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Abstract

We present an adaptive, hierarchical Hh-multiresolution reconstruction algorithm to model shell
surface objects from a matched pair of triangulated surfaces. Shell surfaces are an interval of contours
of trivariate functions with prismatic support. In the H-direction, a hierarchical representation of
the scaffold is constructed. For any adaptively extracted scaffold from the hierarchy, a sequence
of functions in the h-direction (regularly subdivided mesh) is constructed so that their contours
approximate the input shell to within a given errorε. The shell surfaces can be made to capture
sharp curve creases on the shell while beingC1 smooth everywhere else. Using an interval of iso-
contours of smooth trivariate spline functions, rather than a pair of inner and outer surface splines,
one avoids the need for interference checks between the inner and outer surface boundaries. 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Many human manufactured and naturally occurring objects have shell-like structures,
that is, the object bodies consist of surfaces with thickness. We call such surfacesshell
surfaces. The problem of constructing smooth approximations to shell surface objects
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arises in creating geometric models such as airfoils, tin cans, shell canisters, engineering
castings, sea shells, the earth’s outer crust, and the human skin, to name just a few.

1.1. Problem description

In engineering, shell structures are often analyzed by finite element methods (see
(Bernadou and Boisserie, 1982; Bucalem and Bathe, 1997; Cirak et al., 1999; Mollmann,
1981; Szabo and Babuska, 1991)). In these analyses, the shell is often assumed to be uni-
form in thickness for simplicity, hence the output is often a triangulation that represents the
mid-surface of the shell. More accurate finite element analysis of shells uses volume ele-
ments, such as hexahedral (see (Liu et al., 1998)) or pentahedral (see (Szabo and Babuska,
1991)). In these cases, the output may be a matched triangulation pair. Bajaj and Xu
(1999) also present schemes for obtaining matched triangulation pairs for varied scattered
and dense surface data inputs. In this paper, our aim is to reconstruct smooth shells from
matched triangulation pairs. However, we do not assume that the shell is uniform in thick-
ness; instead, we assume we are given two triangulations that represent the boundaries of
the shell. These triangulations can be obtained by offsetting the mid-surface triangulation
in the normal direction with varying thickness. In the model (such as airfoil, arched roof
and dam etc.) construction, we must often respect the geometric data and therefore cannot
assume the shell is uniform in thickness. Hence, our problem may be described as follows.

Problem description. As input we are given a matched triangulation pairT = {T (0),T (1)}
with attached normals at each vertex, which presents a linearization of the inner and outer
boundary surfaces of a shell domain; also, we are given an error control toleranceε > 0.
The goal is to reconstruct hierarchical multiresolution smooth shell surfaces whose bound-
ing surfaces provide approximations ofT (0) andT (1), respectively, with errors no larger
thanε.

The hierarchical scheme is comprised of multiresolutions in two directions. The
terminologyHh-multiresolution we use is borrowed fromhp-finite element analysis (see
(Szabo and Babuska, 1991)), where their “h” elements denote the mesh size and their
“p” elements denote the degree of the shape functions on each mesh element. Here
the H-direction multiresolution is a level-of-detail (LOD) representation of the pair of
(irregular) triangular meshes, and the h-direction multiresolution is the regular subdivision
of each of the triangle pairs. In the geometric modeling problem, using high degree
polynomials in general leads to surfaces containing pronounced waves and also increases
the computational costs. Hence, we use triangular cubic spline functions on the regularly
partitioned triangles.

1.2. Prior solution approaches

Traditionally, a thin shell has been often treated as a single surface (see (Bernadou and
Boisserie, 1982; Ketchum and Ketchum, 1997)) by taking the mid-surface of the shell or
assuming that the thickness is zero. These treatments work fine in the cases where the
thickness has little effect on the solution. However, if the thickness is not small enough
or it varies significantly, using a single surface to represent the shell will not be accurate
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(see, e.g., Figs. 5.3 and 6.2). Therefore, two boundaries of the shell as well as surfaces
in between need to be constructed. Of course, one could solve the proposed geometric
modeling problem by using classical or existing methods (see, e.g., (Farin, 1990; Hoschek
and Lasser, 1993; Piegl and Tiller, 1997)) of parametric surface splines to construct
individual boundary surfaces as well as mid-surfaces of the shell boundaries. However, the
independent construction of each surface not only increases tremendously the space and
time costs, but also fails to guarantee that these surfaces are always separate. In particular,
post-local and/or -global interactive surface modification requires extremely cumbersome
surface–surface interference checks to be performed in order to preserve geometric model
consistency.

To the authors’ knowledge, the reconstruction of shell structures by a unified approach
is a new area. In an earlier paper (Bajaj and Xu, 1999), we proposed an adaptive approach
in which the shell surface is defined by the contours of a single trivariate functionF . This
function is defined on a collection of triangular prisms (prism complex, or scaffold) inR

3,
such that it isC1 and its contourF(x, y, z)= α for anyα ∈ (−1,1) provides a smooth mid-
surface withF(x, y, z) = −1 andF(x, y, z) = 1 as the inner and outer boundaries of the
shell structure. This implicit method is shown to be efficient and superior to the parametric
method mentioned above in which the boundaries and mid-surfaces are all incorporated
into one trivariate function.

1.3. Our approach

In this paper, we extend the reconstruction method of Bajaj and Xu (1999) to achieve
(a) hierarchical Hh-multiresolution, (b)ε-bounded approximations, and (c) the ability to
capture sharp curve creases while beingC1 smooth everywhere else. To achieve adaptive
multiresolution representations in the H-direction, a hierarchical presentation of the prism
scaffold is constructed. For each extracted scaffold from the hierarchy, a sequence of
functions (h-direction) is constructed, using triangular splines on regularly subdivided
triangular prisms, such that the input data is approximated to within the allowable errorε.
To get an adaptive reconstruction, combinations of different levels in both the H- and
h-directions are allowed.

The remainder of the paper is organized as follows. In Section 2 we introduce some
notation used for describing our algorithm. We then outline in Section 3 the complete al-
gorithm steps for solving the proposed problem. These steps are detailed in the sections
that follow. Two heavy tasks in this algorithm, that are tackled in Sections 4 and 5, are the
geometric construction of the hierarchical scaffold and theC1 function construction over
the scaffold. The hierarchical construction of the prism scaffold is the same in nature as that
of the hierarchical construction of a unique triangulation (hence some steps are detailed in
the Appendices A and B), but with some adjustments to fit our shell triangulation problem.
TheC1 construction in Section 5 is basically a local interpolation approach, that utilizes
mainly the tools of one-dimensional Hermite interpolation, one-dimensional B-splines,
two-dimensional triangular B-splines, and transfinite interpolation. The problems handled
by Sections 6 and 7 are relatively lighter. In Section 6 we consider the problem of preserv-
ing sharp features while constructing the smooth shell surfaces, and in Section 7 we evalu-
ate and display the shell surfaces. Section 8 concludes the paper with additional examples.



92 C.L. Bajaj et al. / Computer Aided Geometric Design 19 (2002) 89–112

2. Notation

We assumeT (0) andT (1) are orientable. For each vertex pairVi = {V (0)
i , V

(1)
i } with

attached normal pair{N(0)
i ,N

(1)
i }, we assume

[
V

(1)
i − V

(0)
i

]T
N

(s)
i > 0, s = 0,1.

This ensures that points in the outer layer are roughly in the same direction from the
corresponding points in the inner layer as the normals. With this convention the normals
to both the inner and outer surfaces are outward-pointing normals, in contrast to the more
common convention where the normals to the inner surface are inward-pointing. For each
triangle pair[ViVjVk], we further assume

[
V

(0)
i V

(0)
j V

(0)
k

] ∩ [
V

(1)
i V

(1)
j V

(1)
k

] = ∅.
Our trivariate functionF for constructing the shell is piecewise defined on a collection of
prisms. Let[ViVjVk] be a triangle pair. Then the prism, denoted byPijk , for [ViVjVk] is
a volume inR

3 enclosed by the surfacesHij ,Hjk, andHki (see Fig. 2.1), whereHlm is a
ruled surface defined byVl andVm as follows:

Hlm = {
p: p = b1vl(λ)+ b2vm(λ), b1 + b2 = 1, λ ∈ R

}

with vi(λ) = V
(0)
i + λNi , Ni = V

(1)
i − V

(0)
i . We will wish to describe points within these

prisms in terms of the triangle vertex pairs, as a type of “shell barycentric coordinate”. To
this end we can explicitly represent the prismPijk as the volume given by

Pijk(I ) = {
p: p = b1vi(λ)+ b2vj (λ)+ b3vk(λ), b1 + b2 + b3 = 1, bl � 0, λ ∈ I

}
,

whereI is a specified interval. This interval contains[0,1] and is usually larger, so that
each prismPijk contains the triangle pair[V (0)

i V
(0)
j V

(0)
k ] and usually extends past its faces,

as illustrated in Fig. 2.1. We call(b1, b2, b3, λ) thePijk -coordinate of

p = pijk(b1, b2, b3, λ)= b1vi(λ)+ b2vj (λ)+ b3vk(λ).

For eachλ ∈ I ,

Tijk(λ) := {
p: p = b1vi(λ)+ b2vj (λ)+ b3vk(λ), b1 + b2 + b3 = 1, bl � 0

}

Fig. 2.1. The volume prism cellPijk , the faceHik(t, λ) and the edgevi (λ) defined by a triangle pair
[ViVjVk].
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defines a triangle. To ensure that this triangle is non-degenerate,λ is confined to lie in a
certain intervalIijk . This interval is computed as follows.

Let

p
(l)
ijk(λ) = det

[
nl, vj (λ)− vi(λ), vk(λ)− vi(λ)

]
, l = i, j, k.

Assume

p
(l)
ijk(λ) > 0, ∀λ ∈ [0,1], l = i, j, k. (2.1)

Consider the real numbersλ1, . . . , λs (s � 6) that solve one of these three equations
of degree 2:p(l)

ijk(λ) = 0, l = i, j, k, and definea = max(−∞, {λl : λl < 0}), b =
min(+∞, {λl : λl > 1}), and Iijk = (a, b). Then Iijk is the largest interval containing
[0,1] such thatPijk(Iijk) is non-degenerate. To show this fact, note that a triangleTijk(λ)

is non-degenerate if and only if

nT
l

[
vj (λ)− vi(λ)

] × [
vk(λ)− vi(λ)

] = p
(l)
ijk (λ) > 0, (2.2)

l = i, j, k, where× denotes the cross product of two vectors. The assumption (2.1) implies
that [0,1] ⊂ I . Sincep(l)

ijk(0) > 0 andp(l)
ijk(1) > 0, for l = i, j, k, thenp(l)

ijk(λ) > 0 for

λ ∈ (a, b) andl = i, j, k. Sincep(l)
ijk(a)= 0 for l = i or l = j or l = k if a > −∞, a is the

infimum of the interval ofλ that contains[0,1] and makes (2.2) hold. Similarly,b is the
supremum of such an interval. ThereforeIijk is the largest interval such thatPijk(Iijk) is
non-degenerate.

We call the union of allPijk(Iijk) a prism scaffold. For the input triangulation pair,
the corresponding scaffold, denoted asS0, will be the finest level in our hierarchical
representation of the scaffold. Note that the triangulation (we always mean the matched
triangulation pair) and the scaffold correspond closely. The vertexVi , edge[ViVj ] and
triangle[ViVjVk] of the triangulation correspond to the edgevi(λ), faceHij and prismPijk

of the scaffold, respectively. Hence, any operation conducted on the triangulation implies
the same on the scaffold. For instance, removing a vertex pair from the triangulation and
then re-triangulating implies removing an edge from the scaffold and then “re-meshing” the
prism scaffold. These operations are performed in building the hierarchical representation
of the scaffold in Section 4.

Given aPijk -coordinate for a point, it is straightforward to compute its coordinates in
thexyz system. However, the inverse is not trivial, since the transforms between them are
nonlinear. For a givenp ∈ R

3, we determine(b1, b2, b3, λ)
T such that

p = b1vi(λ)+ b2vj (λ)+ b3vk(λ), b1 + b2 + b3 = 1. (2.3)

It follows from (2.3) that we have

p − vk(λ) = [
vi(λ)− vk(λ), vj (λ)− vk(λ)

][b1, b2]T.
Therefore,

det
[
p − vk(λ), vi(λ)− vk(λ), vj (λ)− vk(λ)

] = 0. (2.4)

The left-hand side of (2.4) is a polynomial of degree 3 inλ. Upon solving this equation for
λ, we choose the root such that the solution(b1, b2, b3) of (2.3) satisfiesbi � 0,

∑
bi = 1.
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Whenever it is necessary to address the functions that are defined on the levelt scaffold
(H-direction), the notationF (t) is used. The notationFσ will be used to address the levelσ

function in the h-direction.

3. Algorithm outline

The hierarchical construction algorithm of the shell structures is comprised of two main
phases: the hierarchical construction of the scaffold and of the function over the scaffold.
This section gives the algorithm pipeline, with the details of the algorithm provided in the
sections that follow.

Step 1. Construct aC1 function on the scaffoldS0.

The finest level scaffoldS0 is built on the input matched triangulation pair. On this
scaffold, aC1 functionF (0) is constructed (see Section 5.1). This function is regarded as
exact when constructing other functions at other resolutions.

Step 2. Hierarchical representation of scaffold.

This step constructs a directed acyclic graph (DAG) for the levels of detail of the
scaffold. This DAG is built based on the algorithm in (de Berg and Dobrindt, 1998; De
Floriani et al., 1999), with changes to the vertex removal criterion and hole re-triangulation
method (see Section 4). Having such a DAG, we are able to travel from a fine level to a
coarse one or vice versa, and extract a required scaffold satisfying a given control error by
combining different levels.

Step 3. Adaptive scaffold extraction.

For the given control parameters, extract a required scaffold from the DAG that satisfies
the given condition (see Section 4.1).

Step 4. Face data construction.

For each face of the prisms in any level, aC2 function andC1 gradient on the face are
constructed. All these data form a list. In the DAG structure, each prism should have three
pointers that point to the corresponding face data (see Section 5.3). Having this data, we
are able to constructC1 functions on any extracted scaffold.

Step 5. Construct trivariate splines in each prism.

For the given control errorε and the selected scaffold, construct a sequence ofC1

trivariate splinesFσ , σ = 1,2, . . . ,Σ , so that

S(σ)α = {
p: Fσ (p) = α, α ∈ [−1,1]}, σ = 1,2, . . . ,Σ,

are smooth surfaces andS(Σ)
−1 and S

(Σ)
1 are ε error-bounded approximations of the

inner and outer boundary surfaces of the input shell, respectively. In the process of this
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construction certaincurve creases are tagged and captured. This step is described in detail
in Sections 5.4 and 6.

Step 6. Evaluate and display the shell surface.

See Section 7 for details.

4. Hierarchical representation of prism scaffold

The hierarchical representation of the scaffold is a sequenceS0, S1, . . . ,Sk of scaffolds,
from the finest level to the coarsest. To construct the hierarchical representation of
the scaffold, we perform recursively a vertex removal procedure to form a sequence
T0,T1, . . . ,Tk of matched triangulation pairs, whereT0 = T . The policy of the vertex
removal is adopted from (de Berg and Dobrindt, 1998; De Floriani et al., 1999). That
is, if one vertex is selected to be removed at levelt , then its neighbor vertices at the same
level may not be removed. Hence any two vertices in the set of vertices that are going to
be removed are disconnected (see Fig. 4.1). The next level of triangulation is obtained by
re-triangulating holes that are left when the vertices are removed.

Fig. 4.1. The vertices with circles at the top level are the ones that are removed at levelt . The
star-shaped polygons, that are shown in the middle of the figure and obtained by removing the
selected vertices, are re-triangulated as shown at the bottom. Newly formed prisms at levelt + 1
are linked to those at levelt by arcs through the intermediate level. The unchanged prisms are linked
directly.
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The hierarchy is stored as a directed acyclic graph (DAG), whose nodes correspond to
the prisms ofS0 up to Sk . The leaf nodes correspond to the prisms ofS0. Between the
levelst andt + 1, there is an intermediate level that corresponds to the removed vertices
of level t . There is an arc from the star-shaped polygon that is formed when a vertex is
removed, to every triangle in levelt around the vertex, and to every triangle in levelt + 1
formed by the re-triangulation of the star-shaped polygon. A polygon at the intermediate
level between levelst and t + 1 is called theparent polygon of those prisms at levelt
that linked to it, and it is also called thechild polygon of those prisms at levelt + 1 that
are linked to it. Unchanged triangles between two levels are linked directly by arcs. These
descriptions are illustrated by Fig. 4.1.

Some data must be stored along with the DAG. First is the vertex pair listVertexList,
which is fixed and does not change during the construction of the DAG. Another list is
FaceList, that of the faces of the prism, which is incremental. The initial list is that of the
faces ofS0. Each entry ofFaceList contains the information of theC2 function and the
C1 gradient on that face (see Section 5.3). When new prisms are produced, the new faces
are added to this list. In the DAG, three pointers that point to the three faces of each prism
must be stored. Having this information allows us to construct laterC1 functions within
each prism cell.

To achieve our goal of building the hierarchical representation of the scaffold, there are
two points that need to be addressed. One is the vertex removal criterion, and the other is
the re-triangulation. These steps are detailed in Appendices A and B.

4.1. Adaptive extraction of shell surface support

It is obvious that simply taking a certain level of the scaffold from the hierarchy does
not have the adaptive nature. Therefore, it is necessary to combine different level scaffolds
to form an adaptive one. The extraction algorithm in (de Berg and Dobrindt, 1998; De
Floriani et al., 1999) can be altered to serve our purpose. From the construction of the DAG
we know that each prism in any level has a grade that measures the normal variation. We
shall use this grade to control the scaffold extraction for a given control valueg ∈ [0,π/2)
of the normal variation. To describe the extraction algorithm precisely, we introduce some
more notation. LetP be a prism of levelt . Then we denote byGt(P ) the collection of
all prisms at levelt that are in the same child polygon asP , and byGc

t (P ) the collection
of all prisms at levelt − 1 that are linked to child polygons ofP . Let Subt (P ) be the
collection of all prisms in the levelst, t − 1, . . . ,0, that are linked directly or indirectly
through intermediate nodes to the prisms inGc

t (P ). That is,Subt (P ) consists of the prisms
in the sub-DAG starting withGt(P ). Then the algorithm for extracting the scaffold can be
described by the followingC language style pseudo-code:

Qk = Sk ; /* put all the prisms inSk to Qk*/
for (t = k; t > 0; t −−) {

Qt−1 = NULL;
while (Qt �= NULL ) {
P =Qt [0];
if (Gt(P ) �⊂Qt ) {

accept all the prisms inGt(P );
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} else{
if (Grade(p)� g for all p ∈ Subt (P ) ) {

accept all the prisms inGt(P )

} else{
append to the end ofQt−1 all the prisms inGc

t (P )

}
}
remove fromQt all the prisms that inGt(P );

}
}
if (Q0 �= NULL) {

accept all the prisms inQ0;
}.

5. Construction of C1 trivariate functions on hierarchy

The C1 functions on the hierarchy are constructed in three steps: (a) AC1 function
F (0) onS0 is constructed first (Section 5.1). This function serves us as an exact reference
while constructing the functions at other levels. (b)C1 data are computed for each face of
each prism in each level (Section 5.3). (c)C1 functions are constructed for each prism of
any extracted scaffold that interpolates the vertices of the scaffold and fitF (0) by splines
(Section 5.4).

5.1. Function over the finest level S0

The functionF (0), whose level surfacesF (0)(x, y, z) = −1 andF (0)(x, y, z) = 1 will
approximate the inner and outer surfaces, is constructed in two steps. First, function values
and gradients (C1 data) are defined on each of the faces of all the prisms, and second, the
function is defined within the prisms, using theC1 data on the prism faces.

Now we defineC1 data on the faces. LetHlm(t, λ) be a face of the prismPijk

where (l,m) ∈ {(i, j), (j, k), (k, i)}. Then the function value on this face is defined
by cubic Hermite interpolation on the line segment[vl(λ) vm(λ)] = {p ∈ R

3: p =
Hlm(t, λ), t ∈ [0,1]} by interpolating the directional derivativesDs

[vm(λ)−vl(λ)]sF (vl(λ))

andDs
[vm(λ)−vl(λ)]sF (vm(λ)) for s = 0,1. Hence,F(Hlm(t, λ)) can be written as

F
(
Hlm(t, λ)

) = F
(
vl(λ)

)
H 3

0 (t)+ F
(
vm(λ)

)
H 3

2 (t)

+ [
vm(λ)− vl(λ)

]T∇F
(
vl(λ)

)
H 3

1 (t) (5.1)

+ [
vm(λ)− vl(λ)

]T∇F
(
vm(λ)

)
H 3

3 (t),

whereH 3
0 (t) = 1− 3t2 + 2t3, H 3

1 (t) = t − 2t2 + t3, H 3
2 (t) = 3t2 − 2t3, H 3

3 (t) = −t2 + t3

are Hermite interpolation base functions, and

F
(
vi(λ)

) = 2λ− 1, ∇F
(
vi(λ)

) = (1− λ)N
(0)
i + λN

(1)
i . (5.2)
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Here we have normalized the normalsN(0)
i andN

(1)
i such thatNT

i N
(0)
i = NT

i N
(1)
i = 2

(recall thatNi = V
(1)
i − V

(0)
i ), in order to haveDNiF =NT

i ∇F on the edgevi(λ). Let

d1(λ) = vm(λ)− vl(λ), (5.3)

d2(t) = (1− t)Nl + tNm, (5.4)

d3(t, λ)= d1 × d2. (5.5)

Then we define the gradient∇F(Hlm(t, λ)) by the following conditions:


dT
1 ∇F

(
Hlm(t, λ)

) = ∂F (Hlm(t, λ))

∂t
,

dT
2 ∇F

(
Hlm(t, λ)

) = ∂F (Hlm(t, λ))

∂λ
,

dT
3 ∇F

(
Hlm(t, λ)

) = dT
3 ∇F̆lm(t, λ),

(5.6)

where

∇F̆lm(t, λ) = (1− t)∇F
(
vl(λ)

) + t∇F
(
vm(λ)

)
. (5.7)

From (5.6) we have

∇F
(
Hlm(t, λ)

)T = [P,Q,R][d1, d2, d3]−1 (5.8)

where

[d1, d2, d3]−1 = [
d1‖d2‖2 − d2

(
dT

1 d2
)
, d2‖d1‖2 − d1

(
dT

1 d2
)
, d3

]T
/‖d3‖2,

andP , Q andR are the right-hand sides of (5.6).
Next we defineC1 functions within prisms. Let[V1V2V3] be a typical triangle pair.

The C1 function F in the prismP123 is defined by the side-vertex scheme defined by
Theorem 3.1 in (Nielson, 1979):

F
(
p123(b1, b2, b3, λ)

) =
3∑

i=1

wiDi(b1, b2, b3, λ), (5.9)

wherewi = ∏
j �=i b

2
j/

∑3
k=1

∏
j �=k b

2
j , andDi is defined by Hermite interpolation from the

data on the prism faces (see (Bajaj and Xu, 1999) for details). Explicitly,

Di(b1, b2, b3, λ) = F
(
pi(b1, b2, b3, λ)

)
H 3

0 (bi)

+ di(b1, b2, b3, λ)
T∇F

(
pi(b1, b2, b3, λ)

)
H 3

1 (bi)

+ F
(
vi(λ)

)
H 3

2 (bi)+ di(b1, b2, b3, λ)
T∇F

(
vi(λ)

)
H 3

3 (bi),

where

pi(b1, b2, b3, λ) = bi

1− bi
vj (λ)+ bk

1− bk
vk(λ),

di(b1, b2, b3, λ) = − bj

1− bi
ek(λ)− bk

1− bi
ej (λ),

and(i, j, k) ∈ {(1,2,3), (2,3,1), (3,1,2)}, ek(λ) = vj (λ)− vi(λ), ej (λ)= vk(λ)− vi(λ).
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5.2. Minimal prism with ε offset

As mentioned above, the shell{p ∈ R
3: F (0)(p) ∈ [−1,1]} constructed in this section

is considered to be exact, and the other shells constructed later will approximate this
shell to within the errorε. Therefore, this shell with itsε offset is required to be
contained in all of the other scaffolds. This requirement will be one of the conditions in
building the hierarchical representation of the scaffold. Since testing whether a triangular
shell with ε offset is contained in another scaffold is time-consuming, we determine a
minimal prism that contains the triangular shell withε offset. In building the hierarchical
representation, the shell containment requirement will be replaced by the minimal prisms
containment requirement. Let[ViVjVk] be a triangle pair. Letp(0) be the point inR3 with

Pijk -coordinate(b(0)1 , b
(0)
2 , b

(0)
3 , λ(0)) and letp(1) be the intersection point of the surface

F (0) = 1 and the lineb(0)1 vi(λ) + b
(0)
2 vj (λ) + b

(0)
3 vk(λ), where they intersect atλ = λ(1).

Then∥∥p(0) − p(1)
∥∥ = ∣∣λ(0) − λ(1)

∣∣∥∥b(0)1 Ni + b
(0)
2 Nj + b

(0)
3 Nk

∥∥.
Then we require|λ(0) − λ(1)| � ε/

√
M , whereM := M(Ni,Nj ,Nk) is the minimal

value of the degree two Bézier polynomial‖b1Ni + b2Nj + b3Nk‖2 on the triangle
{b1 + b2 + b3 = 1, bi � 0}. Let Imin

ijk = [a, b] be the minimal interval such thatPijk(I
min
ijk )

contains the triangular shell. Then we define the minimal prism asPijk(I
ε
ijk) with I εijk =

[a − ε/
√
M,b + ε/

√
M]. The interval[a, b] can be computed by numerical methods (see

Section 2).

5.3. Computation of face data

The functionF in each prism is defined by transfinite interpolation of the data on the
face of the prism (see Section 5.1 or 5.4). To ensure thatF isC1 in the prism, the function
and the gradient on the face need to beC2 andC1, respectively. Now we define theC2

functionF(Hlm) andC1 gradient∇F(Hlm) on every faceHlm of each prism in every level.
For the finest level, these functions have been defined by (5.1) and (5.6). Now we consider
the functions on other levels. Though the face data on levelt + 1 could be incrementally
computed from the data of levelt , we compute data on levelt + 1 from level zero to
avoid error accumulation. The DAG constructed enables us to trace back toS0 to locate
the required data from level zero. Let

F
(
Hlm(t, λ)

) =Glm(t, λ)+ φσ
lm(t)+ψσ

lm(t)λ, (5.10)

whereGlm(t, λ) takes the same form asF(Hlm) in (5.1), and

φσ
lm(t) =

2σ−2∑
i=2

φiN
σ
i3(t), ψσ

lm(t) =
2σ−2∑
i=2

ψiN
σ
i3(t),

where{Nσ
i3(t)}2σ+1

i=−1 areC2 cubic B-spline basis functions defined on the uniform knots
ti = i/2σ , i = 0,1, . . . ,2σ . Here we shiftNσ

i3 so that ti is the center of the support
suppNσ

i3 = ((i − 2)/2σ , (i + 2)/2σ ). Note that the function values and the first order
derivatives ofφσ

lm andψσ
lm are zero at the ends of the interval[0,1].
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SinceGlm depends on vertex information only and it is easy to construct, we do not store
the data ofGlm, but onlyφi andψi . These parameters are determined by approximating
the two intersection curves of the finest level surfacesF (0) = ±1 with the faceHlm, in the
least square sense:

1∫

0

[
F

(
Hlm(t, λs(t))

) + (−1)s
]2 dt = min, s = 0,1, (5.11)

whereλs(t), for fixedt , is defined by the intersection point of the line(1− t)vl(λ)+ tvm(λ)

with the surfaceF (0)+(−1)s = 0. The required pieces of the intersection are obtained from
the DAG. The minimization in (5.11) leads to a system of linear equations

2σ−2∑
i=2

1∫

0

(
φi +ψiλs(t)

)
Nσ
i3(t)N

σ
j3(t)dt = cj

with cj = − ∫ 1
0 [Glm(t, λs(t)) + (−1)s]Nσ

j3(t)dt and j = 2, . . . ,2σ − 2, s = 0,1. The
integrations in the system are computed by Gauss–Legendre quadrature rule on each of
the sub-intervals[i/2σ , (i + 1)/2σ ] and then summed up. This order 2(2σ − 2) equation
can be solved by solving two order 2σ − 2 linear systems. The intersection pointλs(t) is
computed by Newton iteration, and the integerσ is chosen on trial bases. Starting from
σ = 1, we solve the equation and compute the least square error. If the error is larger than
the givenε, then increaseσ by one, until the error is within the tolerance.

Next, we define the gradient∇F(Hlm(t, λ)) by the conditions (5.6), but̆Flm(t, λ) is
modified by adding a spline function:

∇F̆lm(t, λ) = (1− t)∇F
(
vl(λ)

) + t∇F
(
vm(λ)

) + φ̆σ
lm(t)+ ψ̆σ

lm(t)λ (5.12)

with

φ̆σ
lm(t) =

2σ−2∑
i=2

φ̆iN
σ
i3(t), ψ̆σ

lm(t) =
2σ−2∑
i=2

ψ̆iN
σ
i3(t),

whereφ̆i , ψ̆i ∈ R
3 are determined by

1∫

0

∥∥∇F̆lm

(
t, λs(t)

) − ∇F (0)(Hlm(t, λs(t))
)∥∥2 dt = min (5.13)

for s = 0,1, andλs(t) is defined as before. (5.13) can be solved together with (5.11) since
they share the same coefficient matrix.

5.4. Construction of C1 spline approximations

In this section, we construct a piecewiseC1 functionF = Fσ (σ � 0 fixed) over the
collection of the volumes, such that it (Hermite) interpolates theC1 data and fitsF (0).
To achieveε approximation and multiresolution representation in the h-direction, spline
functions defined on triangles are utilized in the construction ofF . On a triangular domain
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Fig. 5.1. Bézier coefficients for twoC1 cubic spline basis functions. Each is defined on the union of
13 sub-triangles, which forms the support of the function.

Fig. 5.2. For the regular partition of a triangle with resolution 2σ , the index setJσ of the sub-triangles
is divided intoJσ

1 andJσ
2 . This figure shows them forσ = 2.

with a regular partition,C1 cubic splines defined in BB form were given by Sabin (1976).
Fig. 5.1 gives the BB-form coefficients of a typical base function defined on 13 sub-
triangles. Note that these splines in general are not linearly independent (see (Böhm et
al., 1984)). However, the collection we use is indeed linearly independent. For a regular
partition of a triangleT , we shall associate a base function to each sub-triangle of the
partition. To give proper indices for these bases, we label the sub-triangles asTijk for
(i, j, k) ∈ J σ = J σ

1 ∪ J σ
2 , whereJ σ

1 andJ σ
2 are defined as follows:

J σ
1 = {

(i, j, k): i, j, k ∈ {1,2,3, . . . ,2σ }; i + j + k = 2σ + 2
}
,

J σ
2 = {

(i, j, k): i, j, k ∈ {
1,2,3, . . . ,2σ − 1

}; i + j + k = 2σ + 1
}
,

where 2σ is the resolution of the partition. Fig. 5.2 givesJ1 andJ2 for σ = 2. Now we
denote the base function defined by Fig. 5.1 with center triangleTijk asNσ

ijk .

5.4.1. F on prisms
Let [V1V2V3] be a typical triangle pair. Define

Fσ

(
p123(b1, b2, b3, λ)

) =
3∑

i=1

wiDi(b1, b2, b3, λ)+ Tσ (b1, b2, b3, λ), (5.14)
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where the first term of left-hand side is in the same form as (5.9), and the second term is a
spline function:

Tσ (b1, b2, b3, λ) =
∑

(i,j,k)∈J σ
3

(aijk +wijkλ)N
σ
ijk(b1, b2, b3)

with J σ
3 = {(i, j, k) ∈ J σ : i > 1, j > 1, k > 1}. This is called acorrection term, which is

used to fit the finest level shell surface in the least square sense:∫ ∫

∆

[
Fσ

(
b1, b2, b3, λs(b1, b2, b3)

) − (−1)s
]2 dS = min (5.15)

for s = 0,1, whereλs(b1, b2, b3) for each(b1, b2, b3) is defined by the intersection point
of the lineb1v1(λ) + b2v2(λ) + b3v3(λ) with the surfaceF (0) + (−1)s = 0. The required
pieces of the intersection are obtained from the DAG. The domain∆ in the integration is
the unit triangle defined by{(b1, b2, b3): b1 + b2 + b3 = 1, bi � 0}. The minimization in
(5.15) leads to a system of linear equations.

5.4.2. Hierarchical representation of correction term
In the construction ofF = Fσ , we have associated it with an integerσ . This integer

indicates the level of the hierarchical multiresolution representation ofF in the h-direction.
However, the construction and expression ofF in Section 5.4.1 is not incremental, as the
construction ofFσ+1 does not utilize the information ofFσ . In this subsection, we revise
some parts of the construction in Section 5.4.1, so thatF is progressively constructed. Now
we want to have the following form expression:

Tσ = Tσ−1 +
∑

(i,j,k)∈J σ
3 \2∗J σ−1

3

(
aσijk +wσ

ijkλ
)
Nσ
ijk ,

whereT1 = 0. Let

Wτ = span
{
Nτ
ijk : i ∈ J τ

3 \ 2∗ J τ−1
3

}
, Sτ =W2 ⊕W3 ⊕ · · · ⊕Wτ .

Then Sτ is a C1 cubic spline function space on a triangle partitioned regularly with
resolution 2τ . OnceTσ−1 has been defined, the coefficientsaσijk andwσ

ijk are computed

by fitting F (0) in the volume. Since the elements inSτ have zero function value and zero
first order partial derivative values on the boundary of the triangle, we can use different
σ for different prisms to get an adaptive construction without destroying the continuity
of the composite function. For the prismPijk , let εσijk be the fitting error. Then for any
given fitting error toleranceε, we can choose a minimalσ so thatεσijk � ε. Thisσ is prism
dependent.

Basic result. The composite function F , defined on any extracted scaffold and for any
varying and prism-dependent σ � 0, is C1.

We omit the tedious mathematical derivation of the proof of this result, but do give
examples illustrating the smoothness of the functionFσ . Fig. 5.3 provides examples of
hierarchical multiresolution construction in the h-direction. The figures (forσ = 1,2,3)
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Fig. 5.3. h-direction hierarchical multiresolution construction for the hypersheet surface triangulation
(513 triangle pairs) of level 2 of the DAG withσ = 1 (top-right),σ = 2 (bottom-left) andσ = 3
(bottom-right). The level 0 triangulation has 917 triangle pairs with varying thickness.

with continuous isophotes show the constructed surface is indeed smooth. The figures also
show the surface shape improvement by the splines whenσ is increased.

The H-direction multiresolution is shown in Fig. 5.4. To see the pairwise nature of the
triangulation,T (1) is plotted by wire, whileT (0) is plotted by plane segments. Fig. 5.4(a)
is the original matched triangulation pair that has 25561 triangle pairs. Fig. 5.4(b), (c)
and (d), which have 13141, 6765, and 4069 triangle pairs respectively, are the extracted
triangulations. More examples are given in Fig. 8.1.

6. Capturing curve creases

To capture sharp curve creases, we need to mark certain edges as sharp. To this end,
we compute the dihedral angleθ = π − θ1 for the two incident faces, for each edge of
the triangulationsT (0) andT (1). If θ < α, then this edge is marked as a sharp edge. Here
θ1 is the angle between the normals of the two triangles andα is a threshold value for
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(a) 25552 triangle pairs,g = 0◦ (a1) Inner boundary

(b) 13128 triangle pairs,g = 5◦ (b1) Outer boundary

(c) 6754 triangle pairs,g = 15◦ (c1) Inner boundary

(d) 4074 triangle pairs,g = 30◦ (d1) Outer boundary

Fig. 5.4. H-direction smooth reconstruction of matched triangulation pairs: (a) the input triangulation.
(b), (c) and (d) are adaptively extracted meshes from the DAG withg = 5◦,15◦,30◦, respectively.
The right column shows inner/outer boundary surfaces with isophotes showing the smoothness. The
level in the h-direction is zero.
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Fig. 6.1. Grouping the triangles by the sharp edges (thick lines) and assigning a normal for each
group.

Fig. 6.2. Left: the input polygons with some edges marked as sharp. Right: the constructed shell
surfaces with sharp curve creases. There are four edge pairs (inner and outer) on the top polygon
marked as sharp. On the bottom polygon, only four outer edges are marked.

controlling the sharp curve crease. After marking the edges, the vertices also need to be
marked. If there exist sharp edges incident to a vertex, then we say this vertex is sharp,
otherwise, it is non-sharp. For a sharp vertex, the normal that has been assigned before
needs to be re-computed. The triangles around a sharp vertex are divided into some groups
by the sharp edges (see Fig. 6.1). For each group, we assign a single normal for the vertex.
This normal may be computed as the weighted average of the face normals. The weight
is chosen to be the angle of the edges that are incident to this vertex. In the construction
of the surface patch for one triangle, there is only one normal used for each vertex of the
triangle. This normal is the vertex normal if the vertex is non-sharp, otherwise the normal
is the group’s normal.

For a sharp edge[VlVm], the functionF(Hlm) defined in (5.10) and the gradient∇F̆lm

defined in (5.12) need to be redefined. The functionF(Hlm(t, λ)) is changed to be the
average function of the two local fitting functions that are defined on the neighbor volumes
of the face. If there is only one neighbor volume, as is the case for a boundary edge, the
face function is taken to be the volume function on that face. The average function makes
the composite function continuous on the faceHlm. For the gradient on the face, we need
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to define two gradient functions, each being from one of the two volume functions. That
is, the gradient function∇F̆lm in (5.13) is replaced by the gradient of the volume functions
on this face. Hence, the gradient of the composite function is not continuous at the face.
Nevertheless, this gradient interpolates the sharp normals on the two vertices. Hence, sharp
curve creases are captured.

Two examples are shown in Fig. 6.2. The left two figures are input polygons, and the
right two figures are the shell bodies that are the corresponding output. In the star-like
polygon on the top-left, the left four inner and outer peak edges are labeled as sharp.
The shell surface on the top-right exhibits the sharp curve creases. For the bottom-left
polygon, the left four peak edges of the outer polygon are labeled as sharp, and no edge
is labeled as sharp for the inner polygon. The figure on the bottom-right shows the outer
sharp, inner smooth nature. Another example that has sharp curve creases is shown in
Fig. 8.1(f) and (f1).

7. Evaluation and display of shell surfaces

Often we wish to evaluate the surfaceF = α for a givenα ∈ [−1,1]. Let [ViVjVk] be
any triangle pair. Then for each(b1, b2, b3), bi � 0,

∑
bi = 1, determine

λ
(α)
min = λ

(α)
min(b1, b2, b3)

such that

F
(
pijk(b1, b2, b3, λ

(α)
min)

) = α,∣∣λ(α)min − 1
2

∣∣ = min
{∣∣λ− 1

2

∣∣: F (
pijk(b1, b2, b3, λ)

) = α
}
.

(7.1)

The surface point is defined by

p = pijk(b1, b2, b3, λ
(α)
min).

The main task here is to computeλ(α)min for each(b1, b2, b3). It follows from (5.9) that
Di(b1, b2, b3, λ) is a rational function ofλ. It is in the form

f0 + f1λ+ f2λ
2 + N0 +N1λ+N2λ

2 +N3λ
3 +N4λ

4

D0 +D1λ+D2λ2 . (7.2)

Henceφ(λ) := F(pijk(b1, b2, b3, λ)) is a rational function ofλ of the form (7.2). The

nearest zero to 1/2 of φ(λ) − α is the requiredλ(α)min. Although φ(λ) − α = 0 is a
nonlinear algebraic equation,φ(λ) − α can be approximated by a polynomial of degree
at most 2, since the rational term in (7.2) is small compared with the polynomial term.
Hence, taking the roots of the polynomial part as an initial value and then using Newton
iteration, we obtain the required solution. The computation shows that this approach is very
effective.

In addition to extracting the boundary surfaces of a shell, we can also extract the surfaces
between the boundaries by takingα ∈ (−1,1). Furthermore, by taking a sequence of
α in increasing order, the shell can be divided into layers (see Fig. 7.2), an onion-like
structure.
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Fig. 7.1. Evaluation of a shell surface: The surface is parameterized in each prism with the triangle
{b1 + b2 + b3 = 1, bi � 0} as its domain.

Fig. 7.2. Middle surface and multiple layers of a shell: Inner surface and two layers are presented.

Using the hierarchical representation of the correction term, the evaluation of the shell
surface can be progressive in the h-direction. SinceFσ −Fσ+1 in general is small,Fσ = α

is a good approximation ofFσ+1 = α. Hence in the Newton iteration for getting the surface
point onFσ+1 = α, Fσ = α is a very good initial value. Furthermore, coefficients in (7.2)
are the same forFσ andFσ+1, except forf0 andf1 which are affected by the correction
term. H-direction progressive evaluation (from coarse to fine) is also possible in theory
but it is not as cheap as the h-direction, since an extracted scaffold may combine different
levels. Hence, we do not recommend the H-direction progressive evaluation.

8. Conclusions

We have presented an adaptive hierarchical Hh-multiresolution reconstruction algorithm
to model smooth shell surface objects from a matched triangulation pair. The implemen-
tation and test (see Fig. 8.1 for more examples) show that the proposed method is correct
and fulfills our purpose.



108 C.L. Bajaj et al. / Computer Aided Geometric Design 19 (2002) 89–112

(a) 3974 triangle pairs (b) 3707 triangle pairs (c) 3421 triangle pairs

(a1) Smoothing of (a) (b1) Smoothing of (b) (c1) Smoothing of (c)

(d) 2013 triangle pairs (e) 2782 triangle pairs (f) 3586 triangle pairs

(d1) Smoothing of (d) (e1) Smoothing of (e) (f1) Smoothing of (f)

Fig. 8.1. Shell surface constructions: (a)–(f) are the extracted triangulations from the DAGs with
g = 30◦,5◦,40◦,30◦,30◦ and 30◦, respectively. (a1)–(f1) are the corresponding shell surface
reconstruction with errorε = 0.05. The original triangulations have 25552 (head), 4629 (aircar),
7798 (femur), 20216 (foot), 5804 (cow), and 12946 (fandisk) triangle pairs, respectively.
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Appendix A. Vertex removal

Consider the vertex removal of the matched triangulation pairTt . This procedure is
subject to the following conditions:

Containment. The initial minimal prism scaffold is always contained in the new scaffold
when a vertex is removed and the hole left is re-triangulated (see Section 5.2 for computing
the minimal prism scaffold).

Lower bound of angle. The angles of triangles resulting from the removal and re-
triangulation are not smaller than the given control angleθ . Enforcing this condition avoids
producing thin triangles.

Under these conditions, we first subdivide all the vertex pairs ofTt into two groups. One
group contains the vertices that are not removable, and the other contains the remaining
vertices. The unremovable group includes vertices that are marked as sharp (see Section 6),
and those that if they are removed, the resulting prisms do not satisfy the containment
condition or the resulting triangles do not satisfy the lower bound condition.

There is plenty of literature on polygonal mesh simplification (see, e.g., (Erikson, 1996;
Gieng et al., 1998; Guskov et al., 1999; Hamann, 1993, 1994; Hoppe et al., 1994; Lee et al.,
1998; Schroeder et al., 1992). Any vertex removal scheme, for instance the scheme created
by Hamann (1993, 1994), that is based on the local curvature estimation can be adjusted to
serve our purpose. To have the adaptiveness property and to utilize the normal information
provided, our vertex removal criterion is based on normal variation. The flattest part of the
triangulation is removed first. LetRt be the set of removable vertices ofTt . Then for each
vertexv ∈ Rt , we specify a grade to it that measures the normal variation. After all the
vertices inRt are graded, we sort the grades in increasing order. Then start the removal
from the vertex that has lowest grade. Of course, when one vertex is removed, its neighbor
vertices become unremovable.

In order to define the grade of a point, we introduce sets of pointsGjkl . These sets will
consist of removed points that lie in the prismPjkl . At level 0, these sets are empty, which is
equivalent to saying thatGijk = ∅ for eachTijk in the original triangulationT0. At level 1,
each of these sets can contain at most two points: ifTjkl is one of the resulting triangles
formed by the removal of the pointp, thenGjkl can only containp and its corresponding
point in the other layer (inner or outer). The point setsG’s for each higher level are defined
recursively as follows. For anypi ∈ Rt , we first defineKi = {(i, j, k): Tijk ∈ T (0)

t } to be

the set of all triples of indices corresponding to triangles in the triangulationT (0)
t around

pi , or the corresponding point in the inner layer ifpi is in the outer layer. Then letK ′
i

be the set of all triples of indices(j, k, l), taken from the indices of points connected
to pi , corresponding to the triangles formed by the re-triangulation afterpi is removed.
Finally, defineGjkl as the regrouping of the data setpi ∪ (

⋃
(i,j,k)∈Ki

Gijk) into the prisms
Pjkl, (j, k, l) ∈ K ′

i . Therefore, the setsGjkl at levelt + 1 are recursively generated, with
each being the regrouping of the union of similar sets the levelt with a newly removed
vertex and its corresponding vertex in the other layer.
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Now for each vertexp in Gjkl we consider four angles that measure the normal

variation. Fors = 0,1, we defineθ(s)jkl(p) to be the angle between the averaging normal

b
(s)
1 N

(s)
j + b

(s)
2 N

(s)
k + b

(s)
3 N

(s)
l and the normalN of vertexp, andθ̃ (s)jkl(p) to be the angle

between the normalN(s)
jkl of the triangleT (s)

jkl and normalN . (N is eitherN(0) or N(1),
depending on whetherp is in the inner or outer layer.) The sub-grade ofp with respect to
(j, k, l) is the largest of these four angles, with some possibly multiplied by a weight. Then
the grade of a pointpi ∈Rt is defined to be the maximum of the sub-grades of all pointsp

in any of the prisms resulting from the re-triangulation occurring upon the removal ofpi .
Specifically, we define

Sub-grade(p; j, k, l)= max
s=0,1

max
{
θ
(s)
jkl(p),wθ̃

(s)
jkl(p)

}
,

and

Grade(pi)= max
(j,k,l)∈K ′

i

max
p∈Gjkl

[
Sub-grade(p; j, k, l)], (A.1)

wherew is a weight whose value we choose to equal 2. This grade is assigned to each of
the prisms yielded from the re-triangulation for the later use of scaffold extraction. The
initial prisms inS0 are assigned zero grade. We use the same notation Grade(·) to denote
the grade of a prism.

Appendix B. Re-triangulation

After pi is removed, the resulting hole is re-triangulated. We only consider the re-
triangulation of one of the triangular surfaces that make up the matched triangulation pair.
The other surface is triangulated in the same manner, preserving similar topology for the
twin. Letp(1)

0 ,p
(1)
1 , . . . , p

(1)
n be the vertex chain on the positive side that produces the hole.

We assume the chain is arranged in a counterclockwise manner. The hole is triangulated
by:

(1) If n= 2, one triangle is returned.
(2) If n � 3, then label the pointp(1)

j as convex if (see Fig. B.1)[(p(1)
j+1 − p

(1)
j ) ×

(p
(1)
j−1 − p

(1)
j )]Tn(1)j > 0, and label it as non-convex otherwise.

Fig. B.1. Convexity test by right-hand rule: The vertices with black and white dots are labeled as
convex and non-convex, respectively.
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(3) Find(j, k), 0� j, k � n, such that
(i) p

(1)
j andp(1)

k are not adjacent in the closed chain{p(1)
i }.

(ii) p
(1)
j andp

(1)
k are selected from the non-convex vertices when there are two

or more non-adjacent points labeled as non-convex. If there is only one non-
convex point, or exactly two non-convex points that are adjacent, then one of
p
(1)
j andp(1)

k must be non-convex.

(iii) Under the conditions (i) and (ii), the geodesic distance fromp
(1)
j to p

(1)
k on the

previous (i.e., levelt) triangulation{Tijk}, (i, j, k) ∈ Ki is minimal.

Next divide the points surrounding the hole into two chains[p(1)
j ,p

(1)
j+1, . . . , p

(1)
k ] and

[p(1)
k ,p

(1)
k+1, . . . , p

(1)
j ], where each chain is again arranged in counterclockwise order and

the indices are considered modulon. For each hole, repeat steps (1)–(3).
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