. The intermediate multi-resolution
representation permits tradeoffs between interactivity and visual fi-
delity for the second, interactive browsing stage. In the second
stage on the client side, the volumetric video is decoded and played
back by an interactive visualization browser that can be made avail-
able on a standard desktop workstation equipped with a 3D graph-
ics card. In contrast to a standard video player, the visualization
browser can allow certain levels of interactivity such as dynami-
cally changing viewing parameters, modifying lighting conditions,
and adjusting color-opacity transfer functions, in addition to timed
playback of the volumetric video along with some user-specified
fly-path in space and time.

4 Compression Scheme

In this section, we describe a unified scheme for compressing both
time-varying isosurfaces and volumetric features at the same time.
By encoding only significant function values based on associated
weights using a wavelet transform, we can achieve high compres-
sion ratios. However, simple function encoding requires on-line
isosurface extraction in the client side. To accelerate this surface
extraction process, we insert seed cells into the compressed volume
frames. In the following sections we use the term feature to mean
either an isosurface, or a volumetric feature specified by a scalar
value range.

4.1 Compression

The input data set is a time dependent volume data set, V �
� V1 � V2 � � � � � VT � with k isovalues iso1 � � � � � isok and l value ranges
r1 � � ra � rb � 1 � � � � � rl � � ra � rb � l . Each frame of the volume is clas-
sified as either an intra-coded frame or a predictive frame. For
each isovalue and range, the reconstructed quality can be spec-
ified as a threshold value for wavelet coefficients and another
threshold value for the blocks in predictive frames, such that
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Figure 2: The overall compression algorithm

wavelet coefficients or blocks not satisfying that value are trun-
cated. The criteria for truncation is given in the steps of the com-
pression algorithm below. The whole data set is represented as
V � � � I1 � P11 � P12 � � � � � P1p1 � � � � � � � IN � PN1 � PN2 � � � � � PN pN � � where Ii is
an intra-coded frame in the i � th temporal group and Pi j is the j � th
predictive frame in the i � th temporal group.

Assuming that there are only small changes between consecu-
tive frames, wavelet transformation of changes instead of the entire
frames yields higher compression ratios and lower decompression
times. Therefore, the compression of an intraframe is independent
of other frames while compression of a predictive frame is depen-
dent on previous frames in the same temporal group. The overall
compression algorithm is shown in figure 2. Note that compression
is performed on each volume and only significant values contribut-
ing to the features are encoded. All 3D frames are decomposed into
4 � 4 � 4 blocks and wavelet transformation is performed on each
block contributing to the specified features in the volume. The steps
of the compression algorithm are as follows:

1. difference volume: ∆Vk � Vk � V 	k 
 1, where Vk is original
image of k-th frame and V 	k 
 1 is the reconstructed image of
the compressed volume Vk 
 1. If Vk is an intra-coded frame,
we assume V 	k 
 1=0.

2. wavelet transformation: W∆Vk � wavelet transformation of
∆Vk. Compute coefficients c1 � � � � � cm representing ∆Vk in a
three-dimensional Haar wavelet basis.

3. classification Each wavelet coefficient c and block b is clas-
sified as either insignificant or significant. c and b are further
classified based on which features they contribute to. c and/or
b can belong to more than one feature. In such cases, the sur-
vival of c or b is dependent on the highest weighted feature
that contains them.

4. truncation of blocks A block which does not contribute to
the features or has very small changes over time is consid-
ered as an insignificant block. By truncating insignificant
blocks, we can achieve higher compression ratios and can
control the time for the volume reconstruction. To identify
blocks contributing to the i-th feature and having insignificant
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changes, the sum of the square of coefficients is compared
with a threshold value λi. If the sum is less than λi, the block
is truncated. For encoding the truncated block, only one bit is
assigned in the block significance map.

5. truncation of wavelet coefficients : The i-th feature to be
compressed has its own weight represented as a threshold
value τi. By setting the threshold value, the reconstructed
quality of a specific feature can be controlled. If a wavelet
coefficient c associated with the i-th feature is less than τi, the
coefficient is truncated into zero.

6. encoding: The overall encoding scheme is shown in figure
3. Once wavelet coefficient truncation is performed based on
each features weight, we take the surviving coefficients and
encode them. The encoding is performed on each block, re-
sulting in a sequence of encoded blocks. We classify 64 co-
efficients in a block as one level-0 coefficient, 7 level-1 coef-
ficients and 8 � 7 level-2 coefficients to take advantage of the
hierarchical structure of a block.

In the header of a frame, a bit stream representing each block’s
significance is stored to indicate whether the block corre-
sponding to each bit is a zero-block or not.

This avoids additional storage overhead for insignificant
blocks. One bit is assigned to each block in sequence. Then,
for each significant blocks in sequence, we store an 8bit map
representing whether the one level-0 and seven level-1 coef-
ficients are zero or not. Next, 8bit map representing whether
each eight 2 � 2 � 2 subblock has non-zero wavelet coeffi-
cients followed by significance map for representing non-zero
level-2 coefficients. After storing level-2 coefficient signif-
icance maps, actual values of non-zero wavelet coefficients
are stored in order. We used two bytes for storing a coeffi-
cient value.

Lossless compression is further applied to improve compres-
sion.

...

block significance map

0010000100...010

significant coefficients

01−level coefficient
significance map

2−level coefficient
significance map

subblock significance map

a sequence of 

8bit 8bit 0bit−
64bit

encoded block 1 encoded block n

Figure 3: Suggested encoding scheme for supporting fast decom-
pression and high compression ratios

4.2 Seed Cells Insertion

To allow browsing clients to quickly render isosurfaces encoded in
a volume, seed cells are attached to the compressed stream of each
frame. A seed cell is guaranteed to intersect with a connected com-
ponent of the isosurface. By performing surface propagation from
the given seed cells, we can avoid visiting unnecessary cells and
save extraction time. Since only one seed cell per isosurface com-
ponent is necessary, the size of the seed cells set is negligible and
search structures such as octrees and interval trees are not required.
Therefore, the isosurface extraction time is only dependent on the
number of triangles regardless of the volume size.

(a) (b)

Figure 4: Performance comparison of different encoding schemes:
Although the compression ratio of (a) and (b) is same (181:1), the
quality of the reconstructed image using (a) is much better than (b).
(a) Only the values contributing to the isosurface and volumetric
features are encoded. (b) Every value in the volume is encoded.

4.3 Run-Time Decompression

Since we have a sequence of wavelet encoded volumes W∆Vk, we
can get an approximated image V �k by decoding and performing an
inverse wavelet transformation. More specifically, ∆V �k = inverse
trans f ormation � W ∆Vk � and V �k = V �k � 1 + ∆Vk. For the intra-coded
frame Vi, V �i � 1 � 0 and we can get V �i directly from ∆V �i with no
dependency on other frames. Once Vi is reconstructed, succeeding
predictive frames can be decoded frame by frame until the next
intra-coded frame is reached.

The decompression is based on block-wise decoding. In intra-
coded frames, every block needs to be decompressed with complete
inverse wavelet transformation. On the other hand, in predictive
frames, only significantly changing blocks are updated so that it can
approximate the actual image as accurately as possible while mini-
mizing decompression time. The specific decoding algorithm is as
follows. Using the block significance map, we can identify every
significant block and its corresponding encoded blocks. For each
encoded block, perform the following steps: Read 8bit b1

1 � � � � � b1
8 to

decide whether one level-0 coefficient and seven level-1 coefficient
are zero or not. Next, read 8bit b2

1 � � � � � b2
8 to decide whether each

eight subblocks has non-zero value or not. If b2
k , where k � 1 � � � � � 8,

is set as 1, read 8bit ck
1 � � � � � ck

8 to determine which coefficients of
the k-th subblock are non-zero. From the significance maps read
above, we can read the actual non-zero coefficients in order. When
all values of the coefficients are determined, inverse transformation
is performed to get the actual data values and the corresponding
block is updated.

Once significant function values are decoded, we perform iso-
surface extraction. For each significant isovalue, we have a seed
set, and hence we can perform the above extraction quickly.

5 Interactive Browsing

While the compression ratio is an important factor for improving
I/O performance in the memory and network systems, it is equally
important that the visualization browser can read and interactively
display compressed streams of multiresolution, time-varying data
sets.
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Extraction time Triangles#
level2 3110ms 207894
level1 625ms 41624
level0 204ms 11878

Table 1: Isosurface extraction time

5.1 Multi-Resolution Isosurface Rendering

Since an isosurface often contains a lot of triangles, multiresolution
techniques are necessary for saving both extraction and rendering
time as a tradeoff with visual fidelity. One strength of wavelet trans-
forms is that it provides multiresolution and compressed represen-
tations in a consistent format.

Figure 5: Three different level of an isosurface.

Figure 6: The visualization of isosurfaces and volumes in the
oceanographic temperature change data set.

In our block-based wavelet transform, there are 3 levels con-
sisting of one 0-th level, seven 1-st level, and fifty six 2-nd level
coefficients. The 0-th level coefficient provides low-pass filtered
average value of 4 � 4 � 4 cells. 0-th level and 1-st level coeffi-
cients together provide approximated intermediate values averaging
2 � 2 � 2 cells. When fast extraction and rendering of isosurfaces
are more important than accuracy, the client can take only the 0-
th level and/or 1-st level coefficients, and reconstruct a volume of
lower resolution. Since the reconstructed low resolution volume is
a good approximation of the original volume, not only is the ex-
tracted isosurface a good approximation of original isosurface, but
the number of triangles extracted is also reduced. This process has
the effect of low-pass filtering the volume, which can remove noise
and artifacts incurred by lossy compression. Figure 5 shows three
images rendered using the same volumetric data, but different levels
of an isosurface.

Data Res. type #frm 1 frm size
Gas 256 � 256 � 256 float 144 64MB

Ocean 2160 � 960 � 30 float 115 237MB
Ocean(decim) 512 � 256 � 32 float 39 16MB

Table 2: Information on time-varying data sets

Compression ratio - 148:1, average RMSE - 0.108
Frame# Recon. time RMSE* Comp. ratio

1(I) 687ms 0.105 40:1
2(P) 177ms 0.131 378:1
3(P) 271ms 0.101 182:1
4(P) 235ms 0.103 234:1

Compression ratio - 301:1, average RMSE - 0.139
Frame# Recon.time RMSE* Comp. ratio

1(I) 489ms 0.127 70:1
2(P) 141ms 0.156 988:1
3(P) 207ms 0.130 422:1
4(P) 188ms 0.134 516:1

Table 3: Compression performance on gas dynamics data set ( * :
original density range � 0 � � 8065 � 299 � )

5.2 Combined Rendering of Isosurface and Volu-
metric Data

We tested our work on an implementation based on OpenGL.
OpenGL gives us the ability to perform depth tests and maintain
a depth map. We take advantage of this to render the isosurface and
volume in a consistent manner. We take the isosurface as the region
we need to see in greater detail, with an opaque or translucent vol-
ume in the object space. So we set the isosurface to be completely
opaque and render it using OpenGL, with the depth test on. Then,
we render the volume from back to front ordering. This is con-
sistent with what is recommended in the OpenGL documentation
[OpenGL n. d.]. The rendering result is shown in figure 6.

During the rendering of the isosurface, we build up a depth map,
which is used during volume rendering. While isosurfacing in gen-
eral needs a large amount of time, we already have the seeds re-
quired to perform the seed set isocontouring. Hence, we achieve
fast isosurface reconstruction times. When we perform volume ren-
dering, to obtain correct transparency results, we render the poly-
gons in a sorted order. While it is generally time consuming to
perform polygon sort, Nvidia 3 graphics card’s 3d texture map-
ping capability helps overcome this. The volume data is stored in
the graphics card texture memory. We create polygons through a
simple incremental algorithm, making slices through the volume.
These polygons are rendered with the corresponding texture values
in the 3D memory. An interactive transfer function map to control
color and opacity values is used to obtain the required images. De-
pending on the characteristics of the volume’s dimensions, we need
to adjust the slicing frequency. The oceanographic data set, which
is very thin in one dimension, needs a relatively larger number of
slices to prevent artifacts and incorrect rendering. If the user navi-
gates through the time varying data, we need to update the slicing
direction.

To get slightly better performance, we turn off building the depth
buffer ( using glDepthMask(0) ) when we render the volume, as we
are sure of rendering the polygons in order, and since all polygons
previously rendered are opaque.
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Compression ratio - 183:1, average RMSE - 0.090
Frame# Recon. time RMSE** Comp. ratio

1(I) 124ms 0.076 72:1
2(P) 76ms 0.087 273:1
3(P) 96ms 0.089 226:1
4(P) 86ms 0.091 223:1

Compression ratio - 348:1, average RMSE - 0.177
Frame# Recon. time RMSE** Comp. Ratio

1(I) 106ms 0.157 103:1
2(P) 57ms 0.169 615:1
3(P) 65ms 0.175 493:1
4(P) 64ms 0.178 482:1

Table 4: Compression performance on oceanographic data set ( **
: original temperature range � � 2 � 0 � 36 � 0 � )

Scheme# Comp. ratio RMSE
FBE 181:1 0.110
FVE 181:1 0.131

Table 5: Comparison of Feature Based Encoding(FBE) and Full
Volume Encoding(FVE)

6 Experimental Results

Compression and rendering results were computed on a PC
equipped with a Pentium III 800MHz processor, 512MB main
memory, and a NVidia GeForce 3 graphics card which has 128MB
texture memory. We used standard OpenGL functions for 3D
texture-mapping based volume rendering.

Table 2 provides the information about our test data sets. The
first data set is generated from a computational cosmology simu-
lation for the formation of large-scale structures in the universe.
The data is embedded in a cube 64 megaparsecs(209 million light
years) on each side, and models dark matter and gaseous compo-
nents. This data set has 144 frames. Since the functions in the data
set have negligible changes in the last few frames, we have given
all our compression results, for this data set, based on the first 100
frames. The second data set is generated by a simulation in the
field of oceanography. The original model has an approximate res-
olution of 1/6 degree (2160 by 960) in latitude and longitude and
carries information at 30 depth levels. It includes several time-steps
of scalar and vector field data sets like temperature, salinity, veloc-
ity, ocean surface height, and ocean depth. The timestep interval is
300 seconds beginning on Feb-16-1991 at 12:00:00. In this paper,
we used only the temperature data. Since the original resolution of
the data is too high for hardware volume rendering, we decimated
it into 512 � 256 � 32 by subsampling and took every third frame.

For testing the performance of our compression scheme, we en-
coded only high temperature regions ranging between 21.47 and
36.0(celsius degree) in the oceanographic temperature data set and
high density regions ranging between 0.23917 and 3.26161 in gas
dynamics data set as shown in Figure 7 and 9. After encoding
wavelet coefficients, we used gzip for lossless compression.

Table 3 and 4 show the reconstruction time, root mean squared
error (RMSE), and the compression ratio changes over time in gas
dynamics and oceanography data sets. The reconstruction time in-
cludes the time for disk read, gunzip, and decoding of wavelet co-
efficients. The RMSE was calculated using only those function val-
ues which contributed to the features. The compression ratio was
calculated by comparing the size of original time-varying volume
data and feature-based compressed data encoded by applying our

Data set Load Ext. Time Tri# Isosurface Volume
Gas 701ms 1703ms 135362 312ms 422ms

Ocean 156ms 1640ms 104900 235ms 281ms

Table 6: Timing results of rendering isosurface with amorphous
volumetric features in one frame:(the data set name, 3D texture
loading time, isosurface extraction time, triangle number of an iso-
surface, isosurface rendering time, volume rendering time )

lossy compression and gzip. As you can see in the tables, the re-
construction time of a P frame is much less than that of an I frame
while the compression ratio of P frame is much higher than that of
an I frame. The reason for this is that our compression scheme only
encodes significantly changing blocks in P frames.

In table 5, we compare our feature based encoding (FBE)
scheme with the full volume encoding (FVE) scheme. A rendered
image of each scheme is shown in figure 4. Since FBE encodes
only the values contributing to the specified features, both the de-
compression time and the compression ratio are significantly im-
proved with respect to schemes encoding full volumes. While trans-
mission and reconstruction times of volumetric and isosurface fea-
tures are reduced by FBE encoding, client-side rendering is signif-
icantly accelerated by using PC graphics hardware. Timing results
of rendering are presented in table 6.

Figure 7 and 8 show a typical frame of the gas dynamics data
set compressed with different compression ratios. Figure 9 and
10 show the flow of two isosurfaces of specific temperatures. Fig-
ure 8 shows a zoomed view of the same set of volumes rendered
in 7. We notice that good visual quality is maintained even at such
zoom factors and high compression ratios. While a zoomed image
of a volume compressed at a ratio of 148:1 is visually almost the
same as the original, we get only a few artifacts at compression ra-
tios of 301:1. Figures 9 and 10 show that similar results were
obtained when our compression and rendering scheme was applied
to the oceanographic data set. We have used isosurfaces to track
the movement of water with a specific temperature and a translu-
cent volumetric region to represent the surrounding temperatures.
These figures demonstrate the strength of our scheme in being able
to interactively render specific regions of interest with high quality
isosurfaces, surrounded by related volumetric data.

Although the wavelet based encoding can generate some losses
in volumes as well as the topology in the reconstructed isosurfaces,
we can achieve very high compression ratios with acceptable degra-
dation.

7 Conclusion

We described a lossy compression scheme for encoding time-
varying isosurfaces with amorphous volumetric features specified
by scalar value ranges. Since large time-varying volume data
has lots of coherence, compression is necessary for saving stor-
age space, reducing transmission time, and improving the perfor-
mance of visualizing the time-varying data. From this motivation,
we achieved our goals : (i) high compression ratio with minimal im-
age degradation, (ii) fast decompression, by truncating insignificant
blocks and wavelet coefficients, and (iii) interactive client-side ren-
dering of compressed isosurfaces and volumetric features. There-
fore, our compression scheme is useful for the interactive naviga-
tion and exploration of time-varying isosurfaces with amorphous
volumetric features residing in local and/or remote data servers. As
a future work, we plan to use high order wavelet basis for smooth
reconstruction and develop an encoding scheme which provides
multi-resolution, time-dependent volumetric representation of in-
teresting features in the compressed format.
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Figure 7: Gas dynamics data set. Original volume (left), compressed volume with compression ratio 148:1 (middle), and compression ratio
301:1 (right).

Figure 8: Gas dynamics data set. Zoomed images from figure 7.

Figure 9: Oceanographic temperature change data set. Original volume (left) and compressed volume with compression ratio 183:1 (right).

Figure 10: Oceanographic temperature change data set. Zoomed images from figure 9.
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