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ABSTRACT

We present Laguerre Voronoi based subdivision algorithms for the quadrilateral and hexahedral meshing of particle
systems within a bounded region in two and three dimensions, respectively. Particles are smooth functions over
circular or spherical domains. The algorithm first breaks the bounded region containing the particles into Voronoi
cells that are then subsequently decomposed into an initial quadrilateral or an initial hexahedral scaffold conforming
to individual particles. The scaffolds are subsequently refined via applications of recursive subdivision (splitting
and averaging rules). Our choice of averaging rules yield a particle conforming quadrilateral/ hexahedral mesh, of
good quality, along with being smooth and differentiable in the limit. Extensions of the basic scheme to dynamic
re-meshing in the case of addition, deletion, and moving particles are also discussed. Motivating applications of the
use of these static and dynamic meshes for particle systems include the mechanics of epoxy/glass composite materials,
bio-molecular force field calculations, and gas hydrodynamics simulations in cosmology
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1. INTRODUCTION

Particles are smooth functions with compact support.
Particle systems are used for modeling a number of
physical world scenarios ranging from cosmological
systems and plasma physics to molecular systems. The
applications are wide and varied and include chem-
istry, material science, and bio-engineering. A typical
astrophysics computation attempts to follow the evo-
lution of a system of cosmological boundaries, mod-
eled as a particle system. An important computation
performed on the particle system is that of force calcu-
lations, i.e. given n particles compute the effect of the
gravitational or hydrodynamic force on a given parti-
cle by the other particles. These are often termed as
n-body problems. Other characteristics of the problem
require tracking the dynamic structure of the particle
system as particle systems move, appear and disap-
pear.

Smooth particle hydrodynamics or SPH [1] is a La-
grangian numerical hydrodynamics method that uses
a discrete description of gas or fluid particles in place
of a continuum model. The value of a field at a point

in space is given by the sum of any contributing par-
ticles, and their radially symmetric kernels, present at
that point. These particles essentially act as moving
centers for interpolation and carry mass, energy and
the velocity of the local flow. For the meshing of par-
ticle systems, it suffices to consider particles as ideal-
ized balls, or radially symmetric domains of support of
their kernels. So henceforth, we consider our particle
systems to be a collection of circles in two dimensions,
and spheres in three dimensions, with possibly differ-
ent radii.

Main Contributions: We present Laguerre
Voronoi based subdivision algorithms for the quadri-
lateral and hexahedral meshing of particle systems
within a bounded region, for two and three dimen-
sions, respectively. Extensions of the basic scheme to
dynamic re-meshing in the case of addition, deletion,
and moving particles are also discussed.

Applications: A motivating application for finite
element mesh constructions of a static particle system
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is for the accurate calculation of stress distributions for
composite materials consisting of silica substrates with
embedded particles, subjected to various loads[2]. The
re-meshing problem for time dependent particle sys-
tems arise in gas hydrodynamics simulations essential
in the computational investigation of the formation of
large scale structures, such as galaxies and galaxy clus-
ters, in the universe[3]. A third motivating application
domain is the use of finite element meshes of particle
systems for biophysics simulations of molecular inter-
actions in ionic solvent[4].

Prior Related Work Laguerre Voronoi diagrams
[5, 6, 7] or its variants like STC [8], embedded Voronoi
Graphs [9], [10], or medial surfaces [11] have been ex-
tensively used to generate hexahedral meshes. A vari-
ant of the Voronoi diagram called the Space Twist
Continuum (STC) [8] has also been successfully used
at the Sandia Labs in their meshing software CUBIT.
STC is a way of representing the dual of the hexahe-
dral mesh as a simple non-degenerate arrangement of
surfaces. The STC is built in an incremental fashion
using an Advancing Front Techniques (AFT) like the
Whisker Weaving algorithm [8].

As reviewed in [12] [13], there are indirect and di-
rect methods for unstructured quad/hex mesh gen-
eration. The indirect method is to generate tri-
angular/tetrahedral meshes first, then convert them
into quads/hexes. The direct method is to generate
quads/hexes directly without first going through trian-
gular/tetrahedral meshing[14]. Alternatively, Pascal
et al give an overview of the grid based approaches for
Hexahedral meshing [15]. Either higher order elements
can be used to represent the exact boundary of the sur-
face by intersecting it with the grid, or body-fitting
techniques can be used to represent these boundary
elements [16], [17]. Dual contouring has also been
used by Zhang et al [18],[19], for extracting hexahe-
dral meshes from volumetric data.

Subdivision defines a smooth curve or surface as the
limit of a sequence of successive refinements of some
linear input[20]. As a structured method, quad/hex
mapped meshing [21] generates the most desirable
meshes if opposite edges/faces of the domain to be
meshed have equal numbers of divisions or the same
surface mesh. However, it is always difficult to decom-
pose an arbitrary geometric configuration into mapped
meshable regions. In the CUBIT project [22] at San-
dia National Labs, several techniques have been at-
tempted to automatically recognize features and de-
compose geometry into mapped meshable areas or vol-
umes.

The simplest method for post mesh quality improve-
ment is based on Laplacian smoothing which relocates
the vertex position at the average of the nodes connect-
ing to it [23]. Optimization-based smoothing tends
to yield better results but it is more expensive than
Laplacian smoothing [24], [25], [26]

2. QUADRILATERAL MESHING

Two dimensional particles are circles of possibly dif-
ferent radii. A typical input particle system along
with its output conforming quadrilateral mesh, inside
a rectangular bounding box, is shown in Figure 1.

Step 1. Construct the 2D Laguerre Voronoi diagram
of the center points of the circles within its rectangular
bounding region (see figure 1). The weight of a circle
center is chosen to be proportional to the radius of
each circle. Each Voronoi cell is a convex polygon.

Figure 1: Tesselating the initial bounding region by La-
guerre Voronoi cells.

Step 2. Contract each of the short edges into either
of its endpoint vertices, or to the center point of the
edge (see figure 2). An edge is regarded as short if its
length is less than a user specified threshold value.

Figure 2: Simplification of the Laguerre Voronoi diagram
by contracting small edges

Note that this edge contraction may eliminate trian-
gles (see figure 3). The aim of this small edge con-
traction step is to avoid producing tiny quadrilateral
elements. Also note that if an edge contraction causes
an intersection between the boundaries of a polygonal
cell and the circle perimeter, then we do not carry out
this edge contraction.

Step 3. For each Voronoi cell, connect the circle cen-
ter with the vertices, and the midpoint of each Voronoi
cell edge. Partially delete the inner portion (i.e. within
each circle) of the line segment that connects the circle
center to the midpoint of each Voronoi edge, thereby
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Figure 3: Contracting an edge sometime leads to the
contraction of a triangle

Figure 4: A Simplified Voronoi Diagram for a Particle
System in a rectangular bounded region

creating quadrilaterals both inside and outside each
circle,i.e. a quad tesselation. (see figures 5 and 6).

Figure 5: Partitioning of the Laguerre Voronoi Diagram
into Quadrilaterals

Step 4. Next, further refinement of the quad tesse-
lation is accomplished by first a quad mesh splitting
along the radial and angular directions from each cir-
cle center, followed by an averaging/smoothing recal-
culation to place all quad mesh vertices (see figure 7).
Note the selective splitting of the inner most radial
edges from each circle center, to preserve quad mesh
topology (see figures 8. The aim of the splitting step
is to achieve quad mesh adaptivity.

The averaging/smoothing based repositioning of the
mesh vertices can be carried out, in a variety of ways.
We choose to adopt a centroid smoothing scheme [27],
which tends to produce quads with very good aspect
ratio. See figures 9,10,11,12 for examples of our im-
plementation of this algorithm.

Figure 6: Further partitioning of the Laguerre Voronoi
Diagram yields a quad tesselation of the bounding region
for the particle system

r

r

Figure 7: The quadrilateral mesh after a radial/angular
quad subdivision step outside to the particles

Figure 8: The quadrilateral mesh after a quad subdivi-
sion step inside/outside the particles.
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Figure 9: The quadrilateral mesh after recursive quad
subdivision refinement

Figure 10: The quadrilateral mesh after several steps of
subdvision refinement

Figure 11: Zoomed in view of the mesh shown in figure
10.

Figure 12: Zoomed in view of the mesh shown in figures
10and 11.

3. HEXAHEDRAL MESHING

In this section we present the solution in three dimen-
sions.

Step 1. Construct the 3D weighted Voronoi diagram
of the center points the spheres (see figure 13). The
weight of a sphere center is chosen to be proportional
to the radius of the sphere.

Figure 13: Tesselating the initial bounding region by
Laguerre Voronoi cells. Each cell is a convex polyhedron
in 3D.

Step 2. Contract each of the short edges into single
vertices. An edge is regarded as short if its length is
less than a user specified threshold value. Note that
this contraction may eliminate triangles (see Fig 3).
Also note that this merging may lead to the intersec-
tion between the boundaries of polyhedral cells and
the surface of the spheres, and so a check is made, and
such edge contractions are not carried out. The aim
of this step is to avoid producing very tiny hexahedral
elements.

Figure 14: Subdivision of the face polygon of Voronoi
cells into quadrilaterals. The empty dot is the centroid
of the polygon. The darkened dots are the mid-points of
the edges.
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Step 3. Decompose each face of the Voronoi vol-
ume cells into quads (see Fig 14). For each La-
guerre Voronoi cell, connect the particle center with
the Voronoi vertices and thereby form a pyramid par-
tition of the cell. Each pyramid is further divided into
a hexahedron and another pyramid by the (piecewise
linear) surface of the sphere.

Step 4. Adaptive subdivision of each cell is eas-
ily performed in the radial direction. To avoid self-
intersection, the points around sphere may need to be
moved a small amount. The aim of this step is to
achieve mesh adaptivity. (see figure 15).

Figure 15: Adaptive subdivision in the radial direction.

At this stage one has almost obtained a complete adap-
tive hexahedral mesh of the bounding region, conform-
ing to the boundary of the particle spheres. The mesh
elements incident to the particle centers are quad pyra-
mids, while the rest of the mesh elements are hex-
ahedra. By repeated applications of the radial sub-
division, the pyramidal elements can be restricted to
very small spheres surrounding each particle center.
In many applications, where calculations are desired
close to the surface of the particle spheres, or only
on its exterior, this near hexahedral mesh suffices. See
also figure ?? of an example mesh generated for a small
portion of a heterogenous elastic material with spheri-
cal inclusions with different bulk properties to the rest
of the substrate.

Figure 16: Hexahedral meshing of a portion of a hetero-
geneous composite material with glass sphere inside an
epoxy substrate

Step 5. Further improve the hexahedral mesh quality,
by applying the averaging/smoothing based reposi-
tioning of the mesh vertices using the centroid smooth-
ing scheme of [27], which tends to produce hexahedra

with very good aspect ratio. This averaging/ smooth-
ing can also be conducted with varied crease rules, to
produce user desired mesh anisotropies.

Alternate Step. In the case where a complete hexa-
hedral element mesh is required both inside and out-
side the spheres, one can use the following alternate
hexahedral scaffolding scheme. First, split each face
of the Voronoi cell into triangles. Next connect each
vertex of the triangulated Voronoi faces to the center
of their respective particle centers, decomposing the
entire bounding region into tetrahedra. The tetrahe-
dra are further decomposed by the (piecewise linear)
surfaces of the particle spheres into triangular prisms,
and tetrahedra incident to the center of the particles.
Each triangular prism can be split into 3 hexahedra
and the tetrahedra at the particle centers, are split
into four hexahedra by adding three vertices on the
edges and one vertex on the face (see figures 17 and
18). After this step, the entire bounding region, with
the particle system, is partitioned into hexahedra.

Figure 17: Splitting of a triangular prism into 3 hexahe-
dra

Figure 18: Splitting a tetrahedron into four hexahedra.
The right image only displays three of the hexahedra,
with the fourth hexahedron (top) omitted for visual clar-
ity

Figure 19: The hexahedral mesh after a couple of steps
of our adaptive hexahedral recursive subdivision refine-
ment

Features of the Constructed Mesh. The hexahe-
dral mesh constructed is adaptive in the sense that it
becomes denser in the regions that are close to the sur-
faces of the sphere. When averaging/smoothing (re-
cursive subdivision) rules are used, the mesh is uni-
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Figure 20: The hexahedral mesh after a further steps of
our adaptive hexahedral recursive subdivision refinement

form in the sense that at the regions which are the
same distance to a sphere, the elements are similar to
each other. See figures 19, 20.

4. EXTENSIONS TO DYNAMIC
PARTICLE SYSTEMS

Our extensions to the re-meshing of dynamic parti-
cle systems is based on dynamic Laguerre Voronoi
diagrams. The partitioning and recursive subdivi-
sion follows directly from the instantaneous posi-
tion of the particle system and its Voronoi diagram.
Dynamic Voronoi diagrams have been well studied
[28, 29, 30, 31, 32, 33, 34, 35]. Dynamic Laguerre
Voronoi diagrams have also been considered [36, 37].

5. CONCLUDING REMARKS

We have incorporated our quadrilateral and hexa-
hedral meshing schemes to two and three dimen-
sional stress/strain finite element simulations involv-
ing epoxy/glass composite materials under static
and dynamic loading scenarios in computational
mechanics[2]. We are currently also using this mesher
to develop a fast non-uniform fast-Fourier transform
based n-body gravitational force calculation, coupled
to smooth particle gas hydrodynamics simulations in
computational cosmology[3]. Further, we hope to ap-
ply extensions of this scheme to Poisson-Boltzmann
and Smoluchowski equations[4] as well as additional
biophysics simulations.
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