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ABSTRACT

We present an efficient G1 surface reconstruction scheme for complex solid models used in FE simulations. A novel
technique based on low geometric degree (biquartic) polynomial interpolation is proposed to construct a smooth
surface on arbitrary unstructured(irregular) rectangular meshes. A suitable parametric representation of surface as
well as local control of individual rectangular patches is achieved via simultaneous surface fitting of a curve network
with corresponding cubic normals. Necessary compatibility conditions are formulated, and proved to satisfy the
tangent plane continuity and vertex enclosure constraints.
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1. INTRODUCTION

The success of high accuracy Finite Element (FE) sim-
ulations depends greatly on a precise representation
of the complex geometry. In hp finite element meth-
ods, preserving the convergence rate for problems over
curved domains requires that a curvilinear mesh ge-
ometry representation be used [1]. The present work
is primarily motivated by an application of hp meth-
ods to simulate the absorption and diffraction of EM
waves in the human head. In previous work, we in-
terfaced the Geometric Modeling Package(GMP) with
a geometric data to obtain the connectivity informa-
tion, and constructed a 3D piecewise trilinear model
of the human head [2]. The geometric data is gener-
ated from MRI scans by extracting adaptive meshes
directly from volumetric imaging data, using a top-
down octree subdivision coupled with the dual con-
touring method[3][4]. As a result, the head model is
represented in terms of vertex normal pair [5], which

is defined as vertexes with attached normals on the
extracted isosurface generated by Marching Cubes al-
gorithm (MC)[6]. The GMP, working as a foundation
for a multi-block hp mesh, provides exact parameteri-
zations of each geometric entities which support auto-
matic geometry updates during mesh refinements [7].
Sizable errors are introduced into the parameter pre-
diction when the geometric approximation is too low
with respect to the polynomial order of the discretiza-
tion. In addition, the geometric model needs to be
smooth enough to produce a finite element mesh free
of local geometric discontinuities which would create
artifacts in the EM solution. The hp-adaptive method
requires at least a G1 continuous geometry reconstruc-
tion. Otherwise, the hp FE code adapts meshes to
resolve the non-physical scattering of waves on edges
resulting from the poor, low order geometry represen-
tation.

The term interpolation is used here to describe ways
of fitting a curve or surface to a set of data points



or curves [8]. The proposed surface reconstruction
scheme is based on a parametrized surface by imple-
menting a local interpolation on rectangular patches,
and it has the following properties:

• local control of shape,

• numerical stability,

• smoothness and continuity,

• ability to evaluate derivatives.

In a smooth surface interpolation, two main forms are
widely used, parametric representations and implicit
representations.

There are various successful implicit surface interpo-
lation schemes, which provide elegant solutions to the
smoothing problem at the cost of a currently non stan-
dard patch representation. Bajaj and Xu proposed
an approach which models a smooth surface from a
surface triangulation by implicit surface patches - A-
patches [9, 10, 11]. Other implicit schemes include B-
patches [12], and S-patches [13]. A number of methods
for constructing smooth parametric surfaces have also
been proposed. J. Peter pioneered the idea of surface
splines [14, 15, 16, 17] (see also [18, 19]), which devises
a representation that removes the regularity restric-
tions at the cost of creating a refined mesh of quadri-
lateral subcells. The refined mesh guarantees that
each original vertex is surrounded by vertexes of de-
gree four. It obeys the convex hull property [20, 21]. In
parallel work, H. Prautzsch [22, 23] presents a method-
ology enabling the construction of bisextic spline sur-
faces from one control net using subdivision algorithms
[24, 25].

Compared with prior fitting algorithms that do not
additionally split the mesh data [14, 15], we adopt
cubic boundary normals instead of linearly varying
normals [26] to overcome insufficiency in degenerated
cases. In addition, we use a polynomial basis instead
of rational terms [27] to guarantee regularity at ver-
texes. Compared to other more cumbersome G1 meth-
ods, which are summarized in [28] and limited to tri-
angular patches, the proposed scheme is based on a
direct and efficient explicit parametric representation
of rectangular patches. In particular, we focuse on an
arbitrary unstructured surface mesh, i.e., there is no
restriction on the number of cells meeting at a mesh
point or the number of edges adjacent to a mesh cell.
This scheme has been implemented within the GMP,
fitting into a general class of both explicit and implicit
parameterizations.

This paper is structured as follows: Section 2.1 estab-
lishes the compatibility conditions for the curve net-
work, and presents the theoretical analysis of adopt-
ing Hermite curves and cubic normals. Section 2.2

elaborates on the processes of interpolating G1 biquar-
tic rectangular patches with twist vector compatibility
conditions. Section 3 demonstrates the effectiveness of
the scheme in the modeling of a human head. Section
4 summarizes and proposes future work.

2. THE CONSTRUCTION

The resulting surface must form a G1 manifold where
the patches join with G1 continuity. Two rectangu-
lar patches X1 and X2 are G1 compatible if and
only if the normal to surface X1 is well defined (non-
vanishing) and agrees with the normal of X2 at each
point of the edged shared by the two patches, the so
called oriented tangent plane continuity. Even if the
curve network can be embedded into a G1 manifold
then there does not necessarily exists a polynomial so-
lution for the above interpolation problem. The issue
is related to the so called twist incompatibility or vertex
enclosure problem [29, 5, 30]. The proposed methodol-
ogy eliminates the above deficiencies by generating a
polynomial curve network that satisfies the twist com-
patibility conditions. The methodology involves in two
steps,

Step 1: Construction of a curve network. We
construct admissible parametric curves
ξ ∈ [0, 1] → Xci(ξ) ∈ IR3, which are G1

continuous at the vertexes. Tangent plane
continuity is achieved by using an alternative
sufficient constraint that forces the mesh curves
to interpolate vertex data pi, ni while having
compatible normals ξ ∈ [0, 1] → N ci(ξ) ∈ IR3

specified at each point on the boundary of a
rectangular patch, i.e., along the mesh curves.
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Figure 1: Interpolation of a rectangular patch

Step 2: G1 surface fitting. We interpolate be-
tween curves of the network obtained in Step
1 using a smooth parametrized surface, by
implementing an algorithm for local interpo-
lation of rectangular patches, see Fig.1. A
rectangular patch is the image of a bivariate
polynomial X parametrized with parameters
ξ = (ξ1, ξ2) restricted to a standard domain,
ξ ∈ [0, 1]2 → X ∈ IR3.



2.1 Curve Network Construction

The necessary and sufficient compatibility conditions
for a curve should guarantee the G1 smoothness as
well as conforming to boundaries.

DEFINITION 1 Let Xc(ξ) be a curve parametriza-
tion with two vertex-normal pairs (p1, n1) and
(p2, n2), Then, its G1 compatibility conditions are de-
fined as: Xc(0) = p1, X ′

c(0) · n1 = 0; Xc(1) =
p2, X ′

c(1) · n2 = 0. The second and fourth terms are

also called essential boundary conditions.

Cubic curves are commonly used in graphics because it
avoids using high-degree polynomials while minimizing
the wiggles. The use of cubic curve can also be justified
by formulating an optimization problem, seeking the
solution to the following variational problem: Given
two vertex-normal pairs (p1, n1) and (p2, n1), find a
curve parametrization Xc : [0, 1] → IR3 which satisfies
G1 compatibility conditions, and minimizes the mean
(linearized) curvature,

I =

∫ 1

0

|X ′′
c (ξ)|2dξ → min. (1)

The problem can be stated formally in space H2(0, 1),
and has a unique solution which satisfies the varia-
tional statement (equivalent to the minimization prob-
lem). For every parametrization, test function δXc

satisfying homogeneous essential boundary conditions.
Integration by parts leads to
∫ 1

0

X ′′
c δX ′′

c dξ =

∫ 1

0

XIV
c δXcdξ + X ′′

c δX ′
c|10 = 0 (2)

Restricting ourselves first to test functions that vanish
on the boundary along with their first order deriva-
tives, we get

XIV
c = 0. (3)

This implies Xc ∈ P 3. The Hermite interpolation
allows us to define a cubic curve segment in terms of
its given endpoint vertex-normal pairs,

Xc(ξ) = ψ1(ξ)p1 + ψ2(ξ)p2 + ψ3(ξ)t1 + ψ4(ξ)t2. (4)

where ψi ∈ P 3 are the standard Hermite Basis Func-
tions, see Fig 2.

The osculating plane of the curve is spanned by the

unit tangent vector t̂(ξ) =
X ′

c(ξ)

|X ′
c(ξ)| and the unit

principal normal n̂(ξ) = b̂(ξ) × t̂(ξ), where b̂(ξ) =
X ′

c(ξ)×X ′′
c (ξ)

|X ′
c(ξ)×X ′′

c (ξ)| is the unit binormal. Decomposing

X ′′
c (1) and δX ′

c(1) into osculating plane, we reduce
the second term in (2) to,

(X ′′
c (1) · n̂)(δX ′

c(1) · n̂) + (X ′′
c (1) · t̂)(δX ′

c(1) · t̂) = 0.

This, together with essential conditions for the test
function, implies X ′′

c (1) · t̂ = 0.

DEFINITION 2 Let curve parameterization Xc(ξ)
satisfy the variational statement in (2). Then, the
natural boundary conditions are defined as: X ′′

c (0) =
λ1n1; X ′′

c (1) = λ2n2, where λ1, λ2 are two unknown

scalars.

The essential boundary conditions and natural bound-
ary conditions above yield a linear system of 8 × 8
equations that can be solved for the components of t1,
t2, and constants λ1 and λ2.

Lemma 1 The solution to a minimization problem of
a curve Xc(ξ) with two vertex-normal-pairs (p1, n1)
and (p2, n2), is a uniquely defined cubic curve whose
second derivative w.r.t. ξ is parallel to normals at the

endpoints.

The cubic curve may degenerate to a lower order
polynomial. In the case of a straight line segment,
Xc(ξ) ∈ P 1, the second derivatives of the curve van-
ish. Natural boundary conditions can now be solved
as t1 = t2 = p2 − p1. In this degenerated case, the
two vertex-normal-pairs must satisfy the compatibility
conditions,

n1 × n2 = n1 · (p2 − p1) = 0. (5)

Assume now that the cubic curve degenerates to a sec-
ond order polynomial Xc(ξ) ∈ P 2. The vector coeffi-
cient corresponding to the third order term vanishes,
and the second derivative of the curve is a constant
different from zero. This implies condition (5).

THEOREM 1 The curve which satisfies minimiza-
tion problem in (1), with two vertex-normal-pairs
(p1, n1) and (p2, n2), can only degenerate to a line

segment.

Instead of using common cross derivative functions
[27, 17], we adopt independent normal function
N c(ξ) along the curve. Biquartic surface functions
X(ξ1, ξ2) ∈ Q(4,4) involve linear combinations of
twenty five monomials in ξ1 and ξ2. The scalar-
valued interpolation involves tensor products of five
one dimensional shape functions, the Hermite basis
ψi(ξ), i = 1, . . . , 4 and a fifth bubble function ψ5(ξ) =
ξ2(1− ξ)2, illustrated in Fig.2.

The order of the surface interpolation introduces four
additional edge shape functions which result in a to-
tal of (4 + 4) × 3 = 24 scalar unknowns to satisfy
the tangent plane continuity. The Cross Boundary
Derivatives (CBD), which is a fourth order polynomial
B ∈ P 4, should be perpendicular to normal function



Figure 2: Five basis functions ψi(ξ)

N on each of the four edges, i.e., Q = N c · B ≡ 0.
For an nth degree polynomial fitting a curve with n+1
points and Q ∈ P 7, the maximum polynomial order
of N c(ξ) is three, N c ∈ P 3. The normal along the
curve can be written as:

N c(ξ) = n1ψ1(ξ) + n2ψ1(ξ) + b1ψ3(ξ) + b2ψ4(ξ), (6)

where b1, b2 are two unknown vector coefficients.

DEFINITION 3 Let N c(ξ) be the cubic normal
along curve Xc(ξ), then the G1 compatibility condi-

tions for N c are F (ξ) = X ′
c(ξ) ·N c(ξ) ≡ 0.

As the F (ξ) ∈ P 5, the above G1 compatibility condi-
tion is equivalent to enforcing

F (0) = F (1) = 0,

X ′(0) ·N ′(0) = −λ1||n1||2 (7)

X ′(1) ·N ′(1) = −λ2||n2||2
F (1/3) = F (2/3) = 0.

The first equation has already been satisfied. The sec-
ond and third equations come from the natural bound-
ary conditions.

In the case of a regular parametric surface X(ξ1, ξ2),
∂2X

∂ξi∂ξj
·N are the so called coefficient functions of the

second fundamental form. From the G1 compatibility
conditions for N c, on the boundary of the rectangular
patch we have

∂2X

∂ξi∂ξj
·N = −∂X

∂ξi
· ∂N

∂ξj
. (8)

For any C2-parameterization, includes the biquartic
parameterization under construction, the second or-
der mixed derivative do not depend upon the order
of differentiation. This implies the following necessary
twist compatibility condition.

DEFINITION 4 A surface patch X(ξ1, ξ2) has com-
patible twist vectors at each vertex if any of the two
normals N ci , N cj on curves Xci , Xcj meeting at
one vertex satisfy the twist compatibility condition:

N ′
ci
·X ′

cj
= N ′

cj
·X ′

ci
at that point. [5]

If the curve network has M curves, the twist com-
patibility condition gives us 2M scalar equations to
be satisfied. Along with the 4M equations in (7), we
obtain a linear global system in matrix form,

Ax = d (9)

where A is a 6M × 6M square matrix of coefficients;
x is a vector of unknown degree of freedom (d.o.f) in
terms of six unknown components of b1, b2 for each
normal; d is a known right-hand side vector. The ma-
trix A may degenerate to a singular matrix. It is for
this reason, that we can not employ standard Gaus-
sian elimination, and use Singular Value Decomposi-
tion (SVD) techniques to minimize the distance to d
in the least square sense [31, 32, 33].

Let’s study the uniformly stability for an ill-
conditioned situation deals with a cubic curve degen-
erating into a straight line segment in (5). Vanishing
terms in (7) results in a singular matrix A.

Figure 3: Stability of degenerated case for a curve with
corresponding normals

The geometric data for the limit case are: n1 =
(0, 0, 1), n2 = (1, 0, 0) and p1 = (0, 0, 0), p2 = (0, 1, 0).
Using SVD, we study the behavior of the matrix A as
n2 → (0, 0, 1). We use the curve reconstruction rou-
tine, with data n2 = (0, 1.0d − k, 1), k = 0, 1, ..., 15.
The code delivers uniformly stable results converg-
ing to the limit case. Fig. 3(a) shows the results of
the curve reconstruction for values n2 varying from
(0, 1, 1) to (0, 0.01, 1) (the red curve), then we use dif-
ferent scales to illustrated the convergence property in
3(b) from (0, 0.01, 1) to (0, 0, 1).



2.2 G1 surface fitting

A general biquartic rectangular patch X(ξ1, ξ2) ∈
Q(4,4) can be written as the sum of vertex nodes con-
tributions Xv, mid-edge nodes contributions Xe, and
middle node contribution Xs,

X(ξ1, ξ2) = Xv(ξ1, ξ2) + Xe(ξ1, ξ2) + Xs(ξ1, ξ2). (10)

The polynomial interpolation automatically guaran-
tees the twist compatibility conditions at each of the
vertexes.

DEFINITION 5 Let parametrization X(ξ1, ξ2) be a
surface interpolation on a curve network patch with
edge and normal functions Xci , N ci i = 1, . . . , 4. The
C0 compatibility conditions are

(1) X(ξ1, 0) = Xc1(ξ1); (2) X(1, ξ2) = Xc2(ξ2);

(3) X(ξ1, 1) = Xc3(ξ1); (4) X(0, ξ2) = Xc4(ξ2),

and its G1 compatibility conditions are:

∂X

∂ξ2
(ξ1, 0) ·N c1(ξ1) =

∂X

∂ξ1
(1, ξ2) ·N c2(ξ2) =

∂X

∂ξ2
(ξ1, 1) ·N c3(ξ1) =

∂X

∂ξ1
(0, ξ2) ·N c4(ξ2) = 0.

where ∂X
∂ξi

, i = 1, 2 are the CBDs.

The Xs(ξ1, ξ2) in (10) can be written as,

Xs(ξ1, ξ2) = sφs(ξ1, ξ2), (11)

where s is a vector coefficient for the middle node con-
tribution, and φs is the corresponding face shape func-
tion, see Fig.4,

φs = ψ5(ξ1)ψ5(ξ2). (12)
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Figure 4: Face shape function φs

Note that the term φs(ξ1, ξ2) vanishes along all four
edges. In other words, Xs does not affect the behav-
ior of X(ξ1, ξ2) on the boundary. On the other side,

the first two contributions in (10) are uniquely deter-
mined by the boundary data - edge functions Xci and
normals N ci . This results in a two step procedure:

Step1: Construct a G1 surface parameterization
X∗(ξ1, ξ2) = Xv(ξ1, ξ2) + Xe(ξ1, ξ2) interpolat-
ing the boundary data,

Step2: Determine vector s in (11) using a minimum
energy principle.

2.2.1 Vertex Nodes and Mid-Edge
Nodes Contributions

The Xv(ξ1, ξ2) in (10) is a standard bicubic Hermite
surface interpolant Xv ∈ Q(3,3). It involves only ver-
tex data and can be expressed as,

Xv(ξ1, ξ2) =

4∑
i=1

piφvi(ξ1, ξ2) +

2∑
j=1

4∑
i=1

tj
iφtij(ξ1, ξ2)

+

4∑
i=1

ciφvi(ξ1, ξ2). (13)

Here

• pi denote the position vectors for each of the four
vertexes i.

• φvi are the corresponding bicubic vertex shape
functions, listed in Table 1.

Vertex number i φvi(ξ1, ξ2)

1 ψ1(ξ1)ψ1(ξ2)
2 ψ2(ξ1)ψ1(ξ2)
3 ψ2(ξ1)ψ2(ξ2)
4 ψ1(ξ1)ψ2(ξ2)

Table 1: The shape functions for position vector

• tj
i are eight tangent vectors, where i = 1, . . . , 4 is

the vertex number, and j = 1, 2 is the index of ξj .
For any rectangular patch, the eight tangent vec-
tors are obtained from the curve functions Xci .

• φtij are the corresponding shape functions for
tangent vectors at vertex i in terms of ξj , listed
in Table 2.

Vertex number i φti1(ξ1, ξ2) φti2(ξ1, ξ2)

1 ψ3(ξ1)ψ1(ξ2) ψ1(ξ1)ψ3(ξ2)
2 ψ4(ξ1)ψ1(ξ2) ψ2(ξ1)ψ3(ξ2)
3 ψ4(ξ1)ψ2(ξ2) ψ2(ξ1)ψ4(ξ2)
4 ψ3(ξ1)ψ2(ξ2) ψ1(ξ1)ψ4(ξ2)

Table 2: The shape functions for tangent vectors



• ci are the four unknown twist vectors (mixed
derivatives) at each vertex i.

• φvi are the bicubic shape corresponding to each
twist vectors, see Table 3.

Vertex number i φci(ξ1, ξ2)

1 ψ3(ξ1)ψ3(ξ2)
2 ψ4(ξ1)ψ3(ξ2)
3 ψ4(ξ1)ψ4(ξ2)
4 ψ3(ξ1)ψ4(ξ2)

Table 3: The shape functions for the twist vectors

Xe(ξ1, ξ2) in (10) denotes the mid-edge nodes contri-
butions,

Xe(ξ1, ξ2) =

2∑
j=1

4∑
i=1

eijφeij(ξ1, ξ2), (14)

where eij are eight vector coefficients to be deter-
mined, two per edge; φeij are the corresponding shape
functions, see Table 4.

Edge number i φei1(ξ1, ξ2) φei2(ξ1, ξ2)

1 ψ5(ξ1)ψ3(ξ2) ψ5(ξ1)ψ1(ξ2)
2 ψ4(ξ1)ψ5(ξ2) ψ2(ξ1)ψ5(ξ2)
3 ψ5(ξ1)ψ4(ξ2) ψ5(ξ1)ψ2(ξ2)
4 ψ3(ξ1)ψ5(ξ2) ψ1(ξ1)ψ5(ξ2)

Table 4: The shape functions for edges

The C0 compatibility conditions and the fact that the
curves have been reconstructed using cubic polynomi-
als only, Xc(ξ) ∈ P 3, imply that contributions corre-
sponding to last four shape functions φei2(ξ1, ξ2) must
simply vanish, i.e., ei2 = 0, i = 1, . . . 4. Note that the
condition does not apply to the contributions of the
first four shape functions φei1(ξ1, ξ2) which automat-
ically vanish on the patch boundary and contribute
only with non-zero normals.

Lemma 2 The mid-edge node has no contribution to
the mixed derivatives at each vertex of the biquartic

rectangular patch.

The G1 Compatibility Conditions require the knowl-
edge of CBDs along the boundary. The CBDs have a
crucial effect on the shape of the constructed patches;
they allow for the patches to effectively reflect the
variation of the normals N ci . The CBD at any
point on the patch boundary is perpendicular to both
the corresponding normal and the tangent vectors.
Given the reference coordinates (ξ1, ξ2) of a point on
the rectangular patch, we first identity four corre-
sponding points on the patch edges with coordinates
(ξ1, 0), (1, ξ2), (ξ1, 1), (0, ξ2).

Note that CBDs are fourth order polynomials along

the edges ∂X∗
∂ξi

∈ P 4 and the normals along the curve

are third order polynomials N c ∈ P 3. With ξ1 = ξ2 =
ξ, the G1 compatibility conditions can be expressed as
a system of equations,

Q(ξ) =
∂Xv

∂ξi
(ξ) ·N c(ξ) +

∂Xe

∂ξi
(ξ) ·N c(ξ)

= Qc + Qt + Qe = 0, (15)

where Qc and Qe are functions in terms of four un-
known twist vectors ci and four unknown vector edge
coefficients ei, respectively. We have,

Qc =




(c1 ·N c1(ξ)) (c2 ·N c1(ξ))
(c2 ·N c2(ξ)) (c3 ·N c2(ξ))
(c4 ·N c3(ξ)) (c3 ·N c3(ξ))
(c1 ·N c4(ξ)) (c4 ·N c4(ξ))


 [ψ3(ξ) ψ4(ξ)]

T ,

and,

Qe =




(e1 ·Nc1(ξ))
(e2 ·Nc2(ξ))
(e3 ·Nc3(ξ))
(e4 ·Nc4(ξ))


ψ5(ξ). (16)

Qt is a matrix prescribed in terms of tangent vectors
ti
j ,

Qt =




(t21 ·N c1(ξ)) (t22 ·N c1(ξ))
(t12 ·N c2(ξ)) (t13 ·N c2(ξ))
(t24 ·N c3(ξ)) (t23 ·N c3(ξ))
(t11 ·N c4(ξ)) (t14 ·N c4(ξ))


 [ψ1(ξ) ψ2(ξ)]

T .

As Q(ξ) is a seventh order polynomial Q(ξ) ∈ P7,
vanishing at the endpoints of the edge, enforcing G1

compatibility condition is equivalent to enforcing,

Q(
i

N
) = 0, i = 1, N − 1, (17)

with N = 7. Solving a system of (7 − 1) × 4 = 24
equations, we get values of eight vector coefficients
ci, ei, i = 1, . . . , 4.

2.2.2 Middle node Contribution

Mathematical formulation of any boundary value
problem consists of a differential equation and bound-
ary conditions. The connection between transfinite
interpolation and the boundary values problems is ex-
plicit in the last section. In our case, we exactly inter-
polate the prescribed boundary conditions. However,
the behavior of the interpolant away from the bound-
aries is quite arbitrary. Thus, the solution of a bound-
ary value problem can be viewed as the construction of
a function that extends the boundary conditions into
the domain, with differential equations playing the role
of a constraining or smoothing operator.
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Figure 5: A hexahedron in the reference frame

The interpolation problem has no unique solution;
there are infinitely many functions interpolating any
given data. An unique construction can be established
by putting additional constraints on the interpolant.
Often such constraints appear as the minimization of
some quantity. Many interpolation schemes use mini-
mization of energy [34] as a means for controlling the
shape of the interpolant,

I =

∫

Ω

(4X(ξ1, ξ2))
2dΩ → min, (18)

where 4 = ∂2

∂ξ2
1

+ ∂
∂ξ1

∂
∂ξ2

+ ∂2

∂ξ2
2
, Ω is the rectangular

reference domain, and

X(ξ1, ξ2) = X∗(ξ1, ξ2) + sφs(ξ1, ξ2), (19)

with the first term X∗(ξ1, ξ2) interpolating the
boundary conditions given in equation (10); s =
(s(1), s(2), s(3)) is the vector unknown for the middle
node; φi are shape function described before. The
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Figure 6: Compatibility of parameterizations for a hexa-
hedron

value of the coefficient s is obtained by minimiz-
ing (18). Upon differentiating (19) with respect to

sk, k = 1, . . . , 3, we construct and solve a system of
three linear equations for components of s,

∂I

∂sk
=

∫

Ω

3∑
k=1

(4X∗(k) + sk4φi)4φi = 0. (20)

3. MODELING OF A 3D G1 HUMAN
HEAD FOR HP FE SIMULATION

The discussed G1 continuous geometry reconstruction
technique has been applied to model the geometry of
a human head, necessary for high accuracy 3D hp FE
simulation. The implementation has been done within
our Geometrical Modeling Package (GMP) [2] inter-
faced with software LBIE - Mesh Level Set Boundary
and Interior-Exterior Mesher [3][4], developed at Cen-
ter for Computational Visualization (CCV) at ICES.
The data, obtained from an MRI scan of a human
head, provides a coarse trilinear hex mesh. The min-
imum topological representation (hex to points con-
nectivities) and a geometrical (normals)data is then
imported into GMP, where the actual G1 continuous
geometry reconstruction takes place.

Figure 7: The nose model of the human head.(a) C0

continuous model (b) G1 continuous model

The use of high order FE method puts certain require-
ments for geometric modeling. The small size of the
GMP is used to maintain a continuous interface with
the adaptive codes. The GMP [7] not only supports
the construction of exact parameterizations for a gen-
eral class of 2D (BEM) [35] and 3D (FEM)[36] ob-
jects, but also provides the derivatives of the mappings
with respect to reference coordinates. In our geomet-
ric modeling, a 2D object is represented as a union of



Figure 8: Color map of isophotes of the nose.(a) C0

continuous model (b) G1 continuous model

curvilinear triangles or rectangles, while a 3D object
is represented with a FE-like mesh of curvilinear hexa-
hedral blocks. Each of the geometric objects is identi-
fied with its corresponding parameterization. Next we
divided the reference brick into subelements with cor-
responding order of approximation. As a result, the
GMP model is used to generate so called initial FE
mesh of arbitrary high order, and to support geome-
try updates during mesh refinements. Each of the local
edges or faces in the GMP has its own global orienta-
tion, see Fig.5. Adjusting edge and face parameteriza-
tions for orientations involves transforming local edge
and face coordinates into the global coordinates. We
must ensure the compatibility of parameterizations[7],
which is illustrated in Fig.6.

The construction of the human head model is based
on two GMP parameterizations: Transfinite Interpo-
lation Rectangles and Transfinite Interpolation Hexa-
hedra, both based on the classical transfinite interpo-
lation and linear blending functions technique [37, 38].
Using the interface, we reconstruct a curvilinear hex-
mesh with a G1 continuous representation of the sur-
face for the 3D model. The obtained hex-mesh head
model is then used to generate the actual meshes for
hp-Adaptive FE simulations.

Before generating the whole human head model, we
first test the scheme on some feature parts of the head,
e.g., the nose. Any hexahedron that constitutes a part
of the nose is a special case because all its eight ver-
texes are on the G1 surface. The obtained 3D linear
nose model in Fig. 7(a) is then reconstructed into a

Figure 9: The head model as a union of curvilinear hex-
ahedra

a curvilinear model, illustrated in in Fig. 7(b). Fig.8
displays the usual way of visualizing isophotes on the
suface [39, 40]. The isophotes here are computed in
the following way: choose a (small) interval and mark
all points on the surface where the values of isophotes
are in the interval. The result are not the isophotes
themselves but point set on the surface which give an
impression of the behavior of the isophotes. In particu-
lar we can see that point sets have varying “thickness”
[41].

The entire reconstructed human head model is pre-
sented in Fig.9, which is to eventually simulate EM
waves in a human head. This involves enclosing the
head within a truncating sphere, and meshing the en-
tire volume within the sphere, and the head. Spe-
cial absorbing boundary conditions are imposed on
the truncating sphere to model the interaction with
the rest of the space. The color map of its isophotes
in Fig.10 shows the smoothness of the G1 continuous
surface.



Figure 10: The color map of isophotes of the head
model.

4. CONCLUSIONS AND FUTURE
WORKS

The paper presents results of a preliminary study on
geometric reconstruction in context of geometries re-
produced from MRI scans and mesh generation for
high order hp FE discretization. The presented bi-
quartic scheme seems to be the lowest order G1 con-
tinuity construction for general unstructured meshes.
The polynomial parameterizations are inexpensive to
compute and guarantee high regularity of parametriza-
tion necessary in FE computations. It is not clear at
this point, however, how the G1 regular parametriza-
tion will affect the convergence rates of high order
methods. The important property of the presented
G1 reconstruction scheme is that it remain uniformly
stable in the case of degenerated geometrical data .

Among other tasks, we intend also to collaborate with
CCV on multi-resolution techniques and hierarchical
geometry reconstruction schemes. At this point, the
information on geometry contained in the original fine
mesh reconstruction, during the coarsing stage is re-
duced to normals only. Ideally, the geometry recon-
struction on the coarse grid should conform to the
fine grid representation in a more elaborate, multi-

resolution model. We intend to address these topics
in our future work.
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