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Abstract

Active Contour (or Snake) Model is recognized as one
of the efficient tools for 2D/3D image segmentation. How-
ever, traditional snake models prove to be limited in sev-
eral aspects. The present paper describes a set of diffusion
equations applied to image gradient vectors, yielding a vec-
tor field over the image domain. The obtained vector field
provides the Snake Model an external force as well as an
automatic way to generate the initial contours. Finally a
region merging technique is employed to further improve
the segmentation results.

1. Introduction

Since it was first proposed by M.Kass etc.[1], active con-
tour (or snake) model has drawn a lot of attention from
researchers in image-related fields. Due to its efficiency
of converging to the desired features within an image by
simply defining an energy function, snake model has found
many applications such as edge detection, shape modeling,
segmentation, and motion tracking (e.g., see [1, 3, 10]).

The traditional snake model [1] in 2D is defined by an
energy functional:
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terms within the above integral stand for the internal force
that is determined by the physical properties of the snakes,
while the third term is viewed as the external force that is
the main issue discussed in active contour models.

Generally there are several difficulties with this model.
One is its sensitivity to the initial contours. Some tech-
niques have been proposed to rectify this problem, e.g.,
multi-scale method [6], distance potential force [3], inflat-
ing balloons [7], and more recently, gradient vector flow
(GVF) [2]. These techniques extend the external force to a
much larger range over the image domain and thus reduce
the sensitivity to the initial contours.

The second difficulty with the traditional model is that
it is difficult for the snake to move into the boundary con-
cavities. As we know, the internal force of a snake usually
makes the snake as straight as possible. Thus, if the exter-
nal force in (1) is not large enough to pull the snake into the
boundary concavities, the snake will always stop near the
“entrance” of the concavities. Although several approaches
have been proposed to solve this problem (e.g., see [7, 3]),
most of them do not give satisfying results. Xu’s GVF
method [2] and its improved version [4] were originally pro-
posed to remedy this problem but still did not work very
well in the case of long and thin boundary concavities (see
next section for details). Furthermore, it remains a problem
to handle boundary “gaps” or low-contrast boundaries that
are overwhelmed by the nearby high-contrast boundaries.

A third problem with the traditional snake model is the
stopping criterion. As we know, this model stops with a
snake corresponding to the global minimum of (1). Thus
some time-consuming techniques, such as simulated an-
nealing [11] or dynamic programming [10] are needed to
avoid the problems caused by local minima. Furthermore,
even in the case that the global minimum is achieved, the fi-
nal solution is still highly dependent on the choice of initial
parameters. A dual-snake technique [12] was used to re-
duce the dependence on the choice of parameters. Similarly
we will use a multiple-snake scheme to achieve this goal.

In the present paper we propose a new type of anisotropic
diffusion equations to obtain the gradient vector field,
which not only provides us a good guess of the initial snakes
but also generates an external force on each pixel in the im-
age domain. Unlike the diffusion equations seen in [2, 4],
our diffusion scheme is based on the magnitudes and ori-
entations of the vectors. This strategy greatly improves the
behaviors of the vector diffusion when dealing with bound-
ary concavities or “gaps” that Xu’s method and even its im-
proved version cannot solve efficiently. Our proposed gra-
dient vector diffusion (GVD) scheme, coupled with the idea
of multiple-snake, can correctly obtain an initial segmen-
tation, and then a region merging approach is used to find
the desired segmentation of the entire image. We shall also
briefly describe the relationship between our GVD-based



approach and the classic watershed method [14].
We organize the paper as follows: in section 2 we de-

scribe how to generate a gradient vector field and demon-
strate the difference between our GVD scheme and Xu’s
method. Section 3 will discuss how the gradient vector field
generated by our method can be applied to image segmen-
tation. Then we shall present some segmentation results on
various types of images in section 4. Finally in section 5,
we conclude the paper.

2. Gradient Vector Diffusion

2.1. Previous Work and Analysis

In the work of Xu etc.[2, 4, 5], The following diffusion
equations were used:�� ������ . ���
	 ����
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where � � 9 � � is initialized by
	 � �%6 90: � and � �76 9$: � is an

edge map of the original image: � �76 9$: � ��� 	�� �%6 90: � � � .
This diffusion model was originally proposed to remedy

the problem of the traditional snake model in case of bound-
ary concavities (see fig.1(a) where ���! are shown). How-
ever, it does not work well when the boundary concavities
are long and thin (see [4]). Then Xu etc. proposed a gener-
alized version of this model, aiming to handle the long and
thin concavities. Unfortunately even the generalized ver-
sion (GGVF) still could not handle these cases efficiently.
The reason is that, as shown in fig.1(a), the vectors propa-
gated from � to " are very “weak” (with low magnitudes)
while the vectors propagated from � and  to " are rela-
tively much stronger, yielding the diffused vectors around" pointing either up or down. Another problem with both
models is how to prevent the snakes from moving out of
the boundaries “gap” or low-contrast boundaries near high-
contrast boundaries as shown in fig.1(a) around point # .

2.2. Our Approach

Remember that GVF and GGVF apply the diffusion on
Cartesian coordinate representation ( � and � ) of vectors.
Actually, applying the diffusion on $ (the magnitude of vec-
tor) and % (the orientation of vector) can greatly improve the
behaviors of the vector diffusion. Fig.1(b) shows how these
two different ways diffuse two vectors and have totally dif-
ferent results. For the diffusion scheme based on $ and % ,
a very weak vector can largely affect a strong vector, both
on its magnitude and on its orientation. This is the essen-
tial idea for our new diffusion approach. Furthermore, by
using an anisotropic scheme, we can choose to weaken the
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(a) Two problems with GVF (b) Solutions

Figure 1. Illustration of the problems and so-
lutions. & and &(' in (b) stand for the diffused
vector by Xu’s method and our method, re-
spectively

orientation diffusion (as we will see in the following) if two
vectors are pointing in almost opposite directions. Then the
problem of boundary “gaps” can be easily solved.

Before we describe our diffusion equations, we shall give
a definition of sink, which will be used in our algorithm:
Definition Given a vector field )* �,+$9.-2�#9/+ = 0, 01020 9/3 
 
 ; -= 0, 02010 954 
 
 , where 3 , 4 are the size of the image do-
main. The sink of a pixel � at �,+$9.-2� , denoted by �2+.4
6 �,+$9.-2� ,
is defined as the total incoming amounts at � from all its
neighbors minus the the magnitude of the vector at � .

In the following we will use different schemes to diffuse
the vector magnitude $ and orientation % .

Our approach uses an anisotropic diffusion scheme [8]
for the diffusion process of $ :1 $187 �9�
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68` �^+$9.-2� is equal to �2+.4
6 �,+$9.-2� if �1+.4
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Otherwise it is equal to zero. In equation (3), $ : 	5< � � )* : 	=< � ,
where )* : 	5< stands for the initial vector field that can be
determined by

	 � . According to the definition, the sink
is much larger around the boundary points than elsewhere.
So � � )* : 	=< � can reduce the diffusion effect around boundary
points while encouraging the diffusion elsewhere.

The diffusion equation for vector orientation % plays an
important role on making the vector field more “sensitive”
to the boundary concavities but less “sensitive” around the
boundary gaps. We shall assume that the orientations of the
vectors are periodically defined on � 
cb 9 b ( . The equation
for vector orientation % looks similar to (3):
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where %gf is the orientation of one of the neighbors. � � )* : 	5< �
and @ �-3 � are defined same as in (3). But > � � 3 � is different
from > � �-3 � in (3):
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This weighting function basically tells us that, if the differ-
ence of two vectors’ orientations % � and % � is about b�� � ,
then they can affect each other most significantly. But if the
difference is a little bit greater than b�� � , their influence to
each other will rapidly decrease to zero.

In (4) we replace
	 % (as it should be in most anisotropic

diffusion methods) with 1[+ � � % 9 %if �0�1+Qhi4�� % 9 %gf � . The reason
for this change is that in our case the orientation % is peri-
odically defined on � 
cb 9 b ( . So the difference between two
angles % � and % � can not be simply written as

� % � 
 % � � , but
should be the angle between the two corresponding vectors.
And this angle could be positive or negative depending on
the orientations of these two vectors. Therefore, the well-
known Maximum Principle [8] in traditional heat diffusion
scheme is no longer true in the case of orientation diffusion.

2.3. Comparison with Xu’s Method

Fig.2(a) and (b) show the enlarged vector field near the
boundary concavity (see fig.1(a) around � �! ). It is clearly
shown that, by our approach, the vectors in the concavity
obviously changed their magnitudes and orientations and
thus the snake can easily move into the bottom of the con-
cavity. Fig.2(c) and (d) show the enlarged vector field near
the boundary gap (see fig.1(a) around # ). As we can see
from fig.2(c), traditional GVF has difficulty preventing the
vectors near the boundary gap from being significantly in-
fluenced by the nearby boundaries, so that the snake may
move out of the boundary gap. However, our approach can
avoid this problem.

3. Image Segmentation

In this section we will briefly discuss how to apply the
gradient vector field obtained by our approach to the image
segmentation. As we have said before, the gradient vector
field provides us an external force at each pixel as well as a
way to generate the initial snakes.

3.1. Initialization of Snakes

There are several ways to choose the initial snakes (or
seed points): by hand, by “balloons”, or by the locus of the
zero-crossing of the Laplacian of the smoothed images (see
[9] for a summary). In our case, we will use the source
points (defined later) as our seeds. The source points can be
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Figure 2. The comparison between the tra-
ditional GVF method and our approach for
their behaviors on the boundary concavity
and boundary gap

automatically generated from the gradient vector field.
Definition: A point is called source if none of its neighbors
points to it. In other words, a point � is a source if and only
if, for any neighbor  of � :

)��
 0 ) �� � @A9
where )��
 is the diffused gradient vector at  and ) �� is the
vector from  to � .

3.2. Initial Segmentation and Region Merging

After we identify all seed points, then we can let the
initial snakes start to move with the external force that is
determined by the previously generated vector field. Then
an initial segmentation is obtained over the image domain.
Remember that we use multiple snakes in our algorithm to
reduce the dependence on the choice of parameters, like the
dual active snake seen in [12]. After the initial segmentation
we use region merging technique [13] to further improve the
segmentation results.

It is beneficial to take a look at the relationship be-
tween the well-known watershed method (see [14, 13]) and
our method. The watershed method begins with the im-
age gradient map and takes the minima of this map as the
seeds. A geodesic distance transformation is usually used
to obtain the “influence zone”, making this approach quite
complicated to implement [14]. In our approach, how-
ever, it is straightforward to implement initial segmenta-
tion based on the gradient vector field. Furthermore, the
watershed method is sensitive to the noises so that some



(a) Initial segmentation (b) After region merging

Figure 3. Image segmentation (example I)

(a) Initial segmentation (b) After region merging

Figure 4. Image segmentation (example II)

kind of smoothing filters must be used before we apply this
method. However, our gradient vector diffusion can gener-
ate the vector field while smoothing it.

4. Results

In the following we will give some examples of image
segmentation by our GVD-based region merging approach.
Fig.3 shows an example of microscopy images. The initial
segmentation produces 100 regions (as seen in (a)) and after
region merging only 14 regions, including one background
region, are remained. Although the original image is quite
blurred, the cells are still correctly segmented. Fig.4 shows
an example of medical images. There are 688 regions left
after initial segmentation, and 16 regions left after region
merging. In this example we can see that the most signifi-
cant features are preserved while the noises are ignored.

5. Conclusion

This paper proposed a new type of diffusion equations
to generate Gradient Vector Field. We diffused the vectors
based on their polar coordinate representations instead of
traditional Cartesian coordinate representations. The exper-
iments show that our new approach not only can remedy
the problems that traditional snake models have, but also
can solve the problems of long-thin boundary concavities
and boundary gaps as seen in traditional GVF methods.
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