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Abstract

Electron tomography is useful for studying large macromolecular complex within their cellular context. The associate problems

include crowding and complexity. Data exploration and 3D visualization of complexes require rendering of tomograms as well as

extraction of all features of interest. We present algorithms for fully automatic boundary segmentation and skeletonization, and

demonstrate their applications in feature extraction and visualization of cell and molecular tomographic imaging. We also introduce

an interactive volumetric exploration and visualization tool (Volume Rover), which encapsulates implementations of the above

volumetric image processing algorithms, and additionally uses efficient multi-resolution interactive geometry and volume rendering

techniques for interactive visualization.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Most if not all proteins in a cell are organized into

cellular machines that are often built from several doz-

ens of individual proteins (Alberts, 1998). While certain

cellular machines, such as the ribosome, are always built

in only one and well defined way, other cellular ma-
chines are expected to vary in their exact 3D structure,

while following a similar architectural principle. Cellular

machines are dynamic with transient addition or loss of

protein components. Hence, two such machines can be

expected to be similar in composition and architecture,

but not necessarily identical in their 3D structure.

Moreover, some of the most interesting cellular ma-

chines are too rare or too fragile to be isolated and
purified by biochemical means, and they only function

in their cellular context, requiring for example the in-

tegrity of the cytoskeleton, the plasma membrane as well

as extracellular matrix components. For such delicate

yet biologically very important multi-protein complexes,

electron tomographic imaging provides the only fore-
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seeable way to obtain 3D structural information. All

other structural techniques such as spectroscopic, dif-

fraction or single-particle analysis cryo-electron micro-

scopic techniques rely implicitly or explicitly on

averaging of a large number of identical particles (Auer,

2000; Glaeser, 1999; van Heel et al., 2000). Electron

tomography, in contrast can provide 3D structural in-
formation of such unique volumes as whole cells. Al-

though tomographic imaging is by no means a new

technique (Hart, 1968; Hoppe et al., 1974), only recently

it has received more attention (Baumeister et al., 1999;

Baumeister and Stevens, 2000; Frank, 1992; McEwen

and Frank, 2001; McEwen and Marko, 2001) due to

progress on the automation of data acquisition (Dierk-

sen et al., 1992; Koster et al., 1992), minimization of the
electron dose for data collection (McEwen et al., 1995),

as well as hardware improvements from electron mi-

croscope manufacturers. Although still an expert tech-

nique, electron tomographic data collection is no longer

the bottleneck, and user-friendly commercial packages

for data collection are being offered.

While recording devices (CCDs) are becoming larger,

and data collection becomes faster, the bottleneck in
this emerging field lies more and more on the visualiza-

tion and interpretation of the tomograms. So why are
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tomograms so much harder to study and interpret? The
answermay lie in the following co-mingled reasons: First,

most tomograms exhibit a low signal-to-noise ratio, and

straightforward averaging techniques cannot be em-

ployed to enhance the signal. Second, the cellular ma-

chines does not reside in isolation but are embedded in

their cellular context, and densely surrounded by other

proteins that may or may not directly interact with the

cellular machine, a concept also known as macromolec-
ular crowding (Ellis, 2001). Third, one often does not

know the exact composition and conformation of cellular

machines at the time of investigation. The poor signal-to-

noise ratio usually observed in tomograms complicates

automated feature extraction, as well as the visualization

of the volume. Hence, noise reduction is always utilized

as a pre-processing step to improve the signal-to-noise

ratio. Segmentation, is often necessary to obtain an un-
obstructed view into the machinery�s architectural orga-
nization, and to reduce the complexity of the scenery to

allow for biological interpretation Feature extraction is

particularly challenging if the cellular machine of interest

is in close contact to its cellular surrounding, and if there

is no preconception of its 3D structure. In such cases,

manual segmentation approaches appear somewhat

subjective and become less feasible even with the help of
3D data re-slicing along non-orthogonal angles to obtain

a more favorable view (Harlow et al., 2001; Hessler et al.,

1996; Kremer et al., 1996; Li et al., 1997; McEwen and

Marko, 1999). Moreover, they are unlikely to keep up

with the amount of data that can be generated by mod-

ern-day electron microscopes.

Electron tomography may have its biggest impact in

the emerging field of structural cell biology with the goal
to visualize cellular compartments without prior antici-

pation of the machine�s architectural organization.

Hence when exploring uncharted territory, we need a

tool for interactive exploration of a 3D density data set.

Section-by-section inspection of the raw volume, fol-

lowed by segmentation and rendering is a very time

consuming process, and does not allow real-time data

exploration and mining. Moreover one may fail to rec-
ognize the architecture of the complex if one has to

segment the volume one slice at the time. Rendering of

whole tomograms is usually beyond the graphical ca-

pabilities of computer desktop machines, due to the size

of typical tomograms of 512� 512� 100 voxels. For fast

interactive data exploration it is desirable to have a vi-

sualization tool in hand that allows simultaneous real

time high-quality rendering of the whole tomogram at a
lower resolution for navigation, as well as sub-volumes

at full resolution for close inspection and analysis.

The ultimate aim is to interpret the densities obtained

by tomographic imaging and segmentation using models

of protein components. Model building has been the key

in interpreting protein biological structures, and has led

to a level of insight that was not available from the
obtained electron density alone (Taylor et al., 1999). If
the exact composition is known and the resolution is

sufficient, protein structures can be fitted into the density

maps, either manually using interactive 3D graphics

programs (e.g., Jones et al., 1991) or semi-automatically

(Volkmann and Hanein, 1999; Wriggers and Birmanns,

2001; Wriggers et al., 1999). Other approaches such as

template matching (Bohm et al., 2000) have been pro-

posed for data exploration and analysis. The complexity
of cellular 3D volumes requires some form of data re-

duction and simplification. Skeletonization (Lam et al.,

1992; Zhou and Toga, 1999) is an additional way to

simplify 3D data sets while retaining their characteris-

tics, which is also important in comparing two com-

plexes that are similar but not identical. Skeletons will

be helpful in comparing two such cellular machines and

describing their similarities and discrepancies.
The rest of this paper is as follows. Section 2 presents

algorithms for fully automatic volumetric boundary

segmentation as well as skeletonization, as applied to

electron tomography imaging data. In Section 3, we

present an interactive volumetric exploration tool

(Volume Rover) that we have developed which encap-

sulates implementations of the filtering, and curve/sur-

face feature extraction algorithms, and additionally uses
multi-resolution interactive geometry and volume ren-

dering, for visualization. Finally, in Section 4, we exhibit

results of our application of the volumetric image pro-

cessing and visualization of transmission electron to-

mographic 3D cell organelle data.
2. Volumetric feature extraction algorithms

2.1. Gradient vector diffusion

It is sometimes more convenient to work on vector

fields rather than the gray-scale intensities. A widely

used vector field, is the gradient vector field, which has

been employed for image segmentation (Xu and Prince,

1998; Yu and Bajaj, 2002b; Yu and Bajaj, 2002c). We
show in the present paper, how gradient vector fields are

also useful for skeleton extraction. The gradient vector

field calculated from the original (and even filtered) to-

mogram is often subject to noise. Even though the noise

can be reduced by various types of scalar filters, the

gradient vectors may still not ‘‘smoothly’’ vary over the

image domain due to the errors of calculating deriva-

tives on discrete and small neighborhoods. Further-
more, the gradient vectors often vanish in ‘‘flat’’ regions,

which may make it difficult to locate critical points from

the gradient vector field (see below). It is becoming

mandatory to additionally ‘‘smooth’’ the gradient vector

field prior to other image processing procedures such as

segmentation or skeleton extraction. In (Xu and Prince,

1998), the authors described a PDE-based diffusion
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technique to smoothgradient vector fields. The gradient
vectors are represented by Cartesian coordinates and

similar partial differential equations (PDEs) are sepa-

rately applied to each component of the vectors:

du
dt ¼ lr2u� ðu� fxÞ f 2

x þ f 2
y þ f 2

z

� �

dv
dt ¼ lr2v� ðv� fyÞ f 2

x þ f 2
y þ f 2

z

� �

dw
dt ¼ lr2w� ðw� fzÞ f 2

x þ f 2
y þ f 2

z

� �
;

8>>><
>>>:

ð1Þ

where (u; v;w) is initialized with rf ðx; y; z), and f ðx; y; zÞ
is an edge map of the original image; that is,

f ðx; y; zÞ ¼ jrIðx; y; zÞj2. These diffusion equations are

originally used for image segmentation (Xu and Prince,

1998). For calculations of critical points (described in the

following), however, these equations should be applied

directly on the original image (that is, f ðx; y; zÞ ¼ IðxyzÞÞ.
The smoothing on each component of the gradient

vectors may cause some unwanted effects (Yu and Bajaj,

2002b). In this paper, all vectors are represented by their

polar forms (namely, magnitude and orientation) and

the diffusion equations are applied to the magnitudes

and orientations separately. This method proves to

perform better for image segmentation around long-thin

boundary concavities (Yu and Bajaj, 2002b). Moreover,
the gradient vector diffusion based on polar-coordinate

representations appear much more desirable for skele-

ton extraction where the gradient vectors on one side of

the skeletons are much ‘‘stronger’’ than the vectors on

the other side. In this case, the conventional method (Xu

and Prince, 1998), causes the skeletons ‘‘drift’’ towards

the side of the weaker vectors due to the unfair com-

petition between vectors on both sides of the skeletons.
The polar-coordinate method (Yu and Bajaj, 2002a; Yu

and Bajaj, 2002b) keeps the magnitudes less significant

and thereby yields more accurate skeletons. A disad-

vantage of this method is that it is much more time-

consuming, especially for 3D volumes (Yu and Bajaj,

2002a). A tradeoff between speed and accuracy is to

apply a normalized version of Eq. (1) (Yu and Bajaj,

2002c). In this implementation, all the non-zero vectors
are normalized into the same magnitude range, before

diffusion in each iteration is applied. The ‘‘skeleton-

drifting’’ problem can be eliminated but the noise may

be amplified such that superfluous and incorrect skele-

tons may be extracted and some post-processing oper-

ations may become necessary.

In this paper, we present a variant of the PDEs for

gradient vector diffusion, to address nearly all the afore-
mentioned problems. The new PDEs are similar to Eq. (1)

except that they are now based on anisotropic diffusion:

du
dt ¼ lrðgðaÞ � ruÞ � u� fxð Þ f 2

x þ f 2
y þ f 2

z

� �

dv
dt ¼ lrðgðaÞ � rvÞ � v� fy

� �
f 2
x þ f 2

y þ f 2
z

� �

dw ¼ lrðgðaÞ � rwÞ � w� fzð Þ f 2
x þ f 2

y þ f 2
z

� �
;

8>>><
>>>:

ð2Þ
dt
where gð�Þ is a decreasing function and a is the angle
between the central vector and the surrounding vectors.

For faster implementation, the calculation of the angle

between two vectors is usually approximated by the in-

ner-product of two vectors divided by their magnitudes.

For instance, we can define gðaÞ as follows:

gð~cc;~ssÞ ¼ e
k� ~cc�~ss

jj~ccjjjj~ssjj�1

� �
if jj~ccjj 6¼ 0 and jj~ssjj 6¼ 0;

0 if jj~ccjj ¼ 0 or jj~ssjj ¼ 0;

8<
: ð3Þ

where k is a positive constant; ~cc and ~ss stand for the

central vector and one of the surrounding vectors,
respectively. In our implementation, we consider a

6-neighborhood for each voxel.

A study of Eq. (2) would suggest the following: first,

its implementation is similar to that of Eq. (1). Hence,

the computational time is comparable to the conven-

tional scheme (Xu and Prince, 1998). Second, with the

appropriate weighting function gð�Þ, we overcome both

the long-thin boundary concavity problem and more
importantly the ‘‘skeleton-drifting’’ problem. Third, the

amplification of noise no longer exists. In a subsequent

subsection, we shall also see how this anisotropic gra-

dient vector diffusion is further applied to boundary

segmentation, as well as skeleton extraction. In the case

of skeleton extraction, we do not consider the second

term in both Eqs. (1) and (2), as they were originally

used for better segmentation (Xu and Prince, 1998), but
not for skeletonization.

2.2. Boundary segmentation

Segmentation is a way to electronically dissect the

cellular machine from its cellular surrounding, which

often obscures a clear view into the machinery�s archi-

tectural organization (Ellis, 2001). Segmentation is

usually carried out either manually (Harlow et al., 2001;

Hessler et al., 1996; Kremer et al., 1996; Li et al., 1997;
McEwen and Marko, 1999) or semi-automatically on a

sub-volume of the tomogram (Frangakis and Hegerl,

1992; Volkmann, 2002). Manual segmentation can be

tedious and often subjective even with the help of a

sophisticated graphical user interface (Li et al., 1997;

Marko and Leith, 1996). Automated segmentation is

still recognized as one of the hardest tasks in the field of

image processing although various techniques have been
proposed for automated or semi-automated segmenta-

tion. Commonly used methods include segmentation

based on edge detection, region growing and/or region

merging, active curve/surface motion and model based

segmentation. In particular, two techniques have been

discussed in detail in the electron tomography commu-

nity. One is called the watershed immersion method

(Volkmann, 2002) and the other is based on normalized
graph cut and eigenvector analysis (Frangakis and

Hegerl, 1992).
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We have developed a method for image segmentation
based on the fast marching method (Malladi and Sethian,

1998; Sethian, 1996; Sethian, 1996). The fast marching

method is a simplified and faster variant of the tradi-

tional level set method (Sethian, 1996). The basic idea of

this method is that a contour is initialized from a pre-

chosen seed point, and the contour is allowed to grow

until a certain stopping condition is reached. Every

voxel is assigned with a value called time, which is ini-
tially zero for seed points and infinite for all other

voxels. Repeatedly, the voxel on the marching contour

with minimal time value is deleted from the contour and

the time values of its neighbors are updated according to

the following equation:

jjrT jj � F ¼ 1; ð4Þ

where F is called the speed function that is determined by

the image information (intensity, gradient and so

on).The updated neighbours, if they are updated for the

first time, are then inserted into the contour.
To implement the fast marching method, we needed

to solve three key problems: (i) formulation of the

speed function, (ii) initialization of the seed points,

and (iii) determination of the stopping criterion. We

formulate the speed function based on the gradient

magnitude, as commonly used by other authors. The

speed function is defined as an exponential function of

the gradient magnitude; that is, F ¼ expðcjjrI jj),
where c is a negative constant and I is the original

image.

Initialization of the seed points are essential for cor-

rect segmentation of the components of interest. There

are several ways to choose the initial seed points: me-

chanically by a user, using ‘‘balloons,’’ or by the locus of

the zero-crossing of the Laplacian of the smoothed im-

ages (see (Shah, 1996) for a summary). The aforemen-
tioned anisotropic gradient vector diffusion provides an

efficient way to automatically locate relevant contour

seed points. The gradient vector field derived from the

original images (or tomographic volume) is diffused and

the critical points are used as our seeds. Critical points

corresponding to local maxima are those points where

all the surrounding vectors point to these points. Simi-

larly, critical points corresponding to local minima are
those points where all the surrounding vectors point

away from these points. Critical points corresponding to

saddles are detected at those points where some sur-

rounding vectors point to these critical points, from

both sides along some directions, while the other sur-

rounding vectors point away from these points. Fig. 1

demonstrates a 2D example, where all these three types

of critical points are detected using anisotropic gradient
vector diffusion. The critical points are detected in a

similar way in the 3D cases, as implemented in our im-

age processing library, and available under the GNU

public license.
In case of segmentation, we omit the saddle critical
points. All the other seed points (minimum and maxi-

mum) are then grouped into two classes: feature seeds

and background seeds. For example, if the features to be

segmented have higher intensities than the background,

then the feature seeds are the maximum critical points

while the background seeds are the minimum critical

points. Additional sub-groups may be chosen for ap-

plications requiring multi-material segmentation.
The stopping criterion of the marching contours is

another important ‘‘open’’ issue in the fast marching

method. The fast marching algorithm described in

(Malladi and Sethian, 1998) does not give an explicit

stopping criterion such that the more expensive level set

method had to be used to finalize the segmentation. In

addition, like the fast marching method, even the level

set method may have to deal with the ‘‘leaking’’ problem
around the boundary gaps. In our current implementa-

tion for tomographic imaging data, we address this

problem using dual contours: one starting from the

feature seeds and the other starting from the background

seeds. In the beginning, a contour is initialized at each

seed point. Since all the seeds are classified into two (or

more) groups, all the initial contours are accordingly

classified into these groups. Each of the contours march
(grow) simultaneously according to Eq. (4). Whenever

two contours from the same group meet, they merge

into a single contour. On the other hand, if two contours

from different groups meet, both contours stop march-

ing on the common boundaries. Both situations are il-

lustrated in Fig. 2, where we can see that the dual

contours stop automatically. The idea of dual contours

is analogous to the idea seen in the multi-label fast
marching method (Osher and Paragios, 2003; Sifakis

and Tziritas, 1999; Sifakis and Tziritas, 2001) for motion

analysis in video image processing, where an automatic

stopping criterion was guaranteed due to the multiple

contours marching towards the boundaries from oppo-

site sides. The difference between these two approaches

is the way to choose the seed points and, due to the

different applications, the way to classify the seed points.
In another application, the authors in (de Solorzano

et al., 2000) employed multiple contours to detect nu-

clei and cells. However, the multiple contours seen

there were not used for designing an automatic stopping

criterion.

With an appropriate parameter c in the speed func-

tion F , we can guarantee that dual contours from dif-

ferent groups stop correctly on the boundaries where the
magnitude of the image gradient is locally maximal. An

interesting observation is that the seed points obtained

in our method are quite similar to the seeds used in the

watershed immersion method (Volkmann, 2002), and

the marching process in our method is analogous to

the immersion process. However, our method considers

the image gradient, an important feature of image
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boundaries, which is not taken into account in the wa-
tershed immersion method. In addition, our method

allows merging between similar group contours, starting

from different seeds, which avoids the over-segmenta-

tion problem as commonly seen in the watershed im-

mersion method. The gradient vector diffusion, which

smoothes the vector field and hence reduces the number

of the seed points, plays another key role in suppressing

the over-segmentation problem.

2.3. Skeleton extraction

The skeleton is recognized as one of the important

imaging feature descriptors, and popular in image and

video database indexing/retreival as well as pattern rec-

ognition. Commonly used computational methods for

skeleton extraction include topological thinning, com-
binatorial methods based on polygon approximation of

boundaries, approaches based on distance maps, hier-

archical methods based on Voronoi diagrams (or dually,

Delaunay triangulation), and some physically based

techniques (Arcelli and Baja, 1993; Grogorishin et al.,

1996; Kimmel et al., 1995; Lam et al., 1992; Malandain

and Vidal, 1998; Ogniewicz and Kuber, 1995; Zhou and

Toga, 1999). The majority of these techniques compute
the skeletons from the object�s boundaries. To apply

these skeleton extraction methods to structure interpre-

tation, it is necessary to first extract an appropriate level

set of the density map under study. Unfortunately, the

topology of the level set often changes significantly even

in small ranges of density values, making the process

extremely numerically sensitive. In addition, extracting

isosurfaces followed by boundary-based skeleton con-
struction is computationally intensive. An alternate ap-

proach, which computes the ‘‘skeletons’’ directly from a

scalar map, is based on Morse theory (Milnor, 1963). A

Morse complex of a scalar map is constructed by de-

tecting the critical points followed by tracing the integral

linking curves by traversing the gradient vector field in

their principal directions, see for, e.g., (Bajaj et al., 1998).

The Morse complex of a volumetric image is an em-
bedded graph consisting of a collection of vertices, and

edges (curves), and possibly faces (surfaces). The faces

(surfaces) can be further reduced (retracted) to a collec-

tion of curves, but these only provide a coarse approxi-

mation of the volumetric features.

In this paper, we present an approach to computing

volumetric skeletons based on anisotropic gradient vector

diffusion. Like the Morse complex, the skeletons are
directly extracted from the gray-scale volumes without

computing the isosurfaces. In the following we describe

a detailed step-by-step algorithm.

2.3.1. Generate the initial gradient vector field

The initial gradient vector field is generated in the

following way:
gvf ð~rrÞ ¼ ðIð~rrÞ � Ið~r0r0ÞÞ �
~r0r0 �~rr

jj~r0r0 �~rrjj
; ð5Þ

where Ið~rr) is the intensity value at~rr �~r0r0 is one of the 26

immediate neighbors of ~rr, which has lower intensity

than the other immediate neighbors of~rr. Note that this

definition of gradient vector at a point is different from

other conventional definitions (e.g., the one defined by

finite difference). In the case of density maps where the

features have lower intensities than the background, the

gradient vectors are defined by

gvf ð~rrÞ ¼ ðIð~r0r0Þ � Ið~rrÞÞ � ð~r0r0 �~rrÞ
jj~r0r0 �~rrjj

; ð6Þ

where~r0r0 is one of the 26 immediate neighbors of~rr, which
has higher intensity than the other immediate neighbors

of ~rr. We shall demonstrate in the following the differ-

ences between Eqs. (5) and (6), and the classical defini-

tion by finite difference.

2.3.2. Diffuse the gradient vector field

The initial vector field computed above is then dif-

fused by our anisotropic scheme (Eq. (2) without the

second term). For comparison, we also demonstrate

results of the isotropic scheme (Eq. (1) without the

second term). The PDEs are solved iteratively using fi-

nite difference techniques. In Fig. 3, we compare the
diffused gradient vector fields from isotropic and an-

isotropic schemes. One major difference between these

two schemes is that anisotropic diffusion preserves

‘‘sharp’’ features (the ‘‘blank’’ regions), where most of

the surrounding vectors point away from the central

point. These features also correspond to the skeletons of

the original gray-scale image. The superiority of aniso-

tropic diffusion to the isotropic diffusion is further
demonstrated in the following:

2.3.3. Compute the skeleton magnitude map

To locate the ‘‘blank’’ regions of the diffused gradient

vector field, we compute what we call skeleton magni-

tude map (SMM) using the following formula:

smmð~rrÞ ¼
X

r02Nð~rrÞ

gvf ð~r0r0Þ � ð~r0r0 �~rrÞ
jj~r0r0 �~rrjj

; ð7Þ

where Nð~rrÞ is the set of the 26 immediate neighbors of~rr.
The skeleton magnitude map is a scalar map defined on

every voxel and indicates the likelihood of each voxel
being on the skeletons. To demonstrate the influence of

the different initialization strategies of the gradient

vector field on the skeleton extraction, we show in

Fig. 4A the skeleton magnitude map of the original

image (Fig. 3A), generated by anisotropic vector diffu-

sion but initialized by the classical finite difference

scheme. We can see that this map does not give much



Fig. 4. The comparison of skeleton magnitude maps by isotropic and anisotropic diffusions, and by different strategies for initialization of the

gradient vector fields. The original image is shown in Fig. 3A. (A) SMM by anisotropic vector diffusion, initialized by a classical finite difference

scheme. (B) SMM by anisotropic vector diffusion, initialized by Eq. (6). (C) SMM by anisotropic vector diffusion, initialized by Eq. (5). (D) SMM by

isotropic vector diffusion, initialized by Eq. (5). (E) Skeletons extracted from (C). (F) Skeletons extracted from (D).

Fig. 1. Computing critical points using gradient vector diffusion. A gray-scale 2D image is shown on the right, where a sub-region is considered for

computing the gradient vector field. Anisotropic vector diffusion algorithm is applied and results are shown on the left. Five critical points are located

including two maximal critical points (green), two minimal critical points (purple), and one saddle critical point (yellow).

Fig. 2. Fast marching method using dual-contours. (A) We only consider four seed points in this image. The two blue contours correspond to the

maximum critical points while the other two contours (red) correspond to the minimum critical points. (B) Whenever dual contours with different

colors meet, they prevent each other from moving. (C) When dual contours with the same color meet, they merge into a single contour, and keep

growing.
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Fig. 5. The Volume Rover user interface. Note the interactive selection of a sub-region of interest via the exploratory sub-cuboid. The selected region

of interest is dynamically updated and rendered (left sub-window view) at maximal resolution as one explores with the sub-cuboid inside the full

volume being rendered in the right sub-window view.

Fig. 9. Skeleton extraction of the densely grouped extracellular fibrillar proteins. Left: a close look at the skeletons of a sub-volume of the entire

dataset (the same region as shown in Fig. 6(left)). Second from left: the skeletons (red) are embedded in the local density map. Third from left: the

skeletons of another sub-volume of the same dataset. Right: the skeletons (red) embedded in the local density map.

Fig. 10. Skeleton extraction of the intracellular actin-filaments (actin bundle). Left: the skeletons of a sub-volume of the overall dataset (roughly in

the same region as shown in Fig. 7(left)). Right: skeletons (red) embedded in the local density map.

138 C. Bajaj et al. / Journal of Structural Biology 144 (2003) 132–143



Fig. 3. The comparison of isotropic and anisotropic vector diffusion schemes on a synthesized gray-scale image. For better illustration, the gradient

vector fields (B and C) are restricted to the bottom-left quarter of the original image, and all vectors are normalized to the same magnitude range.
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information on the skeletons of either bright regions or

the dark regions. In Fig. 4B we show the SMM that is

generated by anisotropic vector diffusion but initialized
by Eq. (6). This map clearly indicates the skeletons of

the dark regions in the original image (Fig. 3A). Fig. 4C

gives the SMM, generated by the anisotropic vector

diffusion but initialized by Eq. (5). From this map, we

can clearly see the skeletons of the bright regions of the

original image. In our experiments, we assume that all

the datasets contain features that have brighter intensi-

ties than the background. Hence, we restrict ourselves to
the initialization scheme given by Eq. (5). In comparison

to the anisotropic diffusion technique, Fig. 4D shows the

SMM generated by isotropic diffusion (Eq. (1) without

the second term). A direct comparison between Figs. 4C

and D would suggest that the isotropic vector diffusion

normally tends to blur the skeletons while the aniso-

tropic vector diffusion preserve ‘‘sharp’’ skeletons very

well. This is analogous to the isotropic/anisotropic dif-
fusion commonly seen in image smoothing (Bajaj et al.,

2003; Frangakis and Hegerl, 2001; Perona and Malik,

1990; Weickert, 1998).

2.3.4. Tracing skeletons

The SMM can be directly rendered using our surface

and volume-rendering tool, the Volume Rover (de-

scribed in the next subsection). In this case, the skeleton
magnitude maps are treated in a similar way to the

original density maps, although the former one enhances

the ‘‘contrast’’ of the skeletons. The direct rendering

method, however, does not guarantee visualizing ‘‘thin’’

skeletons. Therefore, we trace the skeletons from the

SMM such that the extracted skeletons (curvy lines or

surfaces) have a thickness of only one voxel, utilizing

(Canny, 1986). This method was originally designed for
image edge detection from gradient magnitude maps.

The most promising strategies used in this method are

non-maximal suppression and double-threshold. The

non-maximal suppression is first applied to the gradient

magnitude map in order to obtain ‘‘thin’’ edges and

extract candidate edges. Two thresholds are assumed
such that candidate edges above the higher threshold are

always recognized as true edges and candidate edges

that are connected to the true edges by a path of voxels
with gradient magnitudes higher than the lower thresh-

old are also recognized as true edges. This idea can be

readily applied to our skeleton extraction by simply

treating the skeletons as the edges. Figs. 4E and F show

the skeletons extracted by this method from the skeleton

magnitude maps (C) and (D), respectively. From this

perspective as well, the anisotropic vector diffusion

scheme yields better results than the isotropic vector
diffusion.

The skeletonization approach described above differs

considerably from the traditional surface-based meth-

ods. One of the major differences is that we no longer

worry about the sensitivity of choosing the isovalues, as

we do not need to extract the isosurfaces from the

original volume. The skeleton magnitude map gener-

ated by anisotropic vector diffusion, in general, gives
clear and accurate skeletons, (see for, e.g., Fig. 4).

However, the connectivity of the obtained skeletons

depends much on the parameters chosen in the skele-

ton-tracing step. Although Canny�s method works quite

well in most cases, errors do happen where the gradients

of the skeleton magnitude maps are not well-defined

(e.g., when several skeletons join together from different

directions). We expect to improve the connectivity of
the skeletons by more sophisticated skeleton-tracing

algorithms.
3. Interactive volume exploration tool

3.1. Surface and volume visualization

Typically, informative visualizations are based on the

combined use of multiple techniques, including volume

rendering, isocontouring, dynamic mesh reduction,

global and local scalar, vector topology computation,

feature extraction, etc. Informative visualization is thus

a way to guide data-intensive computations to a spatial
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and temporal locales of interest and significance.
Informative visualization consists of two primary com-

ponents: computation (rapid computation of isosur-

faces, reduced meshes, volume rendering, etc., or more

generally, of some ‘‘view’’ of the multivariate data) and

Display (efficient rendering of the visualization with

graphics primitives, including use of color, brightness,

transparency, texture, volume, etc.).

We approach both of the key components through
computer accelerated methods for contour extraction

(Bajaj et al., 1996), dynamic mesh reduction for im-

proved interactive display (Bajaj and Schikore, 1996),

real-time rendering working with compressed data

streams (Bajaj et al., 2001; Bajaj et al., 2001; Sohn et al.,

2002), and using topological and volumetric quantita-

tive signatures for feature extraction (Bajaj et al., 1997;

van Kreveld et al., 1997). We have encapsulated this
combined functionality, along with the filtering and

feature extraction techniques detailed below, into our

volumetric exploratory visualization tool we call the

Volume Rover.

The volume-rendering client can act as a 3D roving

microscope, allowing users to visualize data that is too

large to fit on a single machine. The graphical user in-

terface allows for interactive visual selection of transfer
function and isocontour, aka the contour spectrum

(Bajaj et al., 1997; Pfister et al., 2001). The user interface

also allows the user to move and resize the sub-volume

window. The data within the sub-window is then

transmitted by the server to the client computer, and

displayed interactively using fast texture based volume

rendering that can be combined with rendered geometry

(R€oottger et al., 2000; Westermann et al., 1998). The
rover connects to a data server that contains large da-

tasets. The server can extract and resample sub-volumes

of different sizes, which are then transmitted to the client

for visualization. The client downloads data differen-

tially, by only downloading the data that the client does

not already have cached.

The Rover contains two views. One view contains a

volume render of a sub-sampled version of the entire
volume. The user specifies the sub-volume by inter-

acting with a cuboid located in the sub-sampled vol-

ume. At the center of the cuboid are three axes, one for

each dimension. The user can translate the sub-volume

by clicking on one of these axes and then dragging

along the axis. At the end of each axis is a resizing

knob. The user can resize the sub-volume window by

clicking on one of the resizing knobs and dragging
along its corresponding axis. The user can also rotate

the sub-window around each of its axes. After the user

manipulates the sub-volume window, the client re-

quests a sub-volume of the correct size and resolution

from the data server. The data is downloaded from the

server and rendered using fast texture-based volume

rendering.
The data for the rover can either come from a remote
data server, or can come from the local hard disk. In

either case, if the data requested is too large to fit into

graphics memory, it is filtered using Gaussian filtering

and sub-sampled. The sub-sampled data is then loaded

into the video card and rendered using texture based

volume rendering. The Rover can visualize volumes up

to 512� 256� 256 imaging without resampling.

When data come from the hard disk, the rover au-
tomatically caches a pyramid hierarchy of sub-sampled

volumes. For each volume, the Rover filters and res-

amples the volume, creating a volume with half the

resolution of the original volume. This process is re-

peated until the lowest resolution volume is 1� 1� 1.

This speeds up the interactive exploration of the data

since the data does not have to be resampled for every

extraction.
In addition to the volume rendering, the user can

request to see an isosurface rendering of the data. The

rover performs isosurface extraction on the sub-volume

portion of the data as well as the thumbnail data. The

surface is rendered together with the volume. If the user

moves the sub-volume, the rover obtains the new data

and performs the isosurface extraction again. The new

surface and new sub-volume are then rendered together.
This allows the user to interactively explore the volume

render as well as the isosurface render of the large data.

During the volume exploration or feature extraction

process, it is also necessary on ocassion to zoom in to

crop out volumetric regions of interest. The selected sub-

region is then used for faster noise reduction and se-

lected feature segmentation. The direct manipulation

graphical user interface (GUI) of the Volume Rover
allows us to visually identify and select specific volu-

metric sub-regions of interest (as shown in Fig. 5).

Furthermore, the user can request a bilateral filtering,

an anisotropic geometric diffusion evolution, a gradient

vector diffusion, and skeleton feature extraction on the

data set. The rover will then perform the filtering and

feature extraction on the extracted sub-volume. If an

isosurface is being rendered, it will be re-extracted from
the newly filtered data. The new data is then displayed

together with the new isosurface.
4. Applications and results

In Fig. 6 we demonstrate the segmentation of densely

grouped extracellular fibrillar proteins. Fig. 7 shows
the boundary segmentation of the intracellular actin-

filaments (actin bundle). Fig. 8 shows the boundary

segmentation of extracellular filaments being secreted

from frog saccular sensory epithelium supporting cells.

It is worth noting that the criterion for classifying crit-

ical points may differ from data to data. All the maxi-

mum (or minimum) critical points may not necessarily



Fig. 6. Boundary segmentation of the densely grouped extracellular fibrillar proteins. The original volume is first filtered and then the contrast is

enhanced before we apply boundary segmentation. The left picture shows the overall volume while the right one gives a closer look at the segmented

boundaries.

Fig. 7. Boundary segmentation of the intracellular actin-filaments (actin bundle). The original volume is first filtered and then the contrast is en-

hanced before we apply boundary segmentation. The left picture shows the overall volume while the right one gives a closer look at the segmented

boundaries.

Fig. 8. Boundary segmentation of extracellular filaments being secreted from frog saccular sensory epithelium supporting cells. The original volume is

filtered before we apply boundary segmentation. The left picture shows the overall volume while the middle one gives a closer look at the segmented

boundaries of the sub-volume as indicated in the left figure. As a comparison, the right picture shows the volume-rendered result of the same region.
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classified into one group. Quite often we need to classify
the maximum critical points with intensities below a

threshold into the group of minimum critical points.

Similarly some minimum critical points with intensities

above a threshold (could be different from previous one)

may be classified into the group of maximum critical

points. As we said before, sometimes more than two

groups may be necessary. For the three datasets shown

in Figs. 6–8, we consider only two groups, correspond-
ing to feature and background, respectively.

In Figs. 9 and 10, we show two examples of our

skeleton extraction approach. Fig. 9, shows the skele-

tons extracted from the densely grouped extracellular

fibrillar proteins. We also show the skeletons embedded

into the density maps, such that we can see the consis-

tence between the skeletons and the density maps. All

the skeletonal surfaces have a thickness of one voxel,
although this is not very clear from the volume-rendered

figures. In Fig. 10, we show the skeletons extracted from

the intracellular actin-filaments/actin bundle. Due to the

complicated structures that may ‘‘hide’’ behind one

another in the volume-rendering, we only show a ‘‘thin’’

slice (with thickness of about 10 voxels), from which we

can clearly see the actin-filaments and the links between

them.
5. Conclusion

We have presented algorithms for fully automatic

boundary segmentation and skeletonization, and have

successfully applied them to cell and molecular tomo-

graphic imaging data. These algorithms have been im-
plemented in C and are part of our image processing

library. We have also developed an interactive volu-

metric exploration and visualization tool (Volume Ro-

ver) which encapsulates implementations of the above

filtering, and curve/surface feature extraction algorithms,

and additionally uses multi-resolution interactive ge-

ometry and volume rendering, for the visualization. Both

the interactive visualization tool and our image pro-
cessing library runs under Linux and Win2K desktop

platforms, and are available for free download under the

GNU public license, from http://www.ices.utexas.edu/

CCV/software.
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