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We present a unified anisotropic geometric diffusion PDE model for smoothing (fairing) out noise both in triangulated two-
manifold surface meshes in IR3 and functions defined on these surface meshes, while enhancing curve features on both by
careful choice of an anisotropic diffusion tensor. We combine the C1 limit representation of Loop’s subdivision for triangu-
lar surface meshes and vector functions on the surface mesh with the established diffusion model to arrive at a discretized
version of the diffusion problem in the spatial direction. The time direction discretization then leads to a sparse linear sys-
tem of equations. Iteratively solving the sparse linear system yields a sequence of faired (smoothed) meshes as well as faired
functions.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis ]: Partial Differential Equations—finite element methods ;
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—splines; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—color, shading, shadowing, and texture; I.4.3 [Image Processing and Computer Vision]:
Enhancement

General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: Surface function diffusion; Loop’s subdivision; Riemannian manifold, texture mapping, noise
reduction

1. INTRODUCTION

Problem Considered
Given are a discretized triangular surface mesh Gd ⊂ IR3 (geometric information) and a discretized
function-vector Fd ⊂ IRκ−3. Each of the function-vector values is attached to one and only one vertex
of the surface mesh. We assume that both the geometric and surface function information suffer from
noise. Our primary goal is to smooth out the noise and to obtain faired geometry as well as faired
surface function data at different scales. Our secondary goal is to construct continuous (nondiscretized)
representations for the smoothed geometry and surface function data. In this article, we use the terms
fairing and smoothing interchangeably.
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Fig. 1. First column: Fairing the geometry of the head model of Picard (146,036 triangles). The second and third figures in this
column are the meshes after one and four steps of fairing. Second column: Fairing texture coordinates while the geometry is
fixed. The second and third figures of this are the fairing results after one and four iterations. In all the examples in this article,
the timestep τ is 0.001.

Motivation
Quite often, discretized surfaces under investigation suffer from noise or errors in geometry (see
Figure 1). For surfaces and attribute functions that come from the reconstruction of physical objects,
the noise comes from the sampling error of the imaging equipment, such as CT, MRI, ultrasound, or 3D
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laser scanners. If the surface and function on surface (e.g., air velocity on an airfoil) are the result of
numerical computation (e.g., finite element simulations), the errors come from the numerical sensitivity
of the algorithm or model discretization. The use of lossy compression is prevalent in streaming geome-
try and textures for Internet gaming and eCommerce visualization applications. The lossy compressed
geometry and texture data when decoded often suffer from noise caused by the inaccuracy in spatial
distribution of the mesh density (topology) and the quantization of the numerical vertex coordinate
data.

The errors of the geometric and surface function data may often be coherent. For example, the sound
pressure distribution function resulting from the numerical solution of the Helmholtz equation over a
surface domain is very sensitive to the perturbation in the geometry, especially for high frequencies.
In another situation, the function errors could also cause geometry errors. For example, in the case
of surface extraction from volumetric MRI and surface coregistration with functional-MRI volumetric
data, the errors of the function could result in direct errors of the extracted surfaces. In these cases, it
might be rational to combine the geometry and surface function data, and to consider the smoothing
problem uniformly. Another point of view is to look at the surface function data as graphs. If we consider
a greyscale image I (x, y) defined on the xy-plane as a surface in IR3, then the image is given by the
graph (x, y , I (x, y)). Similarly, if we consider a scalar function f (x, y , z) defined on a surface G as a
hypersurface in IR4, then the surface is given by the graph (x, y , z, f (x, y , z)) for (x, y , z) ∈ G. Finally,
smoothing both the geometry and function data on the surface uniformly reduces the computational
costs in the finite element discretization, as both of them use the same stiffness matrix (see Section 4.2
for details). Of course, in other cases, when the surface geometry and function on surface data errors
are not coherent, the smoothing could be performed separately.

Previous Work.
The existing approaches for surface fairing can be classified roughly into two categories: optimization
and evolution. In the first category, one constructs an optimization problem that minimizes certain
objective functions [Greiner 1994; Hoppe et al. 1993; Hubeli and Gross 2000; Moreton and Sequin
1992; Sapidis 1994; Welch and Witkin 1992], such as thin plate energy, membrane energy [Kobbelt
et al. 1998], total curvature [Kobbelt et al. 1997; Welch and Witkin 1994], or sum of distances [Mallet
1992]. Using local interpolation or fitting, or replacing differential operators with divided difference
operators, the optimization problems are discretized to arrive at finite-dimensional linear or nonlinear
systems. Approximate solutions are then obtained by solving the constructed systems.

The main solution idea of the evolution category is borrowed from the solution of the linear heat equa-
tion ∂tρ −1ρ = 0 for equilibrating spatial variation in concentration, where 1 := div · ∇ is the Laplace
operator. This PDE- (partial differential equation) based evolution technique was originally trans-
planted to image processing. (See Perona and Malik [1987], Preusser and Rumpf [1999], and Weickert
[1998]. In the last-mentioned, 453 relevant references are listed.) This was extended to smoothing or
fairing noisy surfaces (see Clarenz et al. [2000], and Desbrun et al. [2000a,c]). For a surface M , the
counterpart of the Laplacian 1 is the Laplace–Beltrami operator 1M (see do Carmo [1992]). One then
obtains the geometric diffusion equation ∂t x −1M x = 0 for surface point x(t) on the surface M (t).

Taubin [1995] discussed the discretized operator of the Laplacian and related approaches in the
context of generalized frequencies on meshes. Kobbelt [1996] considered discrete approximations of
the Laplacian in the construction of fair interpolatory subdivision schemes. This work was extended
to arbitrary connectivity for purposes of multiresolution interactive editing [Kobbelt et al. 1998].
Desbrun et al. [2000a] used an implicit discretization of geometric diffusion to obtain a strongly sta-
ble numerical smoothing scheme. Clarenz et al. [2000] introduced anisotropic geometric diffusion to
enhance features while smoothing. All these were based on a discretized surface model. Hence the
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first- and second-order derivative information, such as normals, tangents, and curvatures, were esti-
mated using some local averaging or fitting scheme. Computational methods of normals and curvatures
for discrete data were carefully studied recently by Desbrun et al. [2000c]. They used the proposed meth-
ods to mesh smoothing and enhancement.

Similar to surface diffusion using the Laplacian, another class of PDE-based methods called flow sur-
face techniques have been developed that simulate different kinds of flows on surfaces (see Westermann
et al. [2000] for references) using the equation ∂t x − v(x, t) = 0, where v(x, t) represents the instanta-
neous stationary velocity field.

Recently, level-set methods were also used in surface fairing and surface reconstruction (see Bertalmio
et al. [2000a,b], Chopp and Sethian [1999], Osher and Fedkiw [2000], Whitaker and Breen [1998], and
Zhao et al. [2001, 2000]). In these methods, surfaces are formulated as isosurfaces (level surfaces) of
3D functions, which are usually defined from the signed distance over Cartesian grids of a volume. An
evolution PDE on the volume governs the behavior of the level surface. These level-set methods have
several attractive features including ease of implementation, arbitrary topology, and a growing body of
theoretical results. Often, fine surface structures are not captured by level sets, although it is possible
to use adaptive (see Bansch and Mikula [2001] and Preusser and Rumpf [1999]) and triangulated grids.
To reduce the computational complexity, Bertalmio et al. [2000a,b] solve the PDE in a narrow band for
deforming vectorial functions on surfaces (with a fixed surface represented by the level surface). In
their approach, anisotropic diffusion is also considered.

In 2D image processing, Sochen, Kimmel, Malladi (see Kimmel et al. [1998], Kimmel and Sochen
[1999], and Sochen et al. [1998]), and Yezzi [1998] treat images as high-dimensional surfaces and
process them based on projected curvature motion flows. A similar treatment was adopted by Desbrun
et al. [2000b] for denoising bivariate data embedded in high-dimensional spaces while preserving edges.
Curvature flows were also used in Sethian [1999, Chapter 16] for image enhancement and noise removal.

For fairing functions on surfaces, Kimmel [1997] used geodesic curvature flow to smooth images
painted on a surface. We should point out that many of the above surface fairing methods can be
extended to the problem of fairing functions on surfaces if each component of the vector function is
independently smoothed. For example, the signal processing approach for meshes proposed in Guskov
et al. [1999] has been used to smooth the coordinates of texture maps. In this article, we provide a
new approach when vector-function data on a surface are treated simultaneously, both together and
independent of the surface geometry.

The aim of anisotropic diffusion is to smooth the two-manifold in a certain direction and enhance
sharp features in another direction. There is plentiful use in 2D image processing [Action 1998; Harr
Romeny 1994; Kawohl and Kutev 1998; Perona and Malik 1987; Weickert 1996, 1998]. We review a
relevant few that relate to vector-valued data. Sapiro and Ringach [1996] determine the directions
of maximal and minimal rate of change of vector-valued functions by eigenvectors and eigenvalues
of the first fundamental form in the given image metric. Weickert [1997] uses a structure tensor for
anisotropic diffusion. The structure tensor is constructed as the sum of structure tensors (second-
moment matrix) of each channel of the vector-valued function. In Tang et al. [2000b], the authors
propose a framework to isotropically and anisotropically diffuse directional data, using a harmonic
map. Different from the general vector-valued functional data mentioned above, the directional data
satisfy a unit norm constraint. The harmonic map allows both the domain and directional data to
be nonflat. Hence the approach could be used for denoising data on surfaces in 3D. This approach is
also used to enhance color images [Tang et al. 2000a]. Similar to Tang et al.’s direction diffusion, but
developed independently, is Chan and Shen’s [1999] research. They develop both models and algorithms
for denoising and restoration of nonflat image features that live on Riemannian manifolds. For surface
smoothing, Desbrun et al. [2000c] use weighted mean curvature flow to achieve the effect of anisotropic
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diffusion. The weighted mean curvature flow penalizes the vertices that have a large ratio between
their two principal curvatures. Clarenz et al. [2000] use a diffusion tensor defined from the principal
directions and principal curvatures of the deformed surface. Our anisotropic diffusion tensor generalizes
the work of Clarenz et al. to higher dimensions.

Our Approach and Contributions

(a) Establishing a Unified Diffusion Model. In this article, we call a triangular surface mesh with
function values on each of the vertices of the mesh, simply an attributed triangular mesh. We treat three-
dimensional discrete surface data and (κ −3)-dimensional function data on the surface as a discretized
version of a two-dimensional Riemannian manifold embedded in IRκ . We establish a PDE diffusion
model for such a manifold. Although the derivation of the model involves Riemannian geometry, the
final outcome is simple and easy to understand. An alternative formulation was taken in Sochen et al.
[1998] for color image processing. Our formulation is more straightforward and simpler.

(b) Discretizing the Diffusion Model in a Smooth Function Space. We combine the limit function
representation of Loop’s subdivision for triangular meshes with our diffusion model to arrive at a dis-
cretized version of the diffusion problem. The input attributed triangular mesh serves as the control
mesh of Loop’s subdivision. Solving the discretized problem, a sequence of smoothed attributed trian-
gular meshes as well as smoothed functions is obtained. What makes our discretization distinct from
previous work is that we diffuse globally smooth functions instead of discrete functions. Working with
smooth (higher-order) function models of finite dimension (instead of linear elements), related quanti-
ties, such as gradients, tangents, normals, and curvatures, can be computed exactly and directly at all
timesteps. This framework allows us to trade off accuracy and speed with computational complexity.

(c) Anisotropic Diffusion. We construct an anisotropic diffusion tensor in the diffusion model which
makes the diffusion process have the effect of enhancing sharp features while filtering out noise. If k = 3,
this diffusion tensor reduces to the one given in Clarenz et al. [2000]. Figure 8 shows the difference
between applying and not applying an anisotropic diffusion tensor.

The function on a surface defined by Loop’s subdivision is in a finite-dimensional space. The basis
functions of this space have compact support (within 2-rings of the vertices). This support is bigger than
the support (within 1-ring of the vertices) of hat basis functions that are used for the discrete surface
model. Such a difference in the size of support of basis functions makes our evolution more efficient
than those previously reported, due to the increased bandwidth of affected frequencies. Compared to
prior approaches, the reduction speed of high-frequency noise in our iterative solution approach is not
overly drastic (leading to overfairing), and the reduction speed of lower-frequency noise is not that
slow (leading to underfairing). Hence, the bandwidth of affected frequencies is much wider. Figure 12
provides an example to illustrate this difference. The figures are the fairing results of a noisy input mesh
(Figure 10) and one and three fairing steps (timestep 0.001) using linear finite element implementation
(the first row) and Loop’s finite element implementation (the second row) with identity diffusion tensors.
The figures of the first row smooth out more detailed features (see the ears, eyes, lips, and nose) than
the figures of the second row, and at the same time the large-scale features (see the head) of the top are
less smooth than that of the bottom. Figure 2 shows another example that exhibits the same features
of the two approaches. It should be pointed out that the larger support of basis functions leads to more
nonzero (five times more on average) elements in the stiffness matrix of the finite element discretization.
This implies more computations are required in both forming the matrix and solving the linear system.
However, test results show that the numerical condition of the discretized linear system of our higher-
order approach is often better than that of the linear element approach, yielding faster convergence
rates. For the example mentioned above (Figure 12), our approach needs 23, 18, 16, and 17 iterations
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Fig. 2. The top figure shows the initial geometry mesh. The second and the third figures show the faired meshes after two
fairing iterations with timestep τ = 0.001 (isotropic diffusion) and using the linear element approach and our high-order smooth
element approach, respectively.

for solving the linear systems by Gauss–Seidel methods for the timesteps 1, . . . , 4, within the L∞ error
9 ∗ 10−6. The linear element approach needs 57, 67, 73, and 77 iterations, respectively. This behavior
is very explainable. Because the support of the basis functions of the linear element is small, tiny
triangles will cause very small elements in the matrix of the discretized linear system, which worsens
the numerical condition of the system.

Very recently, Arden [2001] in his thesis reported on the approximation power of Loop’s subdivision
limit functions. His results show that Loop’s subdivision limit functions have one order higher approxi-
mation power than linear elements. This provides at least one quantifiable measure of their superiority
over linear elements.

The evolution process produces not only a sequence of attributed triangular meshes at different time-
steps, but also a sequence of smooth functions. By sampling these smooth functions, new attributed
triangular meshes at a resolution higher than that of the original mesh can be produced. Furthermore,
gradient and curvature at any point can be easily computed.

2. THE DIFFUSION MODEL

The diffusion model that we use is a generalization of the heat equation ∂tρ − 1ρ = 0 in Euclidean
space to a two-dimensional manifold embedded in IRκ . Such a generalization to surface in 3D has been
given by Clarenz et al. [2000]. The natural extension to a two-dimensional manifold embedded in IRκ

is what we now present. First, we establish the diffusion model for continuous geometry G ⊂ IR3 and
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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continuous surface functions F ⊂ IRκ−3. The discretization of the continuous model is discussed in
Section 4. Suppose we are given κ − 3 (κ ≥ 3) functions f (x) = ( f1(x), f2(x), . . . , fκ−3(x)) ∈ F , x ∈ G.
We assume that surface G is a two-dimensional manifold embedded in IR3. We combine the geometric
position x and function f (x) to form a κ-dimensional vector (x, f (x)). We use M to indicate the graph
{(x, f (x)) ∈ IRκ : x ∈ G}. Therefore, we may consider M as a two-dimensional manifold embedded in
IRκ . Working with such a manifold for establishing the diffusion model requires proper extensions of
expressions, such as tangents, gradients, Laplacian, curvatures, and integrations. Fortunately, several
of these are well developed in the field of Riemannian Geometry (see do Carmo [1992], Rosenberg [1997],
and Willmore [1982]).

Tangent Space of Differential Manifold
Let M ⊂ IRκ be a two-dimensional manifold, and {Uα, xα} be the differentiable structure. The mapping
xα with x ∈ xα(Uα) is called a parameterization of M at x. Denoting the coordinate Uα as (ξ1, ξ2), the
tangent space Tx M at x ∈ M is spanned by {(∂/∂ξ1), (∂/∂ξ2)}. For a given point x ∈ xα(Uα) ⊂ M , the
tangent vector components ∂/∂ξ1 and ∂/∂ξ2 depend upon α, but Tx M does not. The set TM = {(x, v); x ∈
M , v ∈ Tx M } is called a tangent bundle.

Riemannian Manifold
To define integration on M , a Riemannian metric (inner product) is required. A differentiable manifold
with a given Riemannian metric is called a Riemannian Manifold. A Riemannian metric 〈 , 〉x of M is
a symmetric, bilinear and positive-definite form on the tangent space Tx M . Since M is a submanifold
of Euclidean space IRκ , we use the induced metric:

〈u, v〉x = uT v, u, v ∈ Tx M .

Integration
Let f be a function on M , and let {φα}α be a finite partition of unity on M with support φα ⊂ Uα. Then
define ∫

M
f dx :=

∑
α

∫
Uα

φα f (xα)
√

det(gij )dξ1 dξ2, (1)

where

gij =
〈
∂

∂ξi
,
∂

∂ξ j

〉
x
.

Then we can define the inner product of two functions on M and two vector fields on TM as

( f , g )M =
∫

M
fg dx, f , g ∈ C0(M ),

(φ, ψ)TM =
∫

M
〈φ, ψ〉dx, φ, ψ ∈ TM.

Gradient
Suppose f ∈ C1(M ). The gradient ∇M f ∈ Tx M of f is defined by the following conditions:

tT
i ∇M f = ∂( f ◦ x)

∂ξi
, i = 1, 2, (2)

where ti = ∂x/∂ξi are the tangent vectors. Note that ∇M f is invariant under the surface local reparam-
eterization. From (2), we have

∇M f = [ t1, t2 ]G−1
[
∂( f ◦ x)
∂ξ1

,
∂( f ◦ x)
∂ξ2

]T

, (3)
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where

G−1 = 1
det G

[
g22 −g12

−g21 g11

]
, G =

[
g11 g12

g21 g22

]
,

and G is known as the first fundamental form.

Divergence
The divergence divMψ for a vector field ψ ∈ TM is defined as the dual operator of the gradient (see
Rosenberg [1997]).

(divM v, φ)M = −(v, ∇Mφ)TM , ∀φ ∈ C∞0 (M ), (4)

where C∞0 (M ) is a subspace of C∞(M ), whose elements have compact support.

Diffusion Model
Using the notation introduced above, we formulate the geometric diffusion model as the nonlinear
system of parabolic differential equations:

∂t x(t)−1M (t)x(t) = 0, (5)

where M (t) is the solution manifold at time t, x(t) = (x1(t), . . . , xκ (t)) is a point on the manifold, and
1M (t) = div ◦ ∇M (t) is known as the Laplace–Beltrami operator on M (t). Because 1M x = 2H(x) (see
Willmore [1993, page 151]), Equation (5) could be written as ∂t x(t) = 2H(x), where H(x) is the mean
curvature vector at x. Hence the equation describes the mean curvature motion, whose regularization
effect could be seen, for κ = 3, from the following equations (see Clarenz [2000] and Sapiro [2001]).

d
dt

Area(M (t)) = −
∫

M (t)
h2 dx,

d
dt

Volume(M (t)) = −
∫

M (t)
hdx, (6)

where Area(M (t)) and Volume(M (t)) are the area of M (t) and volume enclosed by M (t), respectively,
and h is the mean curvature (i.e., H = hn, where n is the unit surface normal). However, to be able to
enhance sharp features, a diffusion tensor D, acting on the gradient ∇M (t), is introduced. Furthermore,
a term r ∈ IRκ on the right-hand side of the equation, which represents an external force, is imposed.
Hence the final model we use is

∂t x(t)− divM (t)
(
D∇M (t)x(t)

) = r(x(t)), (7)
M (0) = M , (8)

where the diffusion tensor D := D(x) is a symmetric and positive definite operator from TM to TM. The
diffusion tensor D(x) has a significant influence on the shape of the diffused surface and functions on
the surface. The details of the discussion for choosing the diffusion tensor are in Section 5. The function
r is chosen in the form:

r(x(t)) = ω(x(0)− x(t)), ω ≥ 0. (9)

This term is used to approximate the initial mesh in the smoothing process, so that the smoothed
surfaces do not evolve too much from the initial surface M (0).ω is a user-specified parameter. If D(x) = I ,
an identity operator, then (7) becomes ∂t x(t) = 2H(x)+ ω(x(0)− x(t)). Hence the equation described is
a motion that is decomposed into the mean curvature motion, caused by 2H(x) and in the direction of
the mean curvature vector, and a motion towards the original surface, caused by ω(x(0)−x(t)) and in the
direction of x(0)− x(t). The magnitude of ω determines which portion of the two motions dominates the
composite motion. In most of the examples in this article, we choose ω = 0. We do give an example
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(see Figure 15) that which uses a nonzero ω and shows the effect of ω on the evolved surface. Using (4),
the diffusion problem (7) and (8) can be reformulated as the following variational form.

Find a smooth x(t) such that
(∂t x(t), θ )M (t) +

(
D∇M (t)x(t), ∇M (t)θ

)
TM(t) = (r, θ )M (t), ∀θ ∈ C∞0 (M (t))

M (0) = M .

(10)

Since x = (x1, . . . , xκ ) is a vector-valued function, the inner product (∂t x(t), θ )M (t) is understood as
((∂t x1(t), θ )M (t), . . . , (∂t xκ (t), θ )M (t)).

Other Alternatives of the Diffusion Model
In establishing our diffusion model, we have combined the geometry and physical data on the geometry.
This combination is under the assumption that both the geometric and physical data have errors and
the two errors are coherent. In practice, this assumption may not always be valid. Considering the two
aspects of having errors or not, and whether the errors are coherent or not, we have several possibilities:
(a) both the geometry and physical data have errors and the errors are coherent; (b) both the geometry
and physical data have errors and the errors are not coherent; (c) only the physical data have errors; (d)
only the geometric data have errors; and (e) none of them have errors. Case (a) is what we previously
assumed. If the errors are not coherent as in case (b), then the smoothing process should be conducted
separately. Let G(t) ⊂ IR3 and F (t) ⊂ IRκ−3 denote the geometry and the physics information at time
t, respectively. Then (10) becomes the following two problems.{

Find a smooth g (t) ∈ IR3 such that
(∂t g (t), θ )G(t) +

(
D∇G(t) g (t), ∇G(t)θ

)
TG(t) = (rg (t), θ )G(t), G(0) = G,

(11)

for all θ ∈ C∞0 (G(t)), and{
Find a smooth f (t) ∈ IRκ−3 such that
(∂t f (t), θ )G(t) +

(
D∇G(t) f (t), ∇G(t)θ

)
TG(t) = (r f (t), θ )G(t), F (0) = F,

(12)

for all θ ∈ C∞0 (G(t)), where G(t) is the solution of (11) at time t, rg (t) ∈ IR3 and r f (t) ∈ IRκ−3 are
the decomposition of r. Here we assume the time t in both problems (11) and (12) goes at the same
speed. Obviously, this is not necessary if we assume the two types of errors are not related in any way.
However, there is some difficulty in determining which geometry mesh should be used for smoothing
the functional data. Furthermore, using different evolution speeds for the two problems will cause the
dual stiffness matrices. This will duplicate the computational costs.

In case (c), we separate the geometry and physics. We use the notation G = G(t) to denote the
geometry, and again use F (t) ⊂ IRκ−3 to denote the physics information. Then (10) becomes

Find a smooth f (t) ∈ IRκ−3 such that
(∂t f (t), θ )G + (D∇G f (t), ∇Gθ )TG = (r f (t), θ )G , ∀θ ∈ C∞0 (G),
F (0) = F,

(13)

where f (t) ∈ F (t) is the function of F (t). Since G is fixed, the system (13) is linear. In case (d), we need
only to solve problem (11). Case (e) does not need to be considered.

3. SUBDIVISION SURFACES

We discretize the proposed diffusion problem in a function space defined by the limit of Loop’s subdivi-
sion. This section describes only the relevant results on surface subdivision. We show clearly that these
results are valid on the subdivision of functions defined on surfaces.
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Fig. 3. Refinement of triangular mesh around a vertex.

Subdivision schemes generate smooth surfaces via a limit procedure of an iterative refinement start-
ing from an initial mesh that serves as the control mesh of the limit surface. Several subdivision schemes
for generating smooth surfaces have been proposed. Some of them are interpolatory, that is, the vertex
positions of the coarse mesh are fixed, and only the newly added vertex positions need to be computed
(see, e.g., Kobbelt et al. [1997] for quadrilateral meshes, and Dyn et al. [1990] and Zorin et al. [1996] for
triangular meshes), whereas others are approximatory (see, e.g., Catmull and Clark [1978] and Doo and
Sabin [1978] for quadrilateral meshes, Loop [1978] for triangular meshes, and Peters and Reif [1997]
for general polyhedra). These approximatory subdivision schemes compute both the old and new vertex
positions at each refinement step. Generally speaking, approximatory schemes produce better quality
surfaces than those produced by interpolatory schemes. Hence, in this work, we use an approximating
scheme for triangular meshes proposed by Loop [1978]. This scheme produces C2 limit surfaces except
at a finite number of isolated points where the surface is C1 (see Schweitzer [1996]).

For Loop’s scheme, a fast method exists for evaluating the limit surfaces at any parameter value (see
Stam [1988]), especially needed for the numerical computation of the area-integral. Loop’s subdivision
surfaces in the past have been successfully used in smooth surface reconstruction from scattered data
(see Hoppe et al. [1993, 1994]) and in thin-shell finite element analysis (see Cirak et al. [2000]) for
describing both the geometry and associated displacement fields.

3.1 Loop’s Subdivision Scheme

In Loop’s subdivision scheme, the initial control mesh and the subsequent refined meshes consist of
only triangles. In a refinement step, each triangle is subdivided linearly into four subtriangles. Then all
the vertex positions of the refined mesh are computed as the weighted average of the vertex positions
of the unrefined mesh. Consider a vertex xk

0 at level k with neighbor vertices xk
i for i = 1, . . . , n (see

Figure 3), where n is the valence of vertex xk
0 . The coordinates of the newly generated vertices xk+1

i on
the edges of the previous mesh are computed as

xk+1
i = 3xk

0 + 3xk
i + xk

i−1 + xk
i+1

8
, i = 1, . . . , n, (14)

where index i is to be understood modulo n. The old vertices get new positions according to

xk+1
0 = (1− na)xk

0 + a
(
xk

1 + xk
2 + · · · + xk

n

)
, (15)

where a = (1/n)[ 5
8 − ( 3

8 + 1
4 cos 2π/n)2]. Note that all newly generated vertices have a valence of 6, and

the vertices inherited from the original mesh at level zero may have a valence other than 6. The former
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case is refered to as ordinary and the latter case is referred to as extraordinary. The limit surface of
Loop’s subdivision is C2 everywhere except at the extraordinary points where it is C1.

3.2 Evaluation of Regular Surface Patches

To obtain a local parameterization of the limit surface for each of the triangles in the initial control
mesh, we choose (ξ1, ξ2) as two of the barycentric coordinates (ξ0, ξ1, ξ2) and define T as

T = {(ξ1, ξ2) ∈ IR2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1}. (16)

The triangle T in the (ξ1, ξ2)-plane may be used as a master element domain. Consider a generic triangle
in the mesh and introduce a local numbering of vertices lying in its immediate 1-ring neighborhood
(see Figure 6). If all its vertices have a valence of 6, the resulting patch of the limit surface is exactly
described by a single quartic box-spline patch, for which an explicit closed form exists Stam [1998]. We
refer to such a patch as regular. A regular patch is controlled by 12 basis functions:

x(ξ1, ξ2) =
12∑

i=1

Ni(ξ1, ξ2)xi, (17)

where the label i refers to the local numbering of the vertices that is shown in Figure 6. The surface
within the shaded triangle in this figure is defined by the 12 local control vertices. The bases Ni are
given as follows (see Stam [1998]).

N1 = 1
12
(
ξ4

0 + 2ξ3
0 ξ1

)
,

N2 = 1
12
(
ξ4

0 + 2ξ3
0 ξ2

)
,

N3 = 1
12
[
ξ4

0 + ξ4
1 + 6ξ3

0 ξ1 + 6ξ0ξ
3
1 + 12ξ2

0 ξ
2
1 +

(
2ξ3

0 + 2ξ3
1 + 6ξ2

0 ξ1 + 6ξ0ξ
2
1

)
ξ2
]
,

N4 = 1
12
[
6ξ4

0 + 24ξ3
0 (ξ1 + ξ2)+ ξ2

0

(
24ξ2

1 + 60ξ1ξ2 + 24ξ2
2

)
+ ξ0

(
8ξ3

1 + 36ξ2
1 ξ2 + 36ξ1ξ

2
2 + 8ξ3

2

)+ (ξ4
1 + 6ξ3

1 ξ2 + 12ξ2
1 ξ

2
2 + 6ξ1ξ

3
2 + ξ4

2

)]
,

(18)

where (ξ0, ξ1, ξ2) are barycentric coordinates of the triangle with vertices numbered as 4, 7, 8, and ξ0 =
1− ξ1− ξ2. Other basis functions are similarly defined. For example, replacing (ξ0, ξ1, ξ2) by (ξ1, ξ2, ξ0)
in N1, N2, N3, N4, we get N10, N6, N11, N7. Replacing (ξ0, ξ1, ξ2) by (ξ2, ξ0, ξ1) we get N9, N12, N5, N8.

3.3 Evaluation of Irregular Surface Patches

If a triangle is irregular, that is, at least one of its vertices has a valence other than six, the resulting
patch is not a quartic box spline. We assume extraordinary vertices are isolated; that is, there is no edge
in the control mesh such that both its vertices are extraordinary. This assumption could be fulfilled by
subdividing the mesh once. Under this assumption, any irregular patch has only one extraordinary
vertex. For the evaluation of irregular patches, we use the scheme proposed by Stam [1988]. In this
scheme the mesh needs to be subdivided repeatedly until the parameter values of interest are interior
to a regular patch. We now summarize the central idea of Stam’s scheme. First, it is easy to see that
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Fig. 4. The vertex with empty circle is extraordinary. After one subdivision, the irregular patch (dark shaded part) is split into
one irregular patch (dark shaded part) and three regular patches (light shaded parts).

Fig. 5. Refinement in the parametric space, where (u, v, w) = (ξ0, ξ1, ξ2) is the barycentric coordinate of the triangle.

each subdivision of an irregular patch produces three regular and one irregular patch (see Figure 4).
Repeated subdivision of the irregular patch produces a sequence of regular patches. The surface patch
is piecewise parameterized as shown in Figure 5. The subdomains T k

j are given as follows.

T k
1 = {(ξ1, ξ2) : ξ1 ∈ [2−k , 2−k+1], ξ2 ∈ [0, 2−k+1 − ξ1]},

T k
2 = {(ξ1, ξ2) : ξ1 ∈ [0, 2−k], ξ2 ∈ [2−k − ξ1, 2−k]},

T k
3 = {(ξ1, ξ2) : ξ1 ∈ [0, 2−k], ξ2 ∈ [2−k , 2−k+1 − ξ1]}.

(19)

These subdomains are mapped onto T by the transform

tk,1(ξ1, ξ2) = (2kξ1 − 1, 2nξ2), (ξ1, ξ2) ∈ T k
1 ,

tk,2(ξ1, ξ2) = (1− 2kξ1, 1− 2kξ2), (ξ1, ξ2) ∈ T k
2 ,

tk,3(ξ1, ξ2) = (2kξ1, 2kξ2 − 1), (ξ1, ξ2) ∈ T k
3 .
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16 • C. L. Bajaj and G. Xu

Fig. 6. The vertex numbering of a regular patch with 12 control points. A regular patch is defined over the shaded triangle.

Hence T k
j form a tiling of T except for the point (ξ1, ξ2) = (0, 0). The surface patch is then defined by its

restriction to each triangle

x(ξ1, ξ2)
∣∣
T k

j
=

12∑
i=1

xk, j
i Ni(tk, j (ξ1, ξ2)), j = 1, 2, 3; k = 1, 2, . . . , (20)

where xk, j
i are the properly chosen 12 control vertices (see Figure 6) around the irregular patch at the

level k that define a regular surface patch. Using the vertex numbering and local coordinate system
shown in Figure 4, it is easy to see that the three sets of control vertices are{

xk,1
i

}12
i=1=

[
xk

3 , xk
1 , xk

n+4, xk
2 , xk

n+1, xk
n+9, xk

n+3, xk
n+2, xk

n+5, xk
n+8, xk

n+7, xk
n+10

]
,{

xk,2
i

}12
i=1=

[
xk

n+7, xk
n+10, xk

n+3, xk
n+2, xk

n+5, xk
n+4, xk

2 , xk
n+1, xk

n+6, xk
3 , xk

1 , xk
n

]
,{

xk,3
i

}12
i=1=

[
xk

1 , xk
n , xk

2 , xk
n+1, xk

n+6, xk
n+3, xk

n+2, xk
n+5, xk

n+12, xk
n+7, xk

n+10, xk
n+11

]
.

Hence, the main task is to compute these control vertices. As usual, the subdivision around an irregular
patch is formulated as a linear transform from the level (k − 1), 1-ring vertices of the irregular patch
to the related level k vertices, that is,

X k = AX k−1 = · · · = Ak X 0, X̃ k+1 = ÃX k = ÃAk X 0,

where X k = [xk
1 , . . . , xk

n+6]T , X̃ k = [xk
1 , . . . , xk

n+6, xk
n+7, . . . , xk

n+12]T , and A and Ã are defined by the
subdivision rules. Hence, k+ 1 subdivisions lead to the computation of Ak . When k is large, the com-
putation can be very time consuming. A novel idea proposed by Stam is to use the Jordan canonical
form A= S J S−1. The computation of the Ak amounts to computing Jk , which makes the cost of the
computation nearly independent of k and hence very efficient. The beauty of the scheme is explicit
forms of S and J exist. We refer to Stam [1998] for details.

3.4 Basis Functions and Classification of Patches

For each vertex xi of a control mesh Md , we associate it with a basis function φi, where φi is defined
by the limit of Loop’s subdivision for the zero control values everywhere except at xi, where it is one
(see Figure 7(a)). Hence the support of φi is local and it covers the 2-ring neighborhood of vertex xi.
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Fig. 7. (a) Numbered 2-ring neighborhood elements of vertex xi . The vertex numbers in circles are the control coefficients for
defining the basis φi ; (b) the quartic BB-form coefficients (each has a factor 1/24) of the basis function. The coefficients on the
other five macrotriangles are obtained by rotating the top macrotriangle around the center to the other five positions.

Let e j , j = 1, . . . , mi be the 2-ring neighborhood elements. Then if e j is regular, the explicit box-spline
expression as in (17) exists for φi on e j . Using Equations (18), we could derive the BB-form (Bernstein–
Bezier form) coefficients for basis φi (see Figure 7(b)). All these coefficients have a factor 1/24. Hence,
the function value at xi is 1

2 . Note that the basis φi derived is the same as the triangular C2 quartic basis
given by Sabin [1976]. These expressions could be used to evaluate φi in forming the linear system (26).
If ei is irregular, local subdivision, as described in Section 3.3, is needed around ei until the parameter
values of interest are interior to a regular patch.

Note the difference of the basis φi from the basis N j in (17). φi is a piecewise function whose support
covers 2-ring neighbor triangles, whereas N j in (17) is defined on one triangle only.

Using the basis {φi}, the limit surface of Loop’s subdivision is expressed as M =∑ xiφi(x). However,
each triangular surface patch of M is defined locally by only a few related basis functions, since the
supports of the basis are compact. For a triangle [xixixk], the related bases that define the surface
patch over the triangle are uniquely determined by the valences ni, nj , and nk ; here ni, nj , and nk are
the valences of vertex xi, x j , and xk , respectively. Hence, two triangles that have the same valence for
each of the three vertices will have the same set-related basis functions. To reduce the computation
costs of evaluating these functions in the numerical integration, triangles are classified into categories
according their vertex valences. All members in one category will have the same vertex valences, hence
the same set-related basis functions. The surface evolution in time t does not change the vertex valences
of the mesh. Hence, for one category of patches, we only need to evaluate the basis functions once. Using
tree structures, the classification could be conducted within a linear time.

4. DISCRETIZATION

In Riemannian geometry, differentiable functions are smooth and C∞. However, our discretized ver-
sion of the diffusion problem is in the class C1. As we mentioned earlier, the functions are defined
by the limit of Loop’s subdivision. Such a function is C2 smooth everywhere except at the extraordi-
nary vertices, where it is C1. The function is locally parameterized as the image of the unit triangle
defined by T = {(ξ1, ξ2) ∈ IR2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1}. That is, (1 − ξ1 − ξ2, ξ1, ξ2) is the barycen-
tric coordinate of the triangle. Using this parameterization, our discretized representation of M is
M = ⋃k

α=1 T α, Tα
◦ ∩ Tβ

◦ =∅ for α 6= β, where Tα
◦

is the interior of the triangular function patch Tα. Each
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triangular function patch is assumed to be parameterized locally as

xα : T → Tα; (ξ1, ξ2) 7→ xα(ξ1, ξ2), (21)

where xα(ξ1, ξ2) is defined by Equations (17) through (20). Unlike the differentiable structure of a
manifold, our parameterization has no overlap. Each point p ∈ M has unique parameter coordinates,
except at the boundary of the patches. Under this parameterization, tangents and gradients can be
computed directly. The integration (1) is replaced by∫

M
f dx :=

∑
α

∫
T

f (xα(ξ1, ξ2))
√

det(gij )dξ1 dξ2. (22)

The integration on the triangle T is computed adaptively by numerical methods.

4.1 Spatial Discretization

Let M be the limit function of the initial control mesh Md . Then, instead of solving the problem (10),
we solve the following alternative problem

Find x(t) ∈ V k
M (t), such that

(∂t x(t), θ )M (t) +
(
D∇M (t)x(t), ∇M (t)θ

)
TM(t) = (r(t), θ )M (t), ∀θ ∈ VM (t)

M (0) = M ,
(23)

where VM (t) ⊂ C1(M (t)) is a finite-dimensional space spanned by the basis functions {φi}mi=1. Let x(t) =∑m
i=1 xi(t)φi, xi(t) ∈ IRκ , and θ = φ j . Then (23) may be written as

∑m
i=1 x ′i(t)(φi, φ j )M (t)+∑m
i=1 xi(t)

(
D∇M (t)φi, ∇M (t)φ j

)
TM(t) = ω

∑m
i=1(x j − xi(t))(φi, φ j )M (t),

x j (0) = x j ,
(24)

for j = 1, . . . , m, where x j is the j th vertex of the initial mesh Md . (24) is a set of nonlinear ordinary
equations for the unknown functions xi(t), i = 1, . . . , m. The system is nonlinear because the domain
M (t), over which the integrations are taken, is also unknown. It should be noted that φi depends upon
the topological structure of the mesh around xi, but not on the positions of the vertices. Hence for any
time t, φi is kept the same.

4.2 Time Discretization

Given a timestep τ >0, suppose we have an approximate solution at t = nτ . Now we construct an
approximate solution at the next timestep t = (n+ 1)τ by a semi-implicit Euler scheme. Let X n be an
approximation of x(nτ ). Then the semi-implicit discretization of (24) is

(X n+1 − X n, φi)M (nτ ) + τ
(
Dn∇M (nτ ) X n+1, ∇M (nτ )φi

)
TM(nτ ) = τω(X 0 − X n+1, φi)M (nτ ), (25)

for i = 1, . . . , m. We call this a semi-implicit discretization of (24) because the integration domain is
chosen to be the solution of the previous step. Let x(t) = ∑m

i=1 xi(t)φi. Then (25) can be written as a
linear system:

((1+ τω)M n + τLn(Dn))X ((n+ 1)τ ) = M n(X (nτ )+ τωX (0)), (26)

where

X (t) = [x1(t), . . . , xm(t)]T , X (0) = [x1, . . . , xm]T ,
M n = (

(φi, φ j )M (nτ )
)m

i, j=1 ,

Ln(Dn) = (
(Dn∇M (nτ )φi, ∇M (nτ )φ j )TM(nτ )

)m
i, j=1 .

ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.



Anisotropic Diffusion of and Functions on Surfaces • 19

Note that both M n and Ln(Dn) are symmetric. Since φ1, φ2, . . . , φm are linearly independent and have
compact support, M n is sparse and positive definite. Similarly, Ln(Dn) is symmetric and nonnegative
definite. Hence, (1+ τω)M n+ τLn(Dn) is symmetric and positive definite. The computation of the coeffi-
cient matrix requires the computation of the integrations (φi, φ j )M (nτ ) and (Dn∇M (nτ )φi, ∇M (nτ )φ j )TM(nτ ).
These are computed by Gauss quadrature formulas over each triangle and then summed. For each
timestep, the system needs to be newly generated, because M is changed. However, the values of the
basis functions do not need to be recomputed.

Inasmuch as the support of φi is the 2-ring neighbor triangles, (φi, φ j )M (nτ ) = 0 if x j is not a 3-ring
neighbor vertex of xi. Hence the coefficient matrix of the system (26) is highly sparse (each row has
about 37 nonzero elements on average), and hence an iterative method for solving such a system is
desirable. We use Gauss–Seidel iterations if the timestep τ < 350/N , and otherwise use a conjugate
gradient method with a diagonal preconditioning. Here N is the number of triangles of the mesh. The
choice of the switch point 350/N is based on the experiment.

It should be mentioned that the derived system (26) is valid for solving problems (10) through (13),
although it is derived for (10) only. Note that X (t) is an m × k matrix. If the Riemannian metric is
defined by the scalar product in IR3, then the first 3 columns of X (t) are the solution of (11), and the
last κ − 3 columns are the solution of (12) and (13). For all the cases we mentioned in Section 2, the
coefficient matrix of the system as well as the left-hand side are computed in the same way. The only
difference is we do not need to compute the first three columns of the left-hand side for problem (13),
since the geometry is fixed.

Stopping Criteria
We need to determine a time moment T (T > 0), where the evolution procedure stops. Since the
evolution procedure is based on a mean curvature motion, we determine T by examining the reduction
rate of the mean curvature. For a given mesh, deciding which portion is noisy and should be smoothed
out is subjective. Furthermore, the information at time t is not enough to judge whether the smoothing
is satisfactory. Therefore, we always compare the evolution effect with respect to the initial state. Let

H(t) =
∫

M (t)
‖H(t, x)‖2 dx

/∫
M (0)
‖H(0, x)‖2 dx,

where H(t, x) is the mean curvature vector at the point x and time t. We use the derivative (see (28)) of
H(t) to test the stable state of the evolution. If the data are not very noisy and the shape of the mesh is
not complicated, such as the sphere data, H(t) reduces slowly. In this case, the stopping criterion (28)
works well. However, the derivative sometimes cannot help us make the right judgment. For instance,
if the shape of a mesh is complicated, even though it is not noisy, H(t) still reduces quickly for quite a
long time and then slows down. Using the derivative ofH(t) in such a case will lead to late termination,
which makes the mesh oversmoothed (fine detail features are lost). In this case, we prefer to use
max ‖xi(t)− xi‖ to control the termination (see (29)). If the data are very noisy (high-frequency noise),
H(t) reduces quickly at the beginning of the evolution and slows down quickly. In this case, examining
how much the derivate is reduced relative toH′(0) is more reasonable (see (27)). Of course, there are an
infinite number of cases between these extremes. These considerations make us choose the following
three stopping conditions. ∣∣H′(t)/H′(0)

∣∣ ≤ ε1, or (27)∣∣H′(t)
∣∣ ≤ ε2, or (28)

max ‖xi(t)− xi‖ ≥ ε3, (29)
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where εi are user-specified control constants. Based on experience, we choose ε1 = 0.005, ε2 = 8.0,
ε3 = 0.2. The evolution stops if one of the three conditions is satisfied. If the data are very noisy,
condition (27) is most likely satisfied first. If the data are smooth, and the shape is simple, condition
(28) is most likely satisfied first. The remaining case may first be satisfied by condition (29).

Choice of Timestep τ
Suppose the final result we want is at time T . This time moment can be approached through several
timesteps. Although the semi-implicit discretization is stable, the timestep has a significant effect
on the linear system derived. If the timestep is large, the iteration method for solving the system
converges slowly. On the contrary, if the timestep is very small, the surface will have no significant
change, therefore more steps are required. We determine τ according to the change rate of the surface
size. Denote the x, y , and z components of the surface point x(t) and the functional components on the
surface as x1(t), . . . , xk(t). Then from (23), we have

(∂t xi(t), xi(t))M (t) = −
(
D∇M (t)xi(t), ∇M (t)xi(t)

)
TM(t), i = 1, . . . , k.

Since D is positive definite, we have

∂(x(t), x(t))M (t)

∂t
= 2(∂t x(t), x(t))M (t) = −2

k∑
i=1

Ei(t) ≤ 0, (30)

where Ei(t) = (D∇M (t)xi(t), ∇M (t)xi(t))TM (t) ≥ 0, and E(t) :=∑k
i=1 Ei(t) is called the energy of the surface

M (t) at time t.
If D = 1 and k = 3, it is not difficult to show, by (3), that E(t) = 2Area(M (t)).
From (30), we know that if k = 3, the surface size S(M (t)) = (x(t), x(t))M (t) decreases with a

speed 4Area(M (t)). For one step evolution, the surface size decreases approximately by the amount
of 4τArea(M (t)). If we want the size of the surface to decrease around 1% of the Area(M (t)), then we
should choose τ = 0.0025 approximately. Such an amount of change in size is visually significant. In
our experiments, even at τ = 0.0001 the change is still visually significant at the early stages of the
evolution; however, at later stages, the change becomes increasingly less significant. Usually, we choose
τ around 0.001 and determine the number n of iterations from nτ ≈ T .

4.3 Handling of Surface Boundaries

If the given triangulation has boundaries, the limit surface patches for the triangles that are incident to
the boundaries are incompletely defined by only a 1-ring of existing neighboring vertices. We solve the
problem by constructing an artificial triangle layer on the outside of the boundary, so that all boundary
triangles become interior triangles.

The artificial triangle layer is constructed as follows. For each triangle on the boundary, another
triangle is constructed, so that when Loop’s subdivision rule is applied to the boundary edge, it will
reproduce the midpoint of the edge. Let [xix j ] be a boundary edge, and [xix j xk] be the boundary triangle;
then the new triangle is [xix j x ′k], with x ′k = xi + x j − xk .

In solving the linear system (26), since the boundary vertices and the artificial boundary vertices
are fixed, the corresponding unknowns for the boundary vertices now become known, and move to the
right-hand side of the equation.

5. ANISOTROPIC DIFFUSION TENSOR

The aim of anisotropic diffusion is to enhance sharp features in one direction and smoothing in another
direction. To this end, we need to introduce the concept of principal curvatures and principal directions
of a two-manifold M ⊂ IRκ . Let n be a normal vector field on M . Let An be the second fundamental
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.



Anisotropic Diffusion of and Functions on Surfaces • 21

tensor with respect to n (see Willmore [1993, pp. 119–121]). Then An is a self-adjoint map from TM
to TM. The principal curvatures k1(x), k2(x) and principal directions e1(x), e2(x) with respect to n are
defined as the eigenvalues and the orthonormal eigenvectors of An. However, the principal curvatures
and principal directions are not uniquely defined since the normal vector field is not so for κ > 3. We
choose a vector field h(x) = H(x)/‖H(x)‖, which is the normalized mean curvature vector field of the
manifold M and is uniquely defined. Here H(x) is the mean curvature vector given by

H(x) = Q(g22t11 + g11t22 − 2g12t12)
2 det(G)

, (31)

where ti = ∂/∂ξi, ti j = ∂2/∂ξi∂ξ j , and Q = I − [t1, t2]G−1[t1, t2]T ∈ IRκ×κ . Considering the diffusion
equation described is the mean curvature motion, choosing this vector field is natural.

We now illustrate how to compute the principal curvatures and principal directions with respect to
h. Due to the space limitation, the detailed derivations are given in Xu and Bajaj [2002]. Let

A = 3−1/2K FhK T3−1/2 ∈ IR2×2, [u1, u2] = [t1, t2]K T3−1/2,

where Fh = −(tT
i j h(x))2

i j=1, K ∈ IR2×2, and 3 ∈ IR2×2 are defined by

G = K T3K , K T K = I, 3 = diag(λ1, λ2).

Let A be expressed as

A = P diag(k1, k2) P T , with P T P = I.

Then k1 and k2 are the principal curvatures and v1 and v2, defined by

[v1, v2] := [u1, u2]P = [t1, t2]K T3−1/2 P,

are the corresponding principal directions with respect to the direction vector h.
Now we define our anisotropic diffusion tensor. Let kε,1, kε,2 be the principal curvatures, and eε,1(x),

eε,2(x) be the principal directions of Mε at point x(t). Then any vector z could be expressed as

z = αeε,1(x)+ βeε,2(x)+ Nε(x),

where Nε(x) is the normal component of z. Then define D := Dε by

Dεz = αg (kε,1)eε,1(x)+ β g (kε,2)eε,2(x)+ Nε(x),

where g (s) is defined by

g (s) =
{

1; |s| ≤ λ,(
1+ (s−λ)2

λ2

)−1
; |s| > λ.

(32)

Mε(t) is the solution of (10) at time ε with D = 1 and initial value M (t). λ is a given parameter that de-
tects sharp features. The reason we use Mε(t) instead of M (t) to compute the diffusion tensor is that the
evaluation of the shape parameters on a noisy function might be misleading with respect to the original
but unknown function. Hence we prefilter the current function M (t) by mean curvature motion before we
evaluate the shape parameters. Figures 8 and 9 show the results of our anisotropic smoothing solution.

6. DISTINCT FEATURES OF THE SMOOTHING SCHEME

We have illustrated in Section 1 that using Loop’s subdivision does have some advantages over using
linear finite elements, because the support of the Loop’s basis is bigger than that of the hat basis
function and the Loop’s basis is smooth. The difference in the size of support of basis functions makes
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Fig. 8. First column: the first figure is a bumpy input mesh (32,786 triangles). The second and third figures are the faired meshes
after four fairing iterations, with the identity and an anisotropic diffusion tensor, respectively. For the anisotropic diffusion tensor,
we choose λ = 2, ε = 0.001. Second column (mean curvature plots): the first figure is the input mesh (25,600 triangles) with
two noisy functions on the surface. The functions are not smooth (but continuous) at the planes x = 0, y = 0, and z = 0. The
second and third figures are the results after four fairing iterations, with identity and an anisotropic diffusion tensor (λ = 2.5,
ε = 0.001), respectively.

our evolution more efficient than those previously reported, due to the increased bandwidth of affected
frequencies. The reduction speed of high-frequency noises of our approach is not that drastic, but still
fast, and the reduction speed of lower-frequency noises is not that slow. Hence the bandwidth of affected
frequencies is wider. This could also be observed from the linear system of the discretization. For the
linear element approach, each vertex relates only to its 1-ring neighbors, whereas for our approach,
each vertex relates to its 3-ring neighbors.
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Fig. 9. The left figure shows the initial geometry mesh. The second and third figures show the faired meshes after three fairing
iterations with identity and nonidentity diffusion tensors, respectively, where timestep τ = 0.001, and λ = 2.0, ε = 0.001 for the
nonidentity diffusion tensor.

It is well known that Loop’s subdivision generates quite pleasant-looking surfaces. We believe that us-
ing Loop’s subdivision surface as the smoothing target is a good choice. Using this smooth representation
of the surface, gradient, normal, and curvature at any point can be computed easily. Furthermore, the
evolution process produces not only a sequence of attributed triangular meshes at different timesteps,
but also a sequence of smooth functions. By sampling these smooth functions, new attributed triangular
meshes at a resolution higher than that of the original mesh can be produced.

Apart from the linear finite element approach of Clarenz et al. [2000], we have also implemented
Taubin’s [1995] signal processing approach and Desbrun et al.’s [2000a], implicit fairing approach
for comparison with our approach. Figures 11 and 12 show the smoothing results for these schemes.
The input mesh is shown in Figure 10. The noise of the mesh comes from a lossy mesh compression-
decompression scheme, in which the binary representation of the vertices is truncated using a specified
number of bits. The first row of Figure 11 shows the smoothing results (after 10, 70 smoothing steps)
of the signal processing approach. Parameters in the scheme are chosen to be the best ones as Taubin
[1995] suggested, where we take kpb = 0.1, λ = 0.631398, and µ = −0.673952. The results show that
after a dozen smoothing steps, further iterations do not have much smoothing effect. A good feature
of this approach is that detailed features are well kept, but the smoothed surfaces are not smooth
enough (underfairing). The second row contains the implicit fairing results (two smoothing steps with
λ = 0.005), where the approximated Laplacian is given by (11) of Desbrun et al. [2000a]. The first row of
Figure 12 illustrates the smoothing results (two smoothing steps with timestep length 0.001) of Clarenz
et al. [2000]. The results show that the behavior of the implicit fairing and Clarenz et al’s fairing are
similar. Both of them give quite good smoothing results, but several small features are smoothed out too
(overfairing). The second row of Figure 12 contains the results of our approach. It can be seen that much
more detailed features are kept and the global flatter features are much smoother. These results show
that our results are the best among the four approaches. Another example to compare the behavior of
our approach with the linear element approach is given in Figure 2.
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Fig. 10. The input noisy triangular mesh of a head for Figures 11 and 12.

7. CONCLUSIONS AND EXAMPLES

We have presented a PDE-based anisotropic diffusion approach for fairing noisy geometric surface data
and function vector data on the surface. The finite-element discretization of the diffusion problem is
realized by a combination of the limit function representation of Loop’s subdivision together with the
diffusion model.

Figure 13 shows isocontour plots of the functions on surfaces. For a function f (x) defined on a smooth
surface M , an isocontour or isocurve is defined as {x ∈ M : f (x) = c} for a given constant c, which is cal-
led the isovalue. The smoothness of the isocontours reflects the smoothness of the function. Hence a sim-
ple approach for visualizing the smoothness of the function on a surface is to plot a family of isocontours
for a given sequence of isovalues {ci}ni=1. In our problem, we have a function vector x(t) ∈ IRκ instead of
one scalar function. One way to visualize them together is to plot isocontours for ‖x(t)‖2. Figure 13 shows
both the geometry (the first column) and the function (the second column) isotropic diffusion effects.

Figure 14 shows the application of the diffusion process to surface texture maps. We first generate
2D texture vector coordinates (u, v) at each of the vertices of the surface triangulation, and then using
a pseudorandom number generator, a noise is introduced to each of the components. The vector coordi-
nates are smoothed by treating them as functions on a surface. To show the regularizing effect of the
diffusion process, the textures chosen are 512× 512 images with regular patterns. The texture for the
bunny is a netlike pattern woven from strips. The texture for the torus model consists of alternating
blue and green squares with a red disc in each of the squares. The first row is the initial texture map.
The second and third are after one and five fairing iterations of the texture vector coordinates.

In all the examples given above, we have chosen the parameter ω in Equation (9) to be zero. This is
because the ideal smoothing results are obtained by a short period of time evolution. However, from
the equalities in (6), we can see that a longstanding evolution will cause the surface to shrink towards
the origin. To avoid this occurring in long time evolution, we choose ω > 0, so that the evolved surface
approximates the initial surface M (0). It is easy to understand that the larger ω we choose, the better
the approximation to M (0) we achieve. However, if M (0) is very noisy, too large ω will make the evolved
ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.
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Fig. 11. First row: the smoothing results of Taubin’s signal processing approach. Second row: the smoothing results of Desbrun
et al.’s implicit fairing approach.
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Fig. 12. First row: the smoothing results of Clarenz et al.’s approach. Second row: The smoothing results of our approach with
isotropic diffusion tensor.
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Fig. 13. First column: the first figure is the input noisy geometry (102, 208 triangles); the second and third figure are the
geometry diffusion results after 1 and 4 fairing iterations, respectively. Second column: the isocontour plots of the function ‖x‖2
on the smoothed head. The three figures show the results after 0, 1, and 4 fairing iterations, respectively.
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Fig. 14. Each of the two columns shows the isotropic diffusion of initial noisy texture maps data after one and five fairing
iterations, respectively.
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Fig. 15. The left is the input. The remaining two figures are the stable states for ω = 10.0, 2.5, respectively. The net outside
each of the surface meshes consists of all the edges of the initial mesh.

Table I. First Row: Values of ω. Second Row: Areas of Evolved Surfaces at
Stable States. Third Row: Iteration Numbers for Arriving at Stable States.

Fourth Row: Maximal Errors Between Initial and Final Meshes. Fifth
Row: Mean Errors Between Initial and Final Meshes

Parameter ω 1.25 2.5 5.0 10.0 20.0 40.0 80.0
Surface Area 8.75∗10−4 29.21 43.22 50.24 54.47 57.31 59.47
Iteration No. 217 431 175 91 55 34 19
Maximal Error 3.071 1.370 0.894 0.633 0.457 0.331 0.234
Mean Error 2.102 0.577 0.250 0.124 0.070 0.045 0.032

Table II. Second Column: Number of Triangles. Third Column: Times
for Computing Stiff Matrix. Fourth Column: Number of Iterations for

Solving Linear Systems for Four Timesteps. Last Column: Average
Times (per Iteration) for Solving Linear Systems

Examples Triangles # Form matrix Iterations # Averaging
Fig 1.1(left) 146,036 24.8s 23, 24, 57, 86 0.964s
Fig 6.3(right) 102,208 12.2s 23, 18, 16, 17 0.202s
Fig 5.1(left) 32,786 3.5s 13, 12, 12, 12 0.021s

surface less smooth. On the other hand, too smallω could not prevent the evolved surface from shrinking
to zero. Hence choosing a proper ω is a crucial subproblem. Here a theoretical question that is left open
is: for a given error bound ε, determine ω so that the evolved surface approximates (for any time) the
initial surface within error ε. Figure 15 shows the effect of ω. The left figure shows the input mesh. The
figures in the middle and right show the stable states of the evolution for ω = 10.0, 2.5, respectively.
Here we choose τ = 0.01. In Table I, we list some numerical results for this example. The first row in this
table gives the values of ω. The second row gives the corresponding surface areas for the stable states
(the input mesh has area 66.11). The third row contains the required iteration numbers for arriving
at the stable states. The fourth and fifth rows contain the maximal and mean errors between the
initial mesh and the final meshes. The maximal and mean error are defined as maxi ‖xi(0)− xi(t)‖ and
(1/m)

∑
i ‖xi(0)−xi(t)‖, respectively, where m is the number of vertices. The stable states are recognized

by checking the residual in solving the linear system (26). If the residual of the initial solution (which is
the numerical solution of the PDE at the previous timestep) is within our error control bound (we take
it to be 9 ∗10−6), then we regard the evolution as at the stable stage. The numerical results in the table
show that if ω→∞, the surface areas are increasing and tend to the initial surface area, the required
iteration numbers, the maximal errors, and mean errors are decreasing and approach zero. The results
also show that if ω is less than a certain number, say ω ≤ 1.5, the surface will shrink numerically to zero.
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Finally, we summarize, in Table II, the computation time needed by our examples. The third column is
the time (in seconds) for forming the stiffness matrix (one timestep). The fourth column is the required
number of iterations for solving the linear systems by the Gauss–Seidel method. The last column is the
average time per Gauss–Seidel iteration. We separate the total time into two parts, because the cost
for generating the matrix is fixed, and the time for solving the linear system depends greatly on the
solver used. These computations were conducted on a SGI Onyx2, using a single processor.
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GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Mutiresolution signal processing for meshes. In SIGGRAPH ’99 Proceedings,

325–334.
HARR ROMENY, E. B. 1994. Geometry Driven Diffusion in Computer Vision. Kluwer Academic, Boston.
HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEND, M., JIN, H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W. 1994. Piecewise

smooth surfaces reconstruction. In Computer Graphics Proceedings, Annual Conference series, ACM SIGGRAPH94, 295–302.
HOPPE, H., DEROSE, T., DUCHAMPI, T., MCDONALD, J., AND STUETZLE, W. 1993. Mesh Optimization. In Computer Graphics

Proceedings, Annual Conference series, ACM SIGGRAPH9xi34, 19–26.
HUBELI, A. AND GROSS, M. 2000. Fairing of non-manifolds for visualization. In Proceedings of Viz2000, IEEE Visualization,

(Salt Lake City, Utah), 407–414.
KAWOHL, B. AND KUTEV, N. 1998. Maximum amd comparison principle for one-dimensional anisotropic diffusion. Math. Ann.

311, 1, 107–123.

ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.



Anisotropic Diffusion of and Functions on Surfaces • 31

KIMMEL, R. 1997. Intrinsic scale space for images on surfaces: The geodesic curvature flow. Graph. Models Image Process. 59,
5, 365–372.

KIMMEL, R. AND SOCHEN, N. 1999. Geometric-variational approach for color image enhancement and segmentation. In Scale-
Space Theories in Computer Vision, Lecture Notes in Computer Science, vol. 1682, M. Nielsen, P. Johansen, O. F. Olsen, and
J. Weickert, Eds. Springer, Berlin.

KIMMEL, R., MALLADI, R., AND SOCHEN, N. 1998. Image processing via the Beltrami operator. In Proceedings of the third Asian
Conference on Computer Vision (Hong Kong, Jan. 8–11).

KOBBELT, L. 1996. Discrete fairing. In The Mathematics of Surfaces VII, T. Goodman and R. Martin, Eds., Information
Geometers, 101–129.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes.
SIGGRAPH98, 105–114.

KOBBELT, L., HESSE, T., PRAUTZSCH, H., AND SCHWEIZERHOF, K. 1997. Iterative mesh generation for FE-computation on free form
surfaces. Eng. Comput. 14, 806–820.

LOOP, C. T. 1978. Smooth subdivision surfaces based on triangles. Master’s Thesis. Tech. Rep. Department of Mathematics,
University of Utah.

MALLET, J. L. 1992. Discrete smooth interpolation in geometric modelling. Comput. Aided Des. 24, 4, 178–191.
MORETON, H. AND SEQUIN, C. 1992. Functional optimization for fair surface design. ACM Comput. Graph., 409–420.
OSHER, S. J. AND FEDKIW, R. P. 2000. Level set methods. CAM Rep. 00-07, UCLA, Mathematics Department.
PERONA, P. AND MALIK, J. 1987. Scale space and edge detection using anisotropic diffusion. In IEEE Computer Society Workshop

on Computer Vision.
PETERS, J. AND REIF, U. 1997. The simplest subdivision scheme for smoothing polyhedra. ACM Trans. Graph. 16, 4, 420–431.
PREUßER, T. AND RUMPF, M. 1999. An adaptive finite element method for large scale image processing. Scale-Space Theor.

Comput. Vis. 232–234.
ROSENBERG, S. 1997. The Laplacian on a Riemannian Manifold. Cambridge University Press, New York.
SABIN, M. 1976. The use of piecewise form of numerical representation of shape. PhD Thesis, Hungarian Academy of Science,

Budapest.
SAPIDIS, N. 1994. Designing Fair Curves and Surfaces. SIAM, Philadelphia.
SAPIRO, G. 2001. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York.
SAPIRO, G. AND RINGACH, D. L. 1998. Anisotropic diffusion on multivalued images with applications to color filtering. IEEE

Trans. Image Process. 5, 11, 1582–1586.
SCHWEITZER, J. E. 1996. Analysis and application of subdivision surfaces. PhD Thesis, Department of Computer Science and

Engineering, University of Washington, Seattle.
SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press, New York.
SOCHEN, N., KIMMEL, R., AND MALLADI, R. 1998. A general framework for low level vision. IEEE Trans. Image Process. 7, 3,

310–318.
STAM, J. 1998. Fast evaluation of Loop triangular subdivision surfaces at arbitrary parameter values. In SIGGRAPH ’98

Proceedings, CD-ROM supplement.
TANG, B., SAPIRO, G., AND CASELLES, V. 2000a. Color image enhancement via chromaticity diffusion. Int. J. of Comput. Vis. 10,

5, 701–707.
TANG, B., SAPIRO, G., AND CASELLES, V. 2000b. Diffusion of general data on non-flat manifolds via harmonic maps theory: The

direction diffusion case. Int. J. Comput. Vis. 36, 2, 149–161.
TAUBIN, G. 1995. A signal processing approach to fair surface design. In SIGGRAPH ’95 Proceedings, 351–358.
WEICKERT, J. 1996. Foundations and applications of nonlinear anisotropic diffusion filtering. Z. Angew. Math. Mech. 76,

283–286.
WEICKERT, J. 1997. Coherence-enhancing diffusion of colour images. In Proceedings of the VII National Symposium on Pattern

and Image Analysis, vol. 1 (April), 239–244.
WEICKERT, J. 1998. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart.
WELCH, W. AND WITKIN, A. 1992. Variational surface modeling. Comput. Graph. 26, 157–166.
WELCH, W. AND WITKIN, A. 1994. Free-form shape design using triangulated surfaces. In SIGGRAPH ’94 Proceedings, 28 (July),

247–256.
WESTERMANN, R., JOHNSON, C., AND ERTL, T. 2000. A level-set method for flow visualization. In Proceedings of Viz2000, IEEE

Visualization (Salt Lake City, Utah), 147–154.

ACM Transactions on Graphics, Vol. 22, No. 1, January 2003.



32 • C. L. Bajaj and G. Xu

WHITAKER, R. AND BREEN, D. 1998. Level set models for the deformation of solid objects. In Proceedings of the Third International
Workshop on Implicit Surfaces, Eurographics Association (June), 19–35.

WILLMORE, T. J. 1982. Total Curvature in Riemannian Geometry. Ellis Horwood Limited, UK.
WILLMORE, T. J. 1993. Riemannian Geometry, Clarendon, New York.
XU, G. AND BAJAJ, C. 2002. Curvature computations of 2-manifold in IRk . J. Comput. Math. (to appear).
YEZZI, A., JR. 1998. Modified curvature motion for image smoothing and enhancement. IEEE Trans. Image Process. 7, 3,

345–352.
ZHAO, H. K., OSHER, S., AND FEDKIW, R. 2001. Fast surface reconstruction using the level set method. CAM Rep. 01-01, UCLA,

Mathematics Department.
ZHAO, H. K., OSHER, S., MERRIMAN, B., AND KANG, M. 2000. Implicit and non-parametric shape reconstruction from unorganized

points using variational level set method. Comput. Vis. Image Understand 80, 3, 295–319.
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