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ABSTRACT This article describes the development and implementation of algorithms to study diffusion in biomolecular
systems using continuum mechanics equations. Specifically, finite element methods have been developed to solve the steady-
state Smoluchowski equation to calculate ligand binding rate constants for large biomolecules. The resulting software has been
validated and applied to mouse acetylcholinesterase. Rates for inhibitor binding to mAChE were calculated at various ionic
strengths with several different reaction criteria. The calculated rates were compared with experimental data and show very
good agreement when the correct reaction criterion is used. Additionally, these finite element methods require significantly less
computational resources than existing particle-based Brownian dynamics methods.

INTRODUCTION

Diffusion plays a central role in numerous biological

processes, governing the kinetic properties of events across

a variety of length scales: from ligand binding (Antosiewicz

et al., 1995, 1996b; Antosiewicz and McCammon, 1995;

Lesyng and McCammon, 1993; McCammon and Karplus,

1977; Northrup et al., 1984; Tan et al., 1993; Tara et al.,

1998; Wade et al., 1994) to protein-protein encounter

(Elcock et al., 2001; Gabdoulline and Wade, 2001; Northrup

and Erickson, 1992; Sheinerman et al., 2000; Zhou, 1997) to

signal transmission at synaptic junctions (Franks et al., 2002;

Kara and Friedlander, 1998; Roberts, 1994; Smart and

McCammon, 1998; Tai et al., 2003; Zoli and Agnati, 1996).

Biological simulations have been used to study such

diffusion-controlled processes in a number of settings and

have provided useful insight into the molecular determinants

of the kinetic parameters. However, accurate modeling of

diffusion within biomolecular systems while incorporating

the effects of ionic strength, solvent, and protein charges, and

applying to large biological systems with complex geome-

tries, has proven to be the rate-limiting step for a variety of

such simulations.

Currently, standard techniques for modeling diffusional

processes can be loosely grouped into particle-based and

continuum methods. Particle-based methods are typically

stochastic in nature and include Monte Carlo (Berry, 2002;

Genest, 1989; Saxton, 1992; Stiles and Bartol, 2000;

Brownian dynamics (BD) (McCammon, 1987; Northrup

et al., 1988a; Wade et al., 1993), and Langevin dynamics

(Eastman and Doniach, 1998; Yeomans-Reyna and Medina-

Noyola, 2001) simulations. The connection between BD

simulations and of the calculation of association rate

constants was established by Northrup, Allison, and

McCammon (Northrup et al., 1984) and has been studied

by numerous others (Antosiewicz et al., 1996a; Antosiewicz

and McCammon, 1995; Chung et al., 2002; Northrup et al.,

1988b; Tan et al., 1993; Tara et al., 1998; Wade et al., 1993;

Zhou, 1993; Zhou et al., 1998a; Zhou and Szabo, 1996; Zou

et al., 2000). In contrast to particle-based approaches,

continuum methods describe diffusional processes in terms

of probability or concentration profiles rather than simulating

the stochastic motion of individual particles. Continuum

methods are typically based on solutions of partial dif-

ferential equations such as the diffusion or Smoluchowski

equation (Chan and Halle, 1984; Gardiner, 1997; Lenzi et al.,

2003; Smart and McCammon, 1998; Tai et al., 2003); these

solutions can then be processed to determine ligand-protein

binding (Agmon et al., 1991; Smart and McCammon, 1998;

Tai et al., 2003; Zhou, 1990) or dissociation (Agmon, 1984).

These methods have been particularly popular in the fields of

ion channel (Coalson and Duncan, 1992; Gillespe et al.,

2002; Im and Roux, 2002; Kurnikova et al., 1999a) and

semiconductor (Selberherr, 1984) modeling.

Both particle-based and continuum diffusion methods

have their relative strengths. Particle-based methods can deal

with a wide range of diffusing molecular geometries,

whereas continuum methods are restricted to spherical

ligands. This spherical approximation is likely to be most ap-

propriate for substrates with charge distributions with small

multipole moments and reaction criteria that do not require
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a detailed fit between the substrate and macromolecule.

Additionally, particle-based approaches permit the natural

inclusion of stochastic reaction phenomena and other

complicated boundary conditions. However, the stochastic

nature of particle-based approaches can lead to convergence

problems which are not present in the deterministic con-

tinuum method. Furthermore, continuum approaches facil-

itate the inclusion of other continuum phenomena such as

elastic deformations and fluid flow. Finally, as illustrated in

this article, the computational cost of the continuum simu-

lations is significantly smaller than for particle-based

methods.

Currently, there are a number of tools available for

particle-based biomolecular diffusion simulations, includ-

ing: SDA (Gabdoulline and Wade, 1997), UHBD (Briggs

et al., 1995), MacroDox (Northrup et al., 1999), and MCell

(Stiles and Bartol, 2000). However, there are no bio-

molecule-specific tools available for analyzing diffusion

via continuum models and only a few general diffusion tools

(Krissinel and Agmon, 1996). The objective of this study is

to develop, validate, and apply algorithms to solve the

steady-state Smoluchowski equation (SSSE) with finite

element methods using realistic biomolecular geometries to

determine the steady-state ligand binding rate constant.

Specific aims in this study include: development of the

adaptive meshing method to realistically describe biomolec-

ular geometries; development of the finite element solver of

the steady-state Smoluchowski equation to analyze the con-

centration of the diffusing particles and calculate the

association rate constants; validation of the SSSE with a

simple spherical biomolecular system through the com-

parison with the analytical results; and application of the

validated SSSE solver to mouse acetylcholinesterase

(mAChE) ligand binding.

THEORY AND ALGORITHMS

The steady-state Smoluchowski equation

The Smoluchowski equation describes the overdamped (i.e.,

instantaneous momentum relaxation) dynamics of multiple

particles while neglecting interparticle interactions (Smolu-

chowski, 1917; Szabo et al., 1988; Zhou, 1990). For

a stationary diffusion process, the Smoluchowski equation

has the steady-state form of

LpðxÞ ¼ = � DðxÞ½=pðxÞ1bpðxÞ=WðxÞ� ¼ 0; (1)

where Lp(x) represents ðdpðx; tÞ=dtÞ (t is the time), p(x) is the
distribution function of the reactants, D(x) is the diffusion

coefficient, b ¼ 1/kT is the inverse Boltzmann energy, k is

the Boltzmann constant, T is the temperature, andW(x) is the
potential mean force (PMF) for the diffusing particle. The

above steady-state Smoluchowski equation (SSSE) can also

be written in terms of the flux operator J, which generates

vector-valued functions and is defined as

JpðxÞ ¼ DðxÞ½=pðxÞ1bpðxÞ=WðxÞ�; (2)

allowing Eq. 1 to be rewritten as

LpðxÞ ¼ = � JpðxÞ ¼ 0: (3)

The SSSE can be solved to determine bimolecular diffu-

sional encounter rates. Following the work of Zhou (1990),

the application of the SSSE to this problem involves the

solution of Eq. 3 in a three-dimensional domain V, with the

following boundary conditions: a bulk Dirichlet condition on

the outer boundary Gb � @V,

pðxÞ ¼ pbulk for x 2 Gb; (4)

specifying the bulk concentration pbulk; a reactive Robin or

Dirichlet condition on the active site boundary Ga � @V,

nðxÞ � JpðxÞ ¼ aðxÞpðxÞ for x 2 Ga; (5)

or

pðxÞ ¼ 0 for x 2 Ga; (6)

providing either an intrinsic reaction rate a(x) or an absolute

reactivity, respectively; and a reflective Neumann condition

on the nonreactive boundary Gr � @V;

nðxÞ � JpðxÞ ¼ 0 for x 2 Gr: (7)

The problem domain is depicted in Fig. 1; D is a simply

connected domain with boundary Gb, which represents the

volume containing the reactive object and the solvent. The

domain J � D is a simply connected region representing the

reactive object with boundary Gar ¼ Ga [ Gr such that Ga [
Gr ¼ 0. The Gr portion of this boundary represents the

FIGURE 1 Schematic of problem domain denoting the various surfaces

and volumes described in the text.
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nonreactive surface of the biomolecular object whereas the

Ga boundary represents the reactive region of the object. The

problem domain is the region in which substrate is allowed to

diffuse, namely V ¼ D � J. To ensure the well-posedness

of the SSSE Smoluchowski equation, we place several

physically based restrictions on the problem data: the

potential of mean force (PMF, the effect interaction po-

tential) is bounded and dies off with increasing distance, the

diffusion constant is positive definite and finite, and the

temperature is positive definite and finite. Finally, the

diffusion-influenced biomolecular reaction rate constant is

obtained from the flux by integration over the active site

boundary, as

k ¼
Ð
Ga
nðxÞ � JpðxÞds

pbulk
: (8)

Adaptive mesh generation

One of the challenges in solving the SSSE is the

development of meshes which respect the complicated bio-

molecular geometry. Not surprisingly, the results of finite

element solution of the SSSE are sensitive to the quality of

the finite element discretization, therefore robust methods

must be used to generate the adaptive meshes. The geometry

of the mesh is set by the underlying arrangement of atoms

within the stationary biomolecule. This atomic geometry is

transformed into a scalar accessibility function in a manner

analogous to that used for Poisson-Boltzmann electrostatics

calculations (Baker et al., 2000, 2001). Specifically, we use

a characteristic function x(x) which represents an inflated

van der Waals-based accessibility, as

xðxÞ ¼ 0; if kx � yik \ri 1s for i ¼ 1; . . . ;N
1; otherwise

�
;

(9)

where (yi, ri) are the coordinates and radii of the N atoms in

the biomolecule and s is the radius of the diffusing species.

This accessibility function provides an abstraction of the

biomolecular structure which can then be used as input for

advanced volume isocontouring methods. Specifically, x(x)
provides a (grid-based) dataset which is then isocontoured

(at a value of 0.5) via dual contouring methods into a three-

dimensional tetrahedral mesh (Zhang et al., 2003b).

The goal of the dual contouring methods used in this work

is to tetrahedralize the interval volume between the bio-

molecular surface and an outer boundary sphere S1 which is

usually 40 times that of the biomolecule (compare to Figs. 2

and 3). The resulting tetrahedral mesh is spatially adaptive

and preserves molecular surface features while minimizing

the number of simplices. The four main steps of our adaptive

tetrahedral meshing of the problem domain are described in

the following sections.

Data rescaling

We select a sphere S0 with a radius (r0) which is larger than

the biomolecular radius, and add it outside the biomolecular

surface. For each data point inside the molecular surface, we

keep the original function value whereas for each data point

outside the molecular surface, we reset the function value as

the smaller of the original function value and the shortest

FIGURE 2 Adaptive tetrahedral meshes for mouse acetylcholinesterase.

(Bottom) The molecular surface and outer sphere S0; the active site gorge is

shown in greater detail inside the red box. (Middle) Magnification of the red

box in the bottom picture. (Top) The tetrahedral mesh of the interval volume

between the molecular surface and the outer sphere S0 (cross section).
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distance from the grid point to the sphere S0. We tetrahedr-

alize the interval volume between the biomolecular surface

and an outer boundary sphere S0, and then extend the

tetrahedral mesh to the sphere S1, shown in Fig. 3.

Tetrahedral mesh extraction

Dual contouring (Ju et al., 2003) uses an octree data structure

to analyze mesh edges, called sign-change edges, which
have endpoints lying on different sides of the isosurface of

interest. The mesh adaptivity is determined during a top-

down octree construction. Each sign change edge is shared

by either three (adaptive case) or four (uniform case) octree

cells. A minimizer point is calculated for each cell by

minimizing a predefined quadratic error metric (Garland and

Heckbert, 1998). Finally, for each sign change edge,

a quadrilateral or triangle is constructed by connecting the

minimizer points; these resulting quadrilaterals and triangles

provide a dual piecewise linear approximation of the iso-

surface. This dual contouring method has already been ex-

tended to extract tetrahedral meshes from volumetric scalar

fields (Zhang et al., 2003b) following a similar procedure

to the two-dimensional case.

Three-dimensional dual contouring is used to construct the

tetrahedral mesh between the biomolecular surface and the

sphere S0. When used as described above, the resulting mesh

is finest around the molecular surface, and gradually gets

coarser away from the molecule, toward the boundary S0.
However, the adaptive nature of this method can also

be exploited to provide additional detail in biologically

important regions of the molecule such as active sites. As

illustrated in Figs. 2 and 6 for mouse acetylcholinesterase,

we control the mesh resolution to generate a very fine mesh

in the active site gorge region and a relatively coarse mesh

elsewhere near the biomolecular surface.

Extension to the outer boundary

This initial tetrahedral mesh is modified by gradually adding

tetrahedra of increasing size from the boundary of sphere S0
to the outer boundary to produce a finite element mesh

spanning the entire problem domain. Care is taken when

adding these exterior tetrahedra to ensure the quality of the

simplex shape and mesh topology.

Quality detection and improvement

The tetrahedral mesh generated by the dual contouring

method may have isolated vertices, nonsimple components,

or overlapping tetrahedra—problems which must be re-

moved before the mesh can be used to solve the SSSE.

Isolated vertices and nonsimple components are identified

and removed using the connectivity information (i.e., edges

and simplices) intrinsic to the finite element mesh. Over-

lapping simplices are corrected using methods previously

described by Zhang et al. (2003b).

In addition to correcting these topological problems,

the geometric quality of the mesh must be checked and,

if necessary, improved. Poor quality tetrahedra called

‘‘slivers’’ are common in most tetrahedral mesh generation

methods. The presence of such slivers can often confound

finite element solvers and therefore these poor-quality

tetrahedra must be removed (Cheng and Dey, 2002; Cheng

et al., 2000) before using the generated meshes to solve

the SSSE. We combine edge contraction and smoothing

methods to improve the quality of the meshes based on

tetrahedral-edge ratios, Joe-Liu shape metrics (Liu and Joe,

1994), and minimum volume bounds. Edge contraction

(Cheng and Dey, 2002; Cheng et al., 2000) improves tet-

rahedral shape by merging vertices to combine smaller sim-

plices into larger, better quality tetrahedra. Additionally, we

use a smoothing method based on multilinear averaging

(Zhang et al., 2003b) to improve the Joe-Liu shape metric

and the minimum volume bounds.

Finite element discretization of the
Smoluchowski equation

To solve the SSSE numerically as a finite system, it is

necessary to truncate and discretize the infinitely large

problem domain implicit in Eqs. 1–7. We solve Eq. 1 using

finite element methods (Axelsson and Barker, 2001; Braess,

1997) inside a domain V that is 40 times the scale of the size

of the biomolecule. Since the effects of the PMF are not

included beyond the outer boundary, this large size is

typically necessary for electrostatic forces to decay to

;0 and/or avoid more complicated outer boundary con-

ditions. However, due to the adaptive nature of the finite

FIGURE 3 Data scaling for the adaptive mesh; surfaces are described in

the text.
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element meshes used to discretize the system and our

multiresolution approach to the calculation of the potential

mean force (see below and Baker et al., 2001), this large

mesh does not impose a significant computational burden.

The outer boundary of the diffusion domain V is subject

to the Dirichlet boundary condition per Eq. 4. The inner

(molecular) boundary is assigned reactive and reflective

conditions as shown in Fig. 1 and described in Eqs. 5–7. The

whole domain is discretized on an adaptively generated

tetrahedral mesh using the methods outlined above.

The resulting tetrahedral mesh forms the structure over

which we define a function space Vh ¼ spanfvig, where fvig
is the set of piecewise-linear finite element basis functions

defined over each tetrahedral vertex. The solution to the

SSSE is approximated by a function, ph 2 ph1Vh; con-

structed from the linear combination of basis functions,

phðxÞ ¼ +
i

aiviðxÞ: (10)

The trace function phis not explicitly constructed, but is

assumed to satisfy the Dirichlet boundary conditions in Eqs.

4 and 6. For this construction of ph from piecewise-linear

functions to be successful, we must restate the SSSE

equations in their weak form. Clearly, piecewise-linear

functions do not provide a well-defined second derivative, as

required by Eq. 1. This difficulty can be overcome by

integrating the SSSE with a test function v(x), as

ð
V

vðxÞ= � JpðxÞdx ¼ 0: (11)

Integrating the above equation by parts via Green’s theorem

gives

ð
V

=vðxÞ � JpðxÞdx �
ð
@V

vðsÞJpðsÞ � nðsÞds ¼ 0; (12)

and incorporation of the various boundaries conditions Eqs.

4–7, allows the boundary integral to be simplified as

ð
V

=vðxÞ � JpðxÞdx �
ð
Ga

vðsÞaðsÞpðsÞds

�
ð
Gb

vðsÞJpðsÞ � nðsÞds¼ 0 (13a)

or

ð
V

=vðxÞ � JpðxÞdx �
ð
Ga[Gb

vðsÞJpðsÞ � nðsÞds ¼ 0; (13b)

depending on the choice of reactive boundary condition

(compare to Eq. 5 and Eq. 6, respectively). Finally, the above

integrals can be rewritten in terms of the bilinear form

hF(p),vi,

hFðpÞ; vi ¼
ð
V

=vðxÞ � JpðxÞdx �
ð
Ga

vðsÞaðsÞpðsÞds

�
ð
Gb

vðsÞJpðsÞ � nðsÞds (14a)

hFðpÞ; vi ¼
ð
V

=vðxÞ � JpðxÞdx �
ð
Ga[Gb

vðsÞJpðsÞ � nðsÞds;

(14b)

to give the weak form of the SSSE,

Find ph 2 ph 1Vh such that hFðphÞ; vii ¼ 0 for all

vi 2 Vh: (15)

This form of the SSSE requires only one order of

differentiation under an integral and is therefore a weaker

formulation of the SMOL equation than the original second-

order differential Eq. 1. Equation 15 is the foundation for the

finite element solvers used in this work.

In the Smoluchowski equation, the diffusion coefficient

D(x) and electrostatic potential mean force W(x) all are

spatially dependent. Ignoring hydrodynamic interactions

(which could be included as part of the spatial dependence of

D), the diffusion coefficient is treated as a constant. In most

BD models, the electrostatic potential is treated indepen-

dently from the diffusing species—eliminating the possibil-

ity of screening by ligand, substrate inhibition, etc. This is

also the model we will employ for these initial studies,

implying that Eq. 15 is a linear equation. Discretization of

Eq. 15 with a finite element basis (per Eq. 10) leads to a linear

system of (sparse) equations which can be solved using

standard linear algebra methods. However, it is important to

note that this model could easily be extended to the related

Poisson-Nernst-Planck (PNP) system where the PMF is

coupled to the diffusing species. For PNP equations, well-

established nonlinear methods will need to be employed

(Holst and Saied, 1995; Koumanov et al., 2003; Kurnikova

et al., 1999b; Schuss et al., 2001). Additionally, like many

PNP methods, the present model does not consider

correlations between diffusing species. Such effects have

been shown to be important in confined spaces such as ion

channels (Boda et al., 2002; Gillespe et al., 2002) or at higher

concentrations of multivalent ions (Holm et al., 2001). For

the low concentrations of ligand used in many protein-ligand

diffusive encounter simulations, these correlation effects are

likely to be relatively small; however, it is important that

such effects are considered when performing diffusion

simulations. Finally, the present model does not include

dielectric boundary or apolar forces which have been shown

Finite Element Solution of the Steady-State Diffusion Equation 2021
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to be important factors for diffusion behavior in some

biological systems (Nadler et al., 2003). Such effects are very

important for diffusion of charged species in confined spaces

(e.g., ion channels) but have a much less significant impact

for ligand-protein binding at relatively low concentrations

(where dielectric boundary and apolar forces often cancel).

Implementation

We have developed a software package called SMOL which

uses the finite element method to solve the SSSE for

biomolecular systems. The SMOL program is based on the

LBIE-Mesh software (http://www.ices.utexas.edu/CCV/soft

ware), FEtk finite element software library (M. Holst, Ad-

aptive Multilevel Finite Element Methods on Manifolds and

their Implementation in FEtk; in preparation; currently

available as a technical report and User’s guide to the FEtk

software; see http://www.fetk.org/) and the APBS software

package (http://agave.wustl.edu/apbs/, Baker et al., 2001).

Specifically, SMOL uses LBIE-mesh for construction of the

initial mesh, FEtk’s finite element infrastructure for the

discretization and solution of the linear system of equations.

APBS is used to calculate the electrostatic component of the

potential mean force by solution of the Poisson-Boltzmann

equation. The SMOL software is still actively under dev-

elopment and will be released under the open-source GNU

public license (see http://www.gnu.org/). Adventurous read-

ers are welcome to contact the authors for access to early

versions of the software; others should visit http://agave.

wustl.edu/ for more information about user-friendly public

releases.

The sequence of operations followed by the SMOL

program during a typical solution of the SSSE for bio-

molecular rate calculation is outlined in the following

sections.

Parameterization

The biomolecular coordinates from the Protein Data Bank

must be parameterized with appropriate atomic radii and

charges. The current work uses the CHARMM22 force field

(Brooks et al., 1983); conversion tools for several other force

fields are provided with the APBS software or available

through the PDB2PQR web service (http://nbcr.sdsc.edu/

pdb2pqr/).

Mesh construction

First, a grid-based form characteristic accessibility function

x(x) is generated with APBS using the diffusing species’

radius s (compare to Eq. 9) and the parameterized bio-

molecular structure as input data. This discretized charac-

teristic function is then used with the adaptive meshing tools

described above to generate quality tetrahedral meshes of the

problem domain. Finally, boundary conditions as in Eqs. 4–7

are assigned to the mesh based on user-defined spatial

criteria using knowledge of the active site location and other

structural features.

Potential of mean force

Only electrostatic contributions to the PMF are included in

this version of the software. The electrostatic potential is

calculated over the entire diffusion domain of the bio-

molecule with APBS. This data is stored in a parallel,

multiresolution format where (sometimes multiple) high-

resolution meshes provide PMF values near the molecular

surface while coarser meshes provide values away from the

biomolecule. This decomposition of the potential closely

follows the parallel-focusing methods described elsewhere

(Baker et al., 2001).

Solution of the SSSE and analysis

Given the above PMF data, finite element mesh, and user-

defined values for the diffusing particle’s charge, concen-

tration, and diffusion constant data, the SSSE is solved with

the finite element methods described above. After the

successful solution of the differential equation, output is

provided for the steady-state rate constant and (if requested)

the concentration profile of ligand around the biomolecule.

VALIDATION OF THE SMOL PROGRAM WITH A
SPHERICAL TEST CASE

Before applying the SMOL program to a biomolecular

system with complex geometry, we first tested it with the

classic spherical system (Krissinel and Agmon, 1996) and

compared the calculated result with the known analytical

solution. For this test case, we chose a fixed sphere with an 8

Å radius and 11 e charge and a diffusing sphere with a 2 Å

radius and variable charge. The partial domain for this

spherical molecule is shown in Fig. 4 A. The entire problem
domain was discretized with 1,024,752 tetrahedral elements.

A detailed view of the surface mesh for the stationary sphere

is also shown in Fig. 4 B. While solving the Smoluchowski

equation, the whole surface of biomolecule sphere Ga was

treated with a perfectly absorbing zero Dirichlet reactive

boundary condition as Eq. 6. The diffusing particle’s

dimensionless bulk concentration was set to 1. Ignoring

hydrodynamic interactions, the diffusion constant D is

calculated as 7.8 3 104 Å2/ms using the Stokes-Einstein

equation with a hydrodynamic radius of 3.5 Å, solvent

viscosity of 0.891 3 10�3 kg/(m s), and 298 K temperature.

Analytical solution

For a spherically symmetric system with a Coulombic form

of the PMF, WðrÞ ¼ q=r, the SSSE can be written as

1

r
2

@

@r
ðr2JpÞ ¼ 1

r
2

@

@r
r
2
D

@p

@r
� bp

q

r
2

� �� �
¼ 0; (16)
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with boundary conditions

pðr1Þ ¼ 0; pðr2Þ ¼ pbulk; (17)

where r1 and r2 are the radii for the reactive and outer

boundaries. The analytical expression for the association rate

constant obtained from the solution of Eqs. 16 and 17 is

k ¼ 4pr
2

1Jpðr1Þ ¼ 4pDqpbulk
e
q=r1

eq=r1 � eq=r2

 !
: (18)

This analytical form of the solution was evaluated using

the parameters listed above with varying ligand charges in

the infinite dilution limit: r2 ! ‘. Table 1 presents the

numerical values of these analytical reaction rates as

a function of effective ligand charge.

SMOL numerical solution

Reaction rates were also calculated with the SMOL software

using the parameters given above and a finite problem

domain with the outer boundary at 400 Å; this domain was

discretized with 1,024,752 tetrahedral elements. The results

of these calculations are shown in Table 1. The calculated

reactive area is 1257.98 Å2, differing by only 0.11% from the

analytical area of 1256.64 Å2 and illustrating that the finite

element mesh realistically represents the system’s geometry.

The performance of the SMOL program is good, with

a typical relative error of 1% and the largest error (2.7%)

found for the more challenging mutually repulsive cases.

APPLICATION OF THE SMOL PROGRAM TO
MOUSE ACETYLCHOLINESTERASE

One of the major advantages of continuum methods such as

the SSSE is the ability to simulate diffusion to large

biological systems with complex geometries with signifi-

cantly lower computational cost than Brownian dynamics

techniques. This section demonstrates the use of SSSE to

study the ligand binding kinetics of acetylcholinesterase

(AChE, E.C. 3.1.1.7) (Quinn et al., 1995). AChE is a serine

esterase that terminates the activity of acetylcholine (ACh)

within the cholinergic synapse by hydrolysis of the ACh

ester bond to produce acetate and choline (Berg et al., 1995).

Hydrolysis of ACh occurs in the active site of AChE, which

lies at the base of a 20 Å-deep gorge within the enzyme. The

rate-limiting step of ACh hydrolysis by AChE is the

diffusional encounter (Bazelyansky et al., 1986; Berman

et al., 1991; Nolte et al., 1980), making the system a popular

target for both experimental (Bourne et al., 1995; Radic et al.,

1997; Velsor et al., 2003) and computational diffusion

studies (Tan et al., 1993; Tara et al., 1998).

To provide additional data for assessment of SMOL and

the SSSE in rate constant calculations, we based our analysis

of AChE kinetics on previous BD work by Tara et al. (1998).

Specifically, we used a mouse AChE (mAChE) structure

FIGURE 4 Illustration of the discretized

problem domain for the spherical test case.

(a) Partial domains of the fixed sphere; the

outer boundary of the domain is 40 times the

radius of the sphere. (b) Subset of the mesh

near the fixed sphere surface.

TABLE 1 Analytical and numerical reaction rates for the spherical system as a function of effective ligand charge

Ligand charge (e) 1.0 0.8 0.6 0.4 0.2 0.0 �0.2 �0.4 �0.6 �0.8 �1.0

Analytical results kon (10
11 M�1 min�1) 2.41 2.61 2.82 3.05 3.28 3.62 3.79 4.06 4.34 4.64 4.95

SMOL results kon (10
11 M�1 min�1) 2.44 2.63 2.83 3.04 3.26 3.49 3.74 3.99 4.25 4.53 4.81
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adopted from the crystal structure of the mAChE-fasciculin 2

complex (1MAH) (Bourne et al., 1995) and perturbed by

Tara and co-workers via molecular dynamics simulations

with an ACh-like ligand in the active site gorge (Tara et al.,

1998) to produce gorge conformations with wider widths

than the original x-ray structure. The diffusing ligand was

modeled as a sphere with an exclusion radius of 2.0 Å and

a diffusion constant of 7.8 3 104 Å2/ms. This perturbation

was necessary for computational diffusion simulations with

a fixed biomolecular structure. Related work (Baker and

McCammon, 1999; Zhou et al., 1998b) supports the use of

this open gorge state due to its relevance in conformational

gating dynamics of the enzyme. The geometry of mAChE

and its active site gorge are shown in Figs. 5 and 6.

Reactive boundary definitions

In our calculation of binding rates with SMOL, reactive

boundaries were defined following the typical BD methods:

a spherical reactive surface is defined at an arbitrary radius

from the biomolecular active site (see Fig. 6). To test the

sensitivity of the results to the positions of the reactive

boundary, six reactive surfaces were placed along the gorge

and the gorge opening. Following Tara et al. (1998), these

surfaces were based on six spheres placed along the active

site gorge (in what follows, the coordinates are defined with

the carbonyl carbon of residue S203 in the mAChE structure

at the origin and the gorge aligned with the y axis): sphere

1 centered at (0.0, 16.6, 0.0) with a 12 Å radius; sphere

2 centered at (0.0, 13.6, 0.0) with a 9 Å radius; sphere 3

centered at (0.0, 10.6, 0.0) with a 6 Å radius; sphere 4

centered at (0.0, 7.6, 0.0) with a 6 Å radius; sphere 5 centered

at (0.0, 4.6, 0.0) with a 6 Å radius; and sphere 6 centered at

(0.0, 1.6, 0.0) with a 6 Å radius. Each reactive surface N is

defined by explicitly including the union of spheres N
through 6 in the mAChE structure—the actual reactive

surface is then simply that portion of the new ‘‘molecular’’

surface due to the intersection of added spheres with

molecule. The six reactive surfaces based on this spherical

definition are shown in Fig. 6.

Variables and parameters for the biomolecule
and diffusion domain

For the purpose of the PMF (electrostatics) calculation for

mAChE, partial charges and radii were assigned from the

CHARMM22 force field. Poisson-Boltzmann electrostatics

calculations were performed using dielectric values of 4 and

78 for the protein and solvent, respectively; a solvent probe

radius of 1.4 Å; and an ion exclusion layer of 2.0 Å. APBS

was used to solve the nonlinear Poisson-Boltzmann equation

using the parallel focusing method (Baker et al., 2001). Sets

of nested potential grids were obtained with the finest grid

having dimensions 76 3 66 3 91 Å with 161 grid points in

each direction. For the study of the effect of ionic strength on

reaction rate, separate calculations were performed at ionic

strengths of 0.00, 0.050, 0.100, 0.150, 0.200, 0.250, 0.300,

0.450, 0.600, and 0.670 M.

The problem domain definition for the mAChE system is

shown in Fig. 1. The outer boundary Gb has a radius of 40

times the size of mAChE molecule, and is given a bulk

concentration of unity. Reactive surface Ga is assigned zero

(perfectly absorbing) Dirichlet boundary conditions (com-

pare to Eq. 6) and the remainder of the biomolecular surface

is treated as the reflective boundary Gr with Neumann

condition (Eq. 7). The adaptive meshing method described

above was used to discretize the problem domain. To

accurately reproduce the topology of the 20 Å-deep active

site gorge, a finer mesh was used for discretization near

catalytic site and gorge; other areas of the molecule are

discretized with relatively coarser mesh. The resulting mesh

contained 656,823 simplices and 121,670 vertices. A subset

of the domain is shown in Figs. 3, 5, and 6 to illustrate the

general features of the mesh. Detailed views of the mesh near

the active site gorge are shown in Figs. 5 and 6.

The diffusing particle was treated as a sphere with a 11 e
charge, a 2.0 Å exclusion radius, and a diffusion constant of

7.8 3 104 Å2/ms (parameters were taken from Tara et al.,

1998, which are similar to those for the TFK1 ligand).

Calculating the reaction rate for mAChE-TFK1

encounter with SMOL

Reaction rates for mAChE-TFK1 diffusional encounter were

calculated from the SSSE via the SMOL program for ionic

strengths ranging from 0.000 to 0.670 M NaCl and for the

reactive boundary definitions described above. All calcu-

lations were performed on Intel Pentium 4 CPU 2.20-GHz

computer systems with 1.5 GB RAM running RedHat Linux

9. SMOL executables were compiled with the Intel

FORTRAN and C compilers using the �O2 optimization.

The SMOL calculations took an average of 55 s per reactive

surface. The resulting reaction rates are presented in Fig. 7

and Table 2; analysis of this data and comparison with both

experimental and BD results are presented below.
FIGURE 5 Geometry of mAChE finite element mesh (left) and its active

site gorge (right).
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Calculating the reaction rate for mAChE-TFK1

encounter with UHBD

The BD simulations of Tara et al. (1998) were repeated using

the UHBD software (Briggs et al., 1995) to obtain timing

data and raw reaction rates for comparison with the SMOL

results. As for the SMOL calculations, all simulations were

performed on Intel Pentium 4 CPU 2.20-GHz computer

systems with 1.5 GB RAM running RedHat Linux 9; the

UHBD executables were compiled with the Intel FORTRAN

and compilers using �O2 optimization. The average CPU

time for each UHBD simulation was 2150 s, much greater

than the time required for the SMOL SSSE calculations.

To compare the results from SSSE and BD calculations for

the mAChE system (Tara et al., 1998), the binding rate

constants for surfaces 1–6 and ionic strengths (0–670 mM)

were plotted in Fig. 8. This comparison shows that most of

the SSSE calculations give smaller reaction rates than BD

simulations and therefore lead to the disagreement between

the methods in the choice of the best reactive surface. There

are multiple reasons for this disagreement. Although both

the particle-based and continuum methods have the same

underlying physics, they employ very different implementa-

tions. First and foremost, the particle-based approach uses

discrete particle displacements and therefore should only

give perfect agreement with the continuum simulations in the

limit of infinitesimal step sizes. Second, BD simulations

enforce reflective boundary conditions (compare to Eq. 7)

only approximately by simply rejecting any steps which take

particles into nonreactive surfaces. Given the obvious role of

the reflective biomolecular surface in the gorge, it is not

surprising that there are significant differences between BD

and SSSE results. Finally, we have not implemented any of

the error-based adaptive refinement methods available for

finite element methods (Axelsson and Barker, 1984; Braess,

1997).

Analysis of SSSE reaction rates and comparison
with experiment

The variation of reaction rates with ionic strength is often

interpreted via the Debye-Hückel limiting law by Radic et al.

(1997),

kon ¼ ðk0on � k
H

onÞ10
�1:18jzEzIj

ffiffi
I

p
1 k

H

on; (19)

where kon is the observed binding rate constant, kon
H is the

effective infinite ionic strength limiting rate, kon
0 is the

effective 0 ionic strength rate, zE is the effective enzyme

FIGURE 6 Reactive surfaces 1–6 of mAChE (bottom to top) from the

reactive boundary definition described in the text. The views of these

surfaces start from the outside of the protein (bottom) and move to the

interior (top) as the surfaces move inside the active site gorge.
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charge, zI is the effective inhibitor charge, and I is the ionic
strength. Following the analysis of Radic et al. (1997) of

their experimental data, nonlinear regression analysis was

used to fit the calculated results at concentrations between

0.050 and 0.450 M and obtain values for kon
0 and zE. The

value of zI was held fixed at 11 e and kon
H was set to the

value of kon calculated at 0.670 M ionic strength. The results

of the rate calculated and the fit parameters are given in Table

2. The data show that the calculated rates fit Eq. 19 very well

over the ionic strength range for which the Debye-Hückel

limiting law is valid (0.05 M to 0.5 M).

Table 2 shows that the rate constants for reactive surfaces

3–6 do not decrease monotonically with the decreasing

reactive patch size. This interesting behavior appears to be

influenced by the biomolecular electrostatics; the expected

monotonic decrease is observed when the ligand charge is set

to 0. A number of residues influence the movement of the

ligand within the gorge. Previous work (Tara et al., 1998)

showed that residue Asp-74, immediately below reactive

surface 3 and above surface 4, plays an important role for the

ligand kinetics within the gorge and is a likely candidate for

the source of this behavior.

When performing computational diffusion simulations,

both particle-based and continuum methods need to choose

the appropriate reaction criterion for calculation binding rate

constants. This choice is usually made by comparing the

simulation results with available experimental data. Fig. 7

indicates that SSSE-derived reaction rates show the best

overall agreement with experiment for surface 1. Table 2 also

shows that, whereas the calculated results consistently

underestimate kon
0, the best agreement is observed for

surface 1. The results obtained at surfaces 3–6 are somewhat

less than the experimental values but do show good

agreement with one another, indicating that the value of

kon
0 is insensitive to the choice of surface definition in this

region. Likewise, surfaces 3–6 all give similar values for the

effective enzyme charge zE; however, unlike kon
0, the values

of zE from surfaces 3–6 all agree well with experiment. As

for kon
0, reactive surface 1 gives a calculated value, zE, which

matches experimental observations.

The above results show that the SSSE gives very good

agreement with experiment when the correct reaction

criterion is used. In the case of mAChE, this criterion

corresponds to the reactive boundary located at surface 1.

FIGURE 7 Reaction rates of mAChE calculated with the

SMOL FE program with reactive surface 1 (d), calculated

from Brownian dynamics with reactive surface 1 (n), and

from experimental data (Radic et al. 1997) fit to the Debye-

Hückel limiting law (solid line).

TABLE 2 Rate constants for association of the TFK1 inhibitor with mAChE in media of varying ionic strength

Results source Reactive surface kon
0 (1011 M�1 min�1) kon

H (1011 M�1 min�1) kon (TFK0) (10
11 M�1 min�1) ZE (e)

Experiment 9.8 6 0.6 1.3 2.2 6 0.3 �2.3 6 0.2

SMOL results 1 6.79 6 0.45 1.93 1.42 �2.07 6 0.07

2 3.82 6 0.39 0.15 0.38 �1.16 6 0.08

3 2.87 6 0.55 0.02 0.025 �1.89 6 0.15

4 4.79 6 0.98 0.026 0.017 �1.98 6 0.16

5 5.01 6 1.03 0.025 0.0077 �2.00 6 0.16

6 5.59 6 1.17 0.028 0.0061 �2.00 6 0.17

The various parameters were obtained by fitting to Eq. 19 using fixed values kon
H fixed at the measured/calculated kon at 0.67 M ionic strength and ZI fixed at

11 e. The kon (TFK0) column denotes direct calculations for the ligand with zero charge. Experimental results are from Radic et al. (1997).
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The BD results by repeating the simulation of Tara et al.

(1998) also used spherical reaction criteria similar to those

used in the present study. However, the reaction rates results

suggest that surface 3 provides the best agreement with

experiment. The differences between BD and SSSE results

were discussed above (see also Fig. 8). It is not surprising

that the two methods give different rates at the same surfaces;

it is encouraging that both methods offer reaction conditions

which give good agreement with the experimental results.

CONCLUSIONS

In this study, we describe new continuum-based methods for

studying diffusion in biomolecular systems. Specifically, we

present the SMOL software package, a finite element-based

software package for solving the SSSE to calculate ligand

binding rate constants for large biomolecules. Additionally,

we describe new adaptive meshing methods developed to

discretize biomolecular systems into finite element meshes

which respect the geometry of the biomolecule. Although

not presented in this study, it is important to note that the

new meshing methods could be useful in a variety of biologi-

cal simulations including computational studies of biomolec-

ular electrophoresis (Allison, 2001), elasticity (Zhang et al.,

2003a), and electrostatics (Baker et al., 2000; Cortis and

Friesner, 1997a,b; Holst et al., 2000). The SMOL software

was validated using a spherical analytical test case. Rates for

inhibitor binding to mAChE were calculated at various ionic

strengths with several different reaction criteria. The cal-

culated rates were compared with experimental data (Radic

et al., 1997) and show very good agreement with experiment

while requiring substantially less computational effort than

existing particle-based Brownian dynamics methods.

Since the inception of this work, new Brownian dynamics

methods have been developed which dramatically improve

the speed and convergence of these particle-based simu-

lations (Zou and Skeel, 2003). However, one of the key

ingredients to these new methods is the construction of an

a priori approximate probability distribution to bias and

accelerate the BD calculations. One interesting future di-

rection of the present research would be the use of these

continuum methods to develop approximate biasing func-

tions for the new biased BD methodology of Zou and Skeel.

This initial research lays the groundwork for several

new directions. Of particular interest is the integration of

molecular-scale information into simulations of cellular-

scale systems such as the neuromuscular junction (Smart and

McCammon, 1998; Tai et al., 2003). Additionally, this new

finite element framework should facilitate the incorporation

of other continuum mechanics phenomena into biomolecu-

lar simulations. The ultimate goal of this work is to develop

scalable methods and theories that will allow researchers

to begin to study biological macromolecules in a cellular

context.
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