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In triangulated surface meshes, there are often very noticeable size 
variances (the vertices are distributed unevenly). The presented noise of 
such surface meshes is therefore composite of vast frequencies. In this 
chapter, we solve a diffusion partial differential equation numerically for 
noise removal of arbitrary triangular manifolds using an adaptive time 
discretization. The proposed approach is simple and is easy to incorporate 
into any uniform timestep diffusion implementation with significant 
improvements over evolution results with  the uniform timesteps. As an 
additional alternative to the adaptive discretization in the time direction, 
we also provide an approach for the choice of an adaptive diffusion tensor 
in the diffusion equation.  

 

1 Introduction 

The solution for triangular surface mesh denoising (fairing) is 
achieved by solving a partial differential equation (PDE), which is a 
generalization of the heat equation customized to surfaces. The heat 
equation has been successfully used in the image processing for 
about two decades. The literature on this PDE based approach to im-
age processing is large (see [1, 10, 11, 17]).  It is well known that the 
solution of heat equation ,0=∆−∂ ρρt  based on the Laplacian ∆ , 
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at time T for a given initial image 0ρ  is the same as taking a convo-

lution of the Gauss filter 
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deviation T2=σ  and image 0ρ . Taking the convolution of 
)(xGσ  and image 0ρ  is performing a weighted averaging process to 

0ρ . When the standard deviation σ  become larger, the averaging is 
taken over a larger area. This explains the filtering effect of the heat 
equation to noisy images. The generalization of the heat equation for 
a surface formulation has recently been proposed in [4, 5] and 
shown to be very effective even for higher-order methods [3]. The 
counterpart of the Laplacian ∆  is the Laplace-Beltrami operator 

M∆ (see [7]) for a surface .M  However, unlike the 2D images, 
where the grids are often structured, the discretized triangular sur-
faces are often un-structured. Certain regions of the surface meshes 
are often very dense, with a wide spectrum of noise distribution. 
Applying a single Gauss-like filter to such surface meshes would 
have the following side-effects:  
 
(1). The lower frequency noise is not filtered (under-fairing) if the 

evolution period of time is suitable for removing high fre-
quency noise,  

(2). Detailed features are removed unfortunately, as higher fre-
quency noise (over-fairing) if the evolution period of time is 
suitable for removing low frequency noisy components. 

  
The bottom row of Fig 1 illustrates this under-fairing and over-

fairing effects. For the input mesh on the top-left, three fairing re-
sults are presented at three time scales. The first figure exhibits the 
under-fairing for the head. The last figure exhibits the over-fairing 
for the ears, eyes, lips and nose. Hence, a phenomena that often ap-
pears for the triangular surface mesh denoising is that whenever the 
desirable smoothing results are achieved for larger features, the 
smaller features are lost. Prior work has attempted to solve the over-
fairing problem by using an anisotropic diffusion tensor in the diffu-
sion equation [3, 4]. However, this is far from satisfactory. The aim 
of this chapter is to overcome the under-fairing and over-fairing di-
lemma in solving the diffusion equation. 



 

 

There are several situations where the produced triangular surface 
meshes have varying triangle density. One typical case is geometric 
modeling, where the detailed structures are captured by several 
small triangles while the simpler shapes are represented by fewer 
large ones. We may call such triangular meshes as feature-adaptive. 
Another case is the results of physical simulation, in which the re-
searcher is interested in certain regions of the mesh. In these regions, 
accurate solutions are desired, and quite often, finer meshes are 
used. For example, in the acoustic pressure simulation [15], the in-
teresting region is the ear canal for human hearing.  Hence, more ac-
curate and 

   
 

   
Fig. 1. The left figure in the top row shows the initial geometry mesh. The 
top-middle and top-right figures illustrate the results of the adaptive 
timestep smoothing after 2 and 4 fairing steps with τ = 0.016. The three 
figures in the bottom row are the results of the timestep t = 0.001 smooth-
ing after 1, 2 and 4 fairing steps, respectively. 

 



 

 

finer meshes are used there. We call such meshes as error-adaptive. 
One additional case arises from the multiresolution representation of 
surfaces, for example using wavelet transforms or direct mesh sim-
plifications. Each resolution of the representation is a surface mesh 
that approximates the highest resolution surface. The approximation 
error is usually adaptive and can vary over the entire surface. For in-
stance, the mesh simplification scheme in [2], which is driven by the 
surface normal variation, results in meshes that are both feature-
adaptive and error-adaptive.   

 
Previous Work. For PDE based surface fairing or smoothing, there 
are several methods that have been proposed (see [3, 4, 5, 6]) re-
cently. Desbrun et al in [5, 6] also use Laplacian, which is discre-
tized as the umbrella operator in the spatial direction. In the time di-
rection discretization, they propose to use the semi-implicit Euler 
method to obtain a stable numerical scheme. Clarenz et al in [4] 
generalize the Laplacian to the Laplace-Beltrami operator M∆ , and 
use linear finite elements to discretize the equation. In [3], the prob-
lem is reformulated for 2-dimensional Riemannian manifold embed-
ded in kR  aiming at smooth geometric surfaces and functions on 
surfaces simultaneously. The 1C  higher-order finite element space 
used is defined by the Loop's subdivision (box spline). One of the 
shortcomings of all these proposed methods that we address here is 
their non-adaptivity. All of them use uniform timesteps. Hence they 
quite often suffer from under-fairing or over-fairing problems. 

 
Our Approach.  For a feature-adaptive or error-adaptive mesh, the 
ideal evolution strategy would be to correlate the evolution speed 
relative to the mesh density. In short, we desire the lower frequency 
errors use a faster evolution rate and the higher frequency errors 
succumbs to a slower evolution rate. To achieve this goal, we pre-
sent a discretization in the time direction, which is mesh adaptive. 
We use a timestep )(xT , which depends on the position x  of the 
surface. The part of the surface, that is coarse, uses larger )(xT . The 
idea is simple and it is easy to incorporate it into any uniform 
timestep diffusion implementation. The improvements achieved over 
the evolution results with uniform timestep are significant. The top 
row of Fig 1 shows this adaptive time evolution improvement over 
the uniform timestep evolution results, shown in the bottom row. 



 

 

The middle and right figures in the top row are the smoothing results 
of the mesh on the left top after 2 and 4 fairing steps, respectively. 
As an alternative to the adaptive discretization in time direction, we 
also provide an approach for the adaptive choice of the diffusion 
tensor in the diffusion PDE equation. 

The remaining of the chapter is organized as follows: Section 2 
summarizes the diffusion PDE model used, followed by the discreti-
zation section 3. In the spatial direction, the discretization is realized 
using the 1C  smooth finite element space defined by the limit func-
tion of Loop's subdivision (box spline), while the discretization in 
the time direction is adaptive. The conclusion section 4 provides ex-
amples showing the superiority of the adaptive scheme.   

2 Geometric Diffusion Equation 

We shall solve the following nonlinear system of parabolic differen-
tial equations (see [3, 4]): 

,0)()( )( =∆−∂ txtx tMt                                                                   (1) 

where )()()( tMtMtM div ∇=∆ o  is the Laplace-Beltrami operator on 
)(tM ,  )(tM  is the solution surface at time t  and )(tx  is a point on 

the surface. )(tM∇  is the gradient operator on the surface. This equa-
tion is a generalization of heat equation 0=∆−∂ ρρt  to surfaces, 
where ∆  is the Laplacian. To enhance sharp features, a diffusion 
tensor D , acting on the gradient, has been introduced (see [3, 4]). 
Then (1) becomes 

.0))(()( )()( =∇−∂ txDdivtx tMtMt                                                    (2) 
The diffusion tensor )(: xDD =  is a symmetric and positive definite 
operator from MTx  to MTx . Here MTx  is the tangent space of M  
at x . The detailed discussion for choosing the diffusion tensor can 
be found in [3, 4] for enhancing sharp features. In this chapter, we 
do not address the problem of enhancing sharp features. However, 
we shall use a scalar diffusion tensor for achieving an adaptive dif-
fusion effect. The divergence ψMdiv  for a vector field TM∈ψ  is 
defined as the dual operator of the gradient (see [12]): 

),(,),(),( 0 MCvvdiv TMMMM
∞∈∀∇−= φφφ            (3) 



 

 

where )(0 MC∞  is a subspace of )(MC∞ , whose elements have com-
pact support.  TM  is the tangent bundle, which is a collection of all 
the tangent spaces. The inner product M),( ψφ  and TMvu ),(  are de-
fined by the integration of φψ  and vuT over M , respectively.  The 
gradient of a smooth function f  on M  is given by  
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an explicit expression for the divergence is given by (see [8], page 
84)  
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Then it is easy to derive that 
    ,)()( fhhffhdiv MM

T
MMM ∆+∇∇=∇                               (5) 

where f , h  are smooth functions on M . From (4), (5) and the fact 
that ),()(2 xnxHxM =∆  we could rewrite  (2) as  

    ),()()(2)()( xnxHxDxDxx Mt +∇=∂                                    (6)  
where )(xH  and )(xn  are  the mean curvature and the unit normal 
of M , respectively. Equation (6) implies that the motion of the sur-
face )(tM  can be decomposed into two parts: One is the tangential 
displacement caused by )(xDM∇ , and the other is the normal dis-
placement (mean curvature motion) caused by )()()(2 xnxHxD .   

Using (3), the diffusion problem (2) could be reformulated into 
the following variational form 
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for any ))((0 tMC∞∈θ . This variational form is the starting point for 
the discretization.   

We already know that equation (1) describes the mean curvature 
motion. Its regularization effect could be seen from the following 
equation (see [4, 13]) 

 dxHtMVolume
dt
ddxHtMArea

dt
d

tMtM
∫∫ −=−=

)()(

2 ))((,))(( ,     (8) 

where ))(( tMArea  and ))(( tMVolume  are the area of )(tM  and 
volume enclosed by )(tM , respectively, H  is the mean curvature. 
From these equations, we see that the evolution speed depends on 
the mean curvature of the surface but not on the density of the mesh. 
Hence if the mesh is spatially adaptive, the dense parts that have de-
tailed structures, have larger curvatures, which very possibly be 
over-faired. 

3 Discretization 

We discretize equation (7) in the time direction first and then in the 
spatial direction. Given an initial value )0(x , we wish  to have a so-
lution )(tx  of (7) at ))0((xTt = . Using a semi-implicit Euler 
scheme, we have the following time direction discretization: 
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for any ))((0 tMC∞∈θ . If we want to go further along the time di-
rection, we could treat the solution at )(xTt =  as the initial value 
and repeat the same process. Hence, we consider only one time step 
in our analysis. 

3.1  Spatial Discretization 

The function in our finite element space is locally parameterized as 
the image of the unit triangle 

{ }1,0,0:),( 2121
2
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That is, ),,1( 2121 ξξξξ −−  are the barycentric coordinate of the tri-
angle. Using this parameterization, our discretized representation of 

M  is ,1 αα Τ= =
kM U φβα =ΤΤ

oo

I  for ,βα ≠  where α

o

Τ is the interior 
of αΤ . Each triangular patch is assumed to be parameterized locally 
as ;: α

α Τ→Τx  ).,(),( 2121 ξξξξ αxa  Under this parameteriza-
tion, tangents and gradients can be computed directly. The integra-
tion on surface M  is given by   
      .)det()),((: 2121 ξξξξ

α
α ddgxffdx ijM ∑ ∫∫ Τ

=  

The integration on triangle Τ  is computed adaptively by numerical 
methods. 

Let dM  be the given initial triangular mesh, mixi ,,1, L= , be its 
vertices. We shall use 1C  smooth quartic Box spline basis functions 
to span our finite element space. The piecewise quartic basis func-
tion at vertex ix , denoted by iφ , is defined by the limit of Loop's 
subdivision for the zero control values everywhere except at ix  
where it is one (see [3] for detailed description of this). For simplic-
ity, we call it the Loop's basis.  

Loop’s Subdivision and Finite Element Function Space 

 
Fig. 2. Refinement of triangular mesh around a vertex 

In Loop's subdivision scheme, the initial control mesh and the sub-
sequent refined meshes consist of triangles only. In the refinement, 
each triangle is subdivided linearly into 4 sub-triangles. Then the 
vertex position of the refined mesh is computed as the weighted av-
erage of the vertex position of the unrefined mesh. Consider a vertex 



 

 

kx0  at level k  with neighbor vertices k
ix  for ni ,,1 L=  (see Fig 2), 

where n  is the valence of vertex kx0 . The coordinates of the newly 
generated vertices 1+k

ix  on the edges of the previous mesh are com-
puted as 
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where index i  is to be understood modulo n . The old vertices get 
new positions according to 
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Note that all newly generated vertices have a valence of 6, while the 
vertices inherited from the original mesh at level zero may have a 
valence other than 6. We will refer to the former case as ordinary 
and to the later case as extraordinary. 

 
F.g. 3. The definition of base iφ : The quartic Bezier coefficients (each has 
a factor 1/24). The Bezier coefficients on the five macro-triangles are ob-
tained by rotating the top macro-triangle around the center to the other 
five positions. 

Let je , imj ,,1 L=  be the 2-ring neighborhood elements. Then if 

je  is regular (meaning its three vertices have valence 6), explicit 
Box-spline expressions exist (see [14, 16])  for  iφ   on je . Using 
these explicit Box-spline expressions, we derive the BB-form ex-



 

 

pression for the basis functions iφ  (see Fig 3). These expressions 
could be used to evaluate iφ  in forming the linear system (11).  If ie  
is irregular, local subdivision is needed around ie  until the parame-
ter values of interest are interior to a regular patch. An efficient 
evaluation method, that we have implemented, is the one proposed 
by Stam [14]. 

Compared with the linear finite element space, using the higher-
order 1C  smooth finite element space spanned by Loop's basis does 
have advantages. The basis functions of this space have compact 
support (within 2-rings of the vertices). This support is bigger than 
the support (within 1-ring of the vertices) of hat basis functions that 
are used for the linear discrete surface model. Such a difference in 
the size of support of basis functions makes our evolution more effi-
cient than those previously reported, due to the increased bandwidth 
of the affected frequencies. The reduction speed of high frequency 
noise in our approach is not that drastic, but still fast, while the re-
duction speed of lower frequency noise is not slow. Hence, the 
bandwidth of affected frequencies is wider. A comparative result 
showing the superiority of the Loop's basis function is given in [3]. 

Let )0(MV  be the finite dimensional space spanned by the 

Loop's basis functions .}{ 1
m
ii =φ  Then )).0((1

)0( MCVM ⊂  Let 
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Then equation (9) is discretized in 3
)0(MV  as 
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for ,,,1 mj L=  where ii xx =:)0(  is the i-th vertex of the input 
mesh dM , ))0(( ii yTT =  and )0(iy  is a surface point corresponding 
to vertex )0(ix . Equation (10) is a linear system for unknowns 

)( ii Tx . 



 

 

3.2  Adaptive Timestep 

We first use adaptive timesteps to achieve the adaptive evolution ef-
fect. In this case the diffusion tensor D  is chosen to be identity, but 

)(xT  is not a constant function. Now (10) can be written in the fol-
lowing matrix form: 

),0()()( MXTXLS =+                       
(11) 
where )]0(,),0([)0()],(,),([)( 111 mmm xxXTxTxTX LL ==  and  
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Note that both S  and L  are symmetric. Since 1φ , 2φ , … , mφ are 
linearly independent and have compact support, S is sparse and 
positive definite. Similarly, L  is symmetric and nonnegative defi-
nite. Hence, LS + is symmetric and positive definite. 

The coefficient matrix of system (11) is highly sparse. An itera-
tive method for solving such a system is desirable. We solve it by 
the conjugate gradient method with a diagonal preconditioning. 
 

Defining adaptive timesteps. Now we illustrate how )(xT  is de-
fined.  At each vertex ix  of the mesh dM , we first compute a value 

0>id , which measures the density of the mesh around ix . We pro-
pose two approaches for computing it: 

1. id  is defined as the average of the distance from ix  to its 
neighbor vertices.   
    2. id  is defined as the sum of the areas of the triangles surround-
ing ix .   

To make the sdi
'  relative to the density of the mesh but not the 

geometric size, we always resize the mesh into the box 3]3,3[− . The 
experiments show that both approaches work well, and the evolution 
results have no significant difference. This value id  is used as con-
trol value for defining timestep that is the same as defining the sur-
face point: 
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where 0>τ  is a user specified constant. Hence, T is a function in 
the finite element space )0(MV . Note that since T is not a constant 
any more, it is involved in the integration in computing the stiffness 
matrix S . Since )0()( MVxT ∈ , it is 2C , except at the extraordinary 

vertices, where it is 1C . However, )(xT may also be noisy, since it 
is computed from the noisy data. To obtain a smoother )(xT , we 
smooth repeatedly the control value id  at the vertex ix  by the fol-
lowing rule: 
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ues at the one-ring neighbor vertices of ix , in  is the valence of ix ,  

il  and )( ina  are given as follows: 
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The smoothing rule (14) is in fact for computing the limit value of 
Loop's subdivision  (see [9], pp 41-42) applying to the control values 

)(k
id  at the vertices.  In our examples, we apply this rule three times. 

Experiments show that even more times of smoothing of id  are not 
harmful, but the influence to the evolution results are minor. The 
smoothing effect of (14) could be seen by rewriting it in the follow-
ing form 
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The left-handed side could be regarded as the result of applying the 
forward Euler method to the function )(tdi , the right-handed side is 
the umbrella operator (see [5]). Hence, (14) is a discretization of the 

equation D
t
D

∆=
∂
∂ . Since ,1<iiln  the stability criterion for (14) is 

satisfied.  
 



 

 

A different view of adaptive timestep approach  
Consider the following diffusion PDE 

 ,0)()()( )( =∆−∂ txxDtx tMt                                                        (15) 
where )(xD  is a function defined by (13). Again, equation (15) de-
scribes the mean curvature motion with a compression factor )(xD . 
If we use a semi-implicit Euler scheme to discretize the equation 
with constant timestep τ , we could arrive at the same linear system 
as (11).  Hence, solving the equation (1) with an adaptive timestep 

)(xDτ  is equivalent to solving equation (15) with a uniform 
timestep τ . But (15) may be easier to handle in the theoretical 
analysis.  

3.3  Uniform Timestep and Adaptive Diffusion Tensor 

Now we use uniform timestep τ  but a non-identity diffusion tensor 
)(xD . This )(xD  is the same as the one defined in (13), but we 

should regard it as IxD )( , where I  is the identity diffusion tensor. 
The discretized equation (10) then becomes  
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From this, a similar linear system as (11) is obtained with  
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We know that )(xD  is a smooth positive function that characterizes 
the density of the surface mesh. The effect of this diffusion tensor is 
suppressing the gradient where the mesh is dense, and hence slows 
down the evolution speed. Comparing equation (11) with equation 
(16), we find that they are similar (since TD =τ ), though not 
equivalent. Indeed, if )(xD  is a constant on each triangle of M , 
then they are equivalent. In general, )(xD  is not a constant, but ap-
proximately a constant on each triangle, hence the observed behav-
ior of (11) and (16) are often similar. The last two figures in Fig 4 
exhibit this similarity, where the third and fourth figures are the evo-



 

 

lution results using an adaptive timestep and an adaptive diffusion 
tensor, respectively. Since the results of the two adaptive approaches 
are very close, in the other examples provided in this chapter, we use 
only the adaptive timestep approach.   
  
 

Homogenization Effect of D  
It follows from (6) that the non-constant diffusion tensor )(xD  

causes tangential displacement of the vertices. For the diffusion ten-
sor )(xD  defined in the last sub-section, we know that it is adaptive 
to the density of the mesh in the sense that it takes smaller values at 
denser regions of the mesh. Consider a case where a small triangle is 
surrounded by large triangles. In such a case, function )(xD  is small 
on the triangle and larger elsewhere. This implies that the gradient of 

)(xD  on the small triangle points to the outside direction, and the 
tangential displacement makes the small triangle become enlarged. 
If the density of the mesh is even, then )(xD  is near a constant. 
Then the tangential displacement is minor.  Hence, the adaptive dif-
fusion tensor we use has homogenizing effect. Such an effect is nice 
and important, as it avoids producing collapsed or tiny triangles in 
the faired meshes.  

3.4  Algorithm Summary 

For a given initial mesh, stopping control threshold values ,0>iε  
2,1=i and ,0>τ  the adaptive timestep evolution algorithm could be 

summarized via the following pseudo-code:  
 

Compute function and derivative values of iφ  on the 
integration points; 
do { 

   Compute id ; 

   Smooth id  by (14); 

   Compute matrices S  and L  by (12);  
   Solve linear system (11); 
   Compute )(tH ; 
}  while (none of (18)-(19) is satisfied);  

 



 

 

Note that the evolution process does not change the topology of 
the mesh. Hence the basis functions could be computed before the 
multiple iterations.  

We use two of the three stopping criteria proposed in [3] for ter-
minating the evolution process:  Let 

,||),0(||||),(||)(
)0(

2

)(

2 ∫∫= MtM
dxxHdxxtHtH  

where ),( xtH  is the mean curvature vector at the point x  and time 
)(xtD . The stopping criteria are 

,1|)('| ε≤tH  or                                                                 (18) 
.)( 2ε≤tH                                                                                (19) 

where iε  are user specified control constants, )(' tH  is computed  by 
divided differences. 

4  Summary 

We have proposed two simple adaptive approaches in solving the 
diffusion PDE by the finite element discretization in the spatial di-
rection and the semi-implicit discretization in the time direction, 
aiming to solving the under-fairing/over-smooth problems that beset 
the uniform diffusion schemes. The implementation shows that the 
proposed adaptive schemes work very well. 

  
Fig. 4. The left figure is the initial geometry mesh. The second figure is the 
faired mesh after 3 fairing iterations with uniform timestep t = 0.0011. The 
third and fourth figures are the faired meshes after 3 fairing iterations 
with adaptive timestep and alternatively adaptive diffusion tensor with uni-
form timestep τ = 0.025, respectively. 

 



 

 

  



 

 

Fig. 5. The top figure is the initial geometry mesh. The second and the 
third figures are the faired meshes after 2 and 4 fairing iterations with uni-
form timestep t = 0.0001. The last two are the faired meshes after 2 and 4 
fairing iterations with adaptive timestep and τ  = 0.0016. 

 
Figure 4 and Fig 5 are used to illustrate the difference between the 

uniform timestep evolution and the adaptive timestep evolution.  
Since the adaptive timestep is not uniform, we cannot compare the 
evolution results for the same time. The comparing criterion we 
adopted here is we evolve the surface, starting from the same input, 
to arrive at similar smoothness for the rough/detailed features and 
compare the detailed/rough features. In Fig 4, the left figure is the 
input mesh, the second figure uses uniform timestep, the third and 
fourth figures use a adaptive timestep and a adaptive diffusion tensor 
with a uniform timestep, respectively. Comparing the three smooth-
ing results, we can see that the large features look similar, but the 
toes of the foot are very different. The evolution results of the adap-
tive timestep and the adaptive diffusion tensor are much more desir-
able. Figure 5 exhibits the same effect. The top figure shows the in-
put mesh, the next two are the results of the uniform timestep 
evolution. Comparing these to the bottom two figures, which are the 
results of the adaptive timestep evolution, many detailed features on 
the back and the snout of the crocodile are preserved by the adaptive 
approach. Furthermore, the large features of the uniform timestep 
evolution (compare the tails of the crocodiles) are less fairer than 
that of the adaptive timestep evolution, even though the detailed fea-
tures are already over-faired. 
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