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Abstract

Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant

bottleneck when datasets of a hundred thousand or even a million particles are required for structure determination at near atomic

resolution. Algorithm development of fully automated particle selection is thus an important research objective in the cryoEM field.

A number of research groups are making promising new advances in this area. Evaluation of algorithms using a standard set of

cryoEM images is an essential aspect of this algorithm development. With this goal in mind, a particle selection ‘‘bakeoff’’ was

included in the program of the Multidisciplinary Workshop on Automatic Particle Selection for cryoEM. Twelve groups participated

by submitting the results of testing their own algorithms on a common dataset. The dataset consisted of 82 defocus pairs of high-

magnification micrographs, containing keyhole limpet hemocyanin particles, acquired using cryoEM. The results of the bakeoff are

presented in this paper along with a summary of the discussion from the workshop. It was agreed that establishing benchmark

particles and using bakeoffs to evaluate algorithms are useful in promoting algorithm development for fully automated particle

selection, and that the infrastructure set up to support the bakeoff should be maintained and extended to include larger and more

varied datasets, and more criteria for future evaluations.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Selection of individual particles from digitized elec-

tron micrographs begins to represent a labor-intensive

bottleneck in single-particle cryo-electron microscopy
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(cryoEM) when the size of the dataset that is needed
starts to exceed a few tens of thousand molecular im-

ages. The automation of particle selection has been a

topic of interest for many years (for a review, see,

Nicholson and Glaeser, 2001). Apart from the task of

selection of images of spherical virus particles at rela-

tively high defocus, computer algorithms alone have not

been as effective as most users wish them to be. As a

mail to: cpotter@scripps.edu
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result, current algorithms for automated (computer)
selection are primarily used to select candidate particles,

after which one manually edits (prunes) the list of can-

didates by visually inspecting and accepting—or reject-

ing—every one of the candidates. While semi-automated

particle selection of this type is a big aid when one aims

for datasets of ten or twenty thousand particles, the need

to develop fully automated algorithms becomes rather

important when one aims for datasets of a hundred
thousand or even a million particles. Such large datasets

are a prerequisite for cryoEM reconstructions that ap-

proach the resolution limit associated with large, single

particles (Glaeser, 1999; Henderson, 1995). As a result,

developing fully automated algorithms is an important

research objective.

As is apparent from the papers presented at the re-

cent Workshop (Multidisciplinary Workshop on Auto-
matic Particle Selection for Cryo-electron Microscopy,

The Scripps Research Institute, April 24–25, 2003), a

number of research groups are making promising new

advances on the difficult task of developing algorithms

for fully automatic particle selection. It is also apparent

that the outcomes achieved with alternative recipes must

ultimately be evaluated by comparing how successful

each one is when tested on a standard set of electron
micrographs. The felicitous concept of holding a

‘‘bakeoff,’’ in which each chef is restricted to using a

common set of raw ingredients (micrographs), emerged

from this metaphor of ‘‘algorithm as recipe.’’ Thus, to

initiate what could become a tradition, such a bakeoff

was included in the program of this workshop, and the

results are presented in this paper. In summary, 12

groups participated in the bakeoff, of which two groups
manually selected particles and the others used auto-

mated algorithms. Table 1 includes a summary of the

bakeoff participants in terms of representatives and

group affiliations.

Ideally, to fully evaluate the performance of various

approaches, we should use a range of particle datasets

from the simplest spherical virus particles to the most
Table 1

Bakeoff participants

Representative Affiliation

Chandrajit Bajaj University of Texas at Austin

Marshall Bern Palo Alto Research Center

Fabrice Mouche The Scripps Research Institute

Felix de Haas FEI Company

Richard J. Hall Imperial College London

Steven C. Ludtke Baylor College of Medicine

Satya P. Mallick University of California, San Diego

Pawel A. Penczek University of Texas-Houston Medical

School

Alan M. Roseman MRC Laboratory of Molecular Biology

Fred J. Sigworth Yale University

Niels Volkmann The Burnham Institute

Yuanxin Zhu The Scripps Research Institute
difficult very-low-contrast asymmetrical particles. Un-
fortunately, such datasets are not readily available and

thus, rather than deferring the problem to a later time,

we chose to get started by using an available annotated

dataset of images containing keyhole limpet hemocyanin

(KLH) particles (Zhu et al., 2003). As a result, the

performance of individual algorithms reported in this

paper is limited to the selection of the KLH particles. It

is understood that the KLH dataset is not ‘‘ideal’’ and
that algorithms might perform completely differently on

datasets that represent more (or less) challenging prob-

lems. However, in spite of these limitations, we believe

that the results of the bakeoff provide a useful starting

point for a discussion on how best to compare and

evaluate algorithms and how to set up more general

standard datasets for further evaluations. Thus, al-

though selecting the KLH particles presented a rela-
tively ‘‘easy’’ problem in particle selection, the bakeoff

served as a common basis for us to better understand

how to build benchmark particle datasets as well as how

to set up criteria for evaluating methods of particle se-

lection. Given the specific nature of the dataset, the

major goal of the bakeoff is focused more on how to

compare and contrast the results of different algorithms

and less on the performance of individual algorithms.
2. Materials and methods

2.1. Common dataset

An ongoing effort at the National Resource for Au-

tomated Molecular Microscopy (NRAMM) is to de-
velop benchmark cryoEM datasets that can be used to

test methods for automatic particle selection. As part of

the effort, an annotated dataset of cryoEM images con-

taining KLH particles has been established (Zhu et al.,

2003) and was used for the bakeoff. The annotated da-

taset consisted of 82 defocus pairs of high-magnification

images of KLH particles, locations of around 1000 side

view particles in the images manually selected by
Mouche (one of the participants), and a preliminary 3D

reconstruction. The defocus pairs were acquired at a

nominal magnification of 66000� and a voltage of

120 kV, using the Leginon system (Carragher et al.,

2000; Potter et al., 1999) and a Philips CM200 trans-

mission electron microscope equipped with a 2048�
2048 CCD Tietz camera. The first image of each defocus

pair was acquired at near to focus conditions (e.g., 1 lm
under focus) and the second one at farther from focus

conditions (e.g., 3 lm under focus). The time interval

between the two exposures was approximately 20 s due

to the time required to read out the digital image from

the camera. At this magnification, the pixel size is 2.2�AA
on the specimen scale and the accumulated dose for

each high-magnification image area was about 10 e�/�AA2.
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This KLH Dataset-1 is publicly available at: http://
ami.scripps.edu/prtl_data/.

2.2. Bakeoff rules

An example of a defocus pair of images is shown in

Fig. 1. The KLH didecamer appears in two main ori-

entations, as rectangular side views and as circular top

views. Images typically also contain intermediate views
of broken molecules and aggregates of two or more

particles. Bakeoff participants were required to select

only side view KLH particles in the farther from focus

image of each defocus pair. This requirement was im-

posed because no top view KLH particles were origi-

nally manually selected in the common dataset. It is

widely accepted that using overabundant type of views

(here the top views) may lead to later reconstruction
artifacts (Boisset et al., 1998); therefore, the top views

are usually not used for 3D reconstruction of KLH

maps—the major driving force of automatic particle se-

lection. This explains why the top view KLH particles

were not annotated in the common dataset.

A call for participation and a specification for the

bakeoff, includinghow to submit particle selection results,

the deadline for submission, and the suggested method of
assessing different results, were made known to the par-

ticipants. Each participant was required to provide the

center coordinates of selected particles in an ASCII file,

each row of which records the coordinates of a particle,

with the origin of the coordinate system being at the

bottom-left corner of the image. Each participant was

also asked to submit a text file containing any information

that is important or would be helpful to other people in
understanding the results. (More detailed information
Fig. 1. An example defocus pair of images from the common dataset of a spec

a nominal magnification of 66 000� using a 2048� 2048 pixel CCD camera.

(1lm under focus) and the one shown in (B) was recorded second at much
about the bakeoff can be found at: http://nramm.scripps.
edu/seminars/2003/prtl_work/bake off.htm.)

2.3. Algorithms/criteria for particle selection in the

bakeoff

As mentioned in Section 1, 12 groups participated in

the bakeoff, of which Mouche and Haas manually se-

lected particles using their own criteria and the others
used automated algorithms. The 10 algorithms used by

the other participants can be more or less grouped into

two classes. Class I algorithms are based on cross-corre-

lation using templates (references), generated from either

a 3D reference structure or the averages of a set of man-

ually picked particles. These are called template match-

ing-based approaches, including Bern�s, Ludtke�s,
Penczek�s, Roseman�s, and Sigworth�s algorithms. Class
II methods are based on feature recognition where algo-

rithms work by way of recognizing local or global salient

features inherent to particle images without the use of a

3D reference structure, called feature-based approaches,

including Bajaj�s, Hall�s, Mallick�s, Volkmann�s, and

Zhu�s algorithms. Unlike the other feature-based

approaches reported here, Mallick�s algorithm uses

machine learning as the basic tool to learn both discrim-
inative features and a cascade of classifiers for particle

detection (Mallick et al., 2004). There are distinct

advantages to each of these approaches and these are

described later in this section. Algorithms requiring a 3D

model and those starting frompure features represent two

different starting points to the task of particle selection or,

in other words, stand at opposite ends of a continuum of

methods for automatic particle selection. From this point
of view, some participants� algorithms may be more
imen of keyhole limpet hemocyanin (KLH). The images are acquired at

The image shown in (A) was acquired first at a near to focus condition

farther from focus (3lm under focus).

http://ami.scripps.edu/prtl_data/
http://ami.scripps.edu/prtl_data/
http://nramm.scripps.edu/seminars/2003/prtl_work/bakeoff.htm
http://nramm.scripps.edu/seminars/2003/prtl_work/bakeoff.htm
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accurately classified into somewhere between the two
opposite ends, for instance, Hall�s algorithm. For com-

pleteness, a brief description of all algorithms and the

criteria used for the manual selections are given below.

2.3.1. Manual selection criteria

2.3.1.1. Mouche’s criteria. The KLH didecamer presents

two main orientations, a rectangular side view and a

circular top view. From the 82 images obtained with the
CCD camera, 1042 single particles were manually and

interactively selected, using SPIDER and WEB (Frank

et al., 1996). Only rectangular side views and interme-

diate orientations were selected. No aggregate or ‘‘sin-

gle’’ particle showing a different length (shorter or

longer) was manually picked. Furthermore, to avoid any

reconstruction artifacts due to overabundant views, no

circular top views were selected.

2.3.1.2. Haas’ criteria. Particle picking was guided by

rules as follows: (i) Only particles of the rectangular side

view were selected; (ii) Particles should not overlap; (iii)

Particles should not have any defects (dissociated, con-

taminated with ice crystal deposits, etc.); and (iv) Parti-

cles should be clearly visible (not too thick an ice layer).

2.3.2. Template matching approaches

Template matching is a basic technique used in many

signal processing and image analysis applications for

detection and localization of patterns in signal corrupted

by noise. The technique is based on a linear image for-

mation model, i.e., it is assumed that the observed signal

is a sum of the original, uncorrupted signal and noise;

the latter is further assumed to be stationary with zero
average, with a known power spectrum, and to be un-

correlated with the signal. If the noise is white, the

template matching reduces to the correlation technique

for signal detection. For colored noise, one constructs a

linear Matched Filter that takes into account the power

spectrum of the noise. The popularity of the template

matching technique is further enhanced by the fact that

the matched filter can be shown to be an optimal
Bayesian classifier, i.e., it minimizes the probability of

the detection error.

The image formation model underlying the template

matching approach corresponds well to the accepted

model of the image formation process in the electron

microscope in its linear, weak-phase approximation

(Wade, 1992). Thus, if the necessary parameters of the

EM transfer function could be estimated, the template
matching would provide results that, at least in theory,

could not be surpassed by the usage of any other linear

method. The only remaining problem is of a practical

nature: how to create a set of 2D template images that

would be exhaustive, i.e., would contain all possible

views of the known 3D template structure, but it would
be sufficiently small to make the application of the
method practical. Since in EM the goal is the detection of

any of the possible 2D projections of the known 3D

structure, the number of templates can be very large. Not

only all possible projection directions have to be con-

sidered, but also all the possible in-plane orientations of

projections have to be generated. In order to reduce the

number of templates, two possible strategies have been

suggested. In the first strategy (e.g., Sigworth�s algo-
rithm), principal component analysis is used to express

the large number of original templates as linear combi-

nations of a small set of eigenimages. In the second (e.g.,

Penczek�s and Bern�s algorithms), clustering techniques

are applied to group the templates and a small number of

class averages are then used as templates.

The main weakness of the template matching tech-

nique is that it results in a relatively high rate of false
positives. Any objects in the field that have about the

same size and average intensity as the templates will

yield high correlation coefficients. Thus, further post-

processing of the template matching results is necessary

in order to improve the performance of this technique.

2.3.2.1. Bern’s algorithm. The algorithm starts by pro-

jecting an initial reference 3D map in many different di-
rections to produce synthetic 2D templates. The

templates are clustered, and cluster averages are then

cross-correlated with the micrographs, using the fast

Fourier transforms (FFT) for speed, to give a set of

candidate picks. Afterwards, the candidate picks are

screened by scoring them using a probabilistic model of

cryo-EM image formation; the score is the ratio of the

probability of generating the candidate pick by cryo-EM
imaging of a template to the probability of generating the

candidate by a pure noise process. In scoring, the original

synthetic templates are used, rather than the cluster av-

erages. In principle, this algorithm allows the use of al-

most any noise model, even one learned from the data as

in Mallick�s algorithm, but in their bakeoff entry, Bern

and his coauthors (Wong et al., 2004) used a simple noise

model with independent, identically distributed pixels,
whose distribution was determined empirically. This

noise model gives an algorithm similar to classical mat-

ched filtering (Sigworth�s algorithm), but with less em-

phasis on the ‘‘power term’’ (grayscale variance) of the

candidate picks, although not as severely normalized as

using the correlation coefficient (Roseman�s algorithm).

Key parameters in the algorithm include the number

of 2D templates and their Euler angles, the number of
clusters of templates, and the score thresholds for ac-

cepting candidate picks. Bern et al. used 35 templates, 5

top views, and 30 side views (planar rotations of 0�, 6�,
12�,. . . of a master side view, which was rotationally

averaged about the KLH�s axis of symmetry); they used

five clusters, one of which consisted of top views; and

they set the score thresholds based upon manual
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examination of the picking results for a few micro-
graphs. The algorithm picked both side and top views,

but only the side views (determined by which 2D tem-

plate they matched with highest score) were included in

the bakeoff entry. The processing time of the algorithm

is approximately 2min per micrograph.

2.3.2.2. Ludtke’s algorithm. A particle with a good side

view was selected as a reference. High-pass and low-pass
filters were applied at 1 pixel and 70 pixels, respectively.

A stack of reference images for use with ‘‘boxer/batch-

boxer,’’ EMAN�s interactive/batch particle selection tool

(Ludtke et al., 1999), was generated by rotating the ref-

erence particle in 5� steps. Boxer and batchboxer both

use a multi-reference correlation-based scheme with

several thresholds. The correlation function is based on

Alan Roseman�s fast local correlation technique (Rose-
man, 2003). A single image was loaded into boxer and a

reasonable set of threshold parameters were selected.

This single set of thresholds was then used to automati-

cally select particles out of all high-magnification images.

2.3.2.3. Penczek’s algorithm. A template matching ap-

proach was used for particle selection, taking advantage

of the existing, intermediate-resolution model of the
structure. The approach comprised three steps. In the

first step, a set of possible particle views was generated

using the available reference structure. The template

images were constructed as linear combinations of

available particle views using the rotationally invariant

K-means clustering technique (Huang and Penczek,

2004). Since the goal was to detect only the side views in

the micrographs, only the side views of the reference
structure were selected and their number was reduced to

three using the clustering technique. Next, in-plane ro-

tated copies of the template images were created using the

step size of 10�. This resulted in 108 templates. In the

second step, the noise characteristics for all micrographs

were established using an automated contrast transfer

function (CTF) estimation procedure where it is assumed

that the radially averaged power spectrum of the whole
micrograph, calculated using the method of averaged

overlapping periodograms, yields a robust estimate of the

noise power spectrum. Concurrently, the CTF parame-

ters were automatically calculated based on estimated

power spectra. Third, the noise power spectrum and the

CTF parameters were used to construct a matched filter

(Huang and Penczek, 2004). This was done by applying

the appropriate CTF to the respective micrograph, the
product was divided by the noise power spectrum, and

finally the result was normalized using the fast Fourier-

space technique to estimate moving average and moving

variance using the window size corresponding to the

particle size. The Fourier transform of the normalized

result was multiplied by the Fourier transforms of ap-

propriately padded template images to yield a set of
cross-correlation functions. To speed-up the procedure,
the input data were decimated twice. Detection criteria

were: the maximum correlation coefficient with one of the

reference images must be above a pre-selected threshold;

the maximum correlation coefficient is accepted if

there are no larger correlation coefficients within the

neighborhood corresponding to the particle size.

2.3.2.4. Roseman’s algorithm. The FindEM (Roseman,
2003) program was used to select the particles. It uses

local correlation with templates to detect occurrences of

objects similar to the templates in the micrograph fields.

The advantage of the local correlation algorithm is that

the density scaling between the template and the local

region of the micrograph being compared is optimized,

whereas the conventional correlation applies a global

normalization and details beyond the local region of
interest can distort the correlations.

There are two stages to the procedure. First the tem-

plates are made and the correlation maps are calculated.

Initial templates were generated by averaging 20 hand

picked particles from the first of the images in the series,

which were optimally aligned using an iterative orienta-

tion and cross-correlation procedure. A template was

created for each of the two predominant views, the side
view and top view. Each template was correlated in turn

with each micrograph image, covering all orientations of

the template relative to the micrograph by successively

rotating the template in steps of 4�. The final correlation
map output, for each template, indicated the maximum

correlation at each point, over all orientations. The im-

ages and templates were reduced in size by a factor of 4,

and band-pass filtered in the range 30–2000A.
In the second stage, peak positions from the corre-

lation maps are extracted and filtered according to a

correlation-coefficient threshold and interparticle dis-

tance criteria (or particle size). When peak positions

from different templates coincided, the particle was as-

signed to the class of the template it correlated best with.

The particle size was chosen to include side views that

were almost touching, but not overlapping. The pa-
rameters were optimized by examining the particles

chosen on �5 images, using the graphical interface that

is part of the FindEM package. This allows interactive

adjustment of the parameters while the images are dis-

played with the selected particles overlaid. These pa-

rameters were then used to automatically select the

particles from the set of 82 images. The procedure was

reiterated once, submitting the average of all selected
side views and top views as new templates. The particles

detected as side views were submitted for the bakeoff.

A manual de-selection option is also available but

was not used for the particle set submitted for the

bakeoff, which was completely automatically generated.

More details on the procedure and the exact parameters

used are given in the accompanying paper (Roseman,
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JSB, 2004). The time taken to find the �1000 side view
KLH particles for the bakeoff was 56min per template,

using a DEC alphaEV6 600MHz computer.

2.3.2.5. Sigworth’s algorithm. This is a model-based,

multiple-reference detector that uses a white Gaussian

noise model. We first get an estimate of the circularly

averaged power spectrum of the background, and build

an inverse filter to ‘‘whiten’’ the noise. Each data image is
processed by this filter. From the 3D model we build a

large set of representative projections, andfilter themwith

theCTFand the same inverse filter tomake the references.

From thesewe use singular value decomposition (SVD) to

build a small set of eigenimages spanning the set. FFT-

based cross-correlations are done with the eigenimages to

save time, but then the results are converted to, in effect,

cross-correlations with the references. Two statistics are
computed: (1) the maximum correlation with one of the

references, to give a ‘‘motif amplitude’’ and (2) a weighted

sum of the power spectrum of the residual, after sub-

tractionof the best-fit reference, from the putative particle

image. Thanks to the pre-whitening of the original image,

both statistics have predictable distributions.

In the case of the KLH particles, images were first

binned to reduce them to 512� 512 in size. Power
spectra from ‘‘empty’’ regions of some of the images

were used to construct the inverse filter. The references

were 64 rotated ‘‘side views’’ of the KLH particle. From

the SVD the first 13 eigenvectors were kept. Allowable

values for the two statistics were chosen by comparison

with manual picks. After setting up the references,

picking took �15 s per image using Matlab on a fast PC.

2.3.3. Feature-based approaches

In comparison to template matching where a large

number of image pixels are used, feature-based ap-

proaches usually rely on a small set of local or global

salient features of particle images, including geometric

features such as positions of corners, line segments,

contours, etc., and statistical features such as moments,

and so on. Procedures for feature-based approaches
vary widely but three major components may be iden-

tified: the definition of a discriminative feature set, the

extraction of these features from an image, and the

recognition algorithms. In addition to less demanding

computational requirements, in principle, distinctive

features invariant to scale, rotation illumination varia-

tions, and/or 3D projection can be extracted for fast

object detection (Lowe, 1999) and thus it is quite de-
sirable for the task of particle selection. The main

weakness of feature-based approaches is that it may be

difficult to extract distinctive features pertinent to a

specimen when dealing with very low-contrast images.

2.3.3.1. Bajaj’s algorithm. The algorithm is designed for

detecting circle-like and rectangle-like particles, but it is
also possible to extend it to other types of particles if
certain geometric features can be derived from the

shapes of the particles (e.g., icosahedral viruses). The

method is fast, fully automatic, and reference-free. The

steps are as follows: (1) Detect the edges using Canny

edge detector (Canny, 1986); (2) Remove the connected

components of edges that contain too few edge pixels;

(3) Compute the Voronoi diagram (VD) and distance

transform (DT) of the edges obtained from the last two
steps (Guan and Ma, 1998); (4) Use the distance trans-

form map to detect and refine the circles; (5) Use the

Voronoi diagram and distance map to detect and refine

the rectangles; (6) Let the detected circles compete with

the detected rectangles, with the assistance of distance

maps. It is assumed that the size of the circle and the

rectangle are fixed for all detected particles. However, it

could be possible for us to improve our algorithm to
detect the particles with flexible sizes.

The false positive rate (FPR) and the false negative

rate (FNR) for the side views of KLH are listed in

Table 2. In case of the top views, the FPR and FNR are

13.6% and 2.6%, respectively, evaluated against visual

detection. This method was tested on SGI Onyx2 with

single processor (400MHz MIPS R12000) and the total

computational time is about 20 s for each image with a
size of 1024�1024 pixels. About 18, 2, and 6% of the

total time are used for edge detection, edge cleaning and

computations of DT&VD, respectively. The rest of the

total time is used for the particle detection (including

circle detection, rectangle detection and circle-rectangle

competition).

2.3.3.2. Hall’s algorithm. The algorithm was developed as
a general method for automated selection of particles,

independent of shape, size, image quality, and the

availability of a model. Selection is carried out in two

stages; the first being a template matching stage using a

rotationally averaged sum of a small number of manu-

ally picked particles. The cutoff used at this point is such

that no particles are missed resulting in a very large

number of false positives. The second stage involves
calculation of a feature vector for each picked region and

clustering using a self-organizing map (SOM) (Kohonen,

1989). The feature vector is made up of 16 features, in-

cluding four statistical characteristics of the total distri-

bution of gray values, four textural characteristics (Lata

et al., 1995), and eight morphometric characteristics

calculated from the largest continuous object found

when the image is segmented based on local variance
(van Heel, 1983). The SOM can be automatically inter-

preted, giving an optimal number of clusters for the data;

it is then up to the user to select which clusters contain

particles. The method was developed on very noisy low-

contrast micrographs, and has been demonstrated on

RNA polymerase data that proved difficult to pick by eye

(Hall and Patwardhan, 2004).
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2.3.3.3. Mallick’s algorithm. This is a feature-based dis-
criminative learning approach that learns important

features derived from the so-called integral image of the

original particle image using a set of representative ex-

amples including both particle and non-particle images

(Mallik et al., 2004). The core learning algorithm,

Adaboost (Freund and Schapire, 1995), has been suc-

cessfully used in the domain of face detection by Viola

and Jones (2001). The approach can be divided into an
off-line learning phase followed by on-line particle de-

tection. The result of the learning phase is to produce a

two-category classifier which takes as input a window of

a digital micrograph (e.g., a 50� 50 pixel sub-image)

and classifies it as either containing a particle or not

containing a particle. During on-line detection, a de-

tection window is scanned over an input micrograph,

and for each location (pixel), the sub-image covered by
the window centered at that location is classified as

particle/non-particle. As there will usually be positive

responses at multiple, neighboring locations for each

particle, the results are post-processed using connected

component analysis (Horn, 1986), and the mean of each

component is reported at the location of a particle. If the

detector is trained to only detect particles in a particular

2D orientation in the image plane while particles in a
micrograph may appear at any orientation, then the

detector is scanned multiple times. During each scan,

particles in a particular orientation are detected; either

the detector is ‘‘rotated’’ with each scan, or else the

detector is fixed, but the image is rotated. The process-

ing time on a micrograph from the common dataset,

decimated to 512� 512 pixel, at eight different orienta-

tions was about 6 s on a 1.3GHz Pentinum M processor.
The algorithm is fast, generic, and is not limited to any

particular shape or size of the particle to be detected.

2.3.3.4. Volkmann’s algorithm. The particle selection al-

gorithm relies on the use of reduced representations. In

this approach, the underlying motif is approximated by a

small number of locations that capture the intensity

characteristics of the motif (Volkmann, 2004). Reduced
representations can be constructed from models or di-

rectly from the data. The reduced representation for this

application was constructed from the average of 75 hand

selected side views. This representation was then used for

real-space template matching. One advantage of the re-

duced representation strategy is the gain in speed. In this

application, a box of 240� 240 pixels containing a par-

ticle side view can be efficiently reduced to 40 locations.
For real-space scoring functions, this is a gain in speed of

a factor of better than 1000, for four times compressed

images the speed gain is still about 100. For this appli-

cation, a model-free three-step procedure was used.

First, the reduced representation template was con-

structed directly from the data, second the real-space

template matching module was run on the micrographs
using this reduced representation, and third a peak rec-
ognition program was run for the actual identification of

particles in the peak image. Peaks corresponding to real

particles tend to be sharper than those corresponding to

random noise or different views. The peak recognition

software only picks peaks above a certain threshold that

do exceed a certain degree of sharpness. These parame-

ters (threshold and degree of sharpness cutoff) need to be

adjusted to optimize performance. Here, two micro-
graphs were picked randomly and the parameters were

adjusted to minimize false positives. Recently, a fourth

step was added to the procedure to increase the number

of picked good particles while still keeping the false

positives to a minimum. Tests indicate that this addi-

tional step leads to significant improvements over the

implementation used for the bakeoff (Volkmann, 2004).

2.3.3.5. Zhu’s algorithm. A two-stage framework is use for

automatic selection of KLH particles. Under this frame-

work, a cryoEM image is first decimated to generate a

much smaller sized image with a coarser resolution but

increased signal-to-noise ratio. Candidate particles in the

decimated image are detected using edge and contour

information, particularly the Hough transforms (Zhu

et al., 2003). Afterwards, candidate particles in the origi-
nal full-resolution image are extracted by projecting the

coordinates of particles in images with a coarser resolu-

tion. The candidate particles are then subject to a second

stage of processing—pruning false alarms. In this stage, a

correlation-based templatematchingmethod is applied to

effectively reject low-quality particles or junk, using

templates generated by aligning and averaging the

candidate particles. With this two-stage framework,
computational efficiency is achieved through the coarse-

to-fine strategy while the high accuracy relies on the

refinement in the second stage. The time required for

picking side view KLH particles depends on the number

of particles in an image, but is roughly 1min per image.
3. Results and discussion

As described in Section 1, due to the specific nature of

the dataset, the major goal of the bakeoff focuses more on

how to compare and contrast the results of different al-

gorithms and less on the performance of individual al-

gorithms. As we know, even for experts, the final set of

particles selected from the same set of images may vary

from person to person. Even for the same expert, one�s
criteria of determining whether to pick a particle may

change with time (that is, from image to image) during a

single experimental session. For this reason, we currently

assess the results from different participants by compar-

ing one result against another�s, measured by the false

negative rate (FNR) and false positive rate (FPR). Tak-

ing one participant�s result as the truth set and another�s



Table 2

Confusion matrix generated using the results provided by the bakeoff participants

Note. (1) The two values in each table cell represent the false negative rates (FNR) and false positive rates (FPR), respectively, in percentage. (2)

The numbers in parentheses represent the total number of particles picked by the corresponding participant.
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as the test set, as illustrated in Fig. 2, particles which are

selected in the truth set, but fail to be selected in the test

set, are false negatives whereas particles selected in the

test set but not in the truth set are false positives. Algo-

rithms that can achieve both a low FNR and FPR are

considered as having a higher performance and thus

more desirable. Given an algorithm, the FNR in general

changes in the direction opposite to the FPR. Therefore,
one has to make a tradeoff between having a lower FNR

with a higher FPR or the opposite based on the re-

quirement of the application at hand. For the selection of

side view KLH particles to enter into the bakeoff, the

participants made their own decisions as to whether to
Fig. 2. Illustration of the definition of false negatives and false posi-

tives. Particles selected in the truth set are outlined with a red circle and

those in test set with a blue dot. Particles selected in the truth set but

not in the test set are false negatives. Particles selected in the test set

but not in the truth set are false positives.
select more particles (which usually means higher false

positive rates) with fewer false negatives or vice versa.

The specific procedure used for calculating both FNR

and FPR of one participant�s result against another�s is
described below. One participant�s picks are taken as the

truth set and then the other�s as the test set. A false

negative is found if a particle is picked in the truth set

but its pixel distance to its nearest neighbor in the test
set is larger than a pre-defined threshold dT. Likewise, a
false positive is found if there is a particle in the test set

whose pixel distance to its nearest neighbor in the truth

set is larger than the pre-defined threshold dT. The FNR

is then calculated based on the total number of particles

in the truth set, while the FPR is calculated from the

total number of particles in the test set. In addition, to

establish consistency between algorithms, particles from
both sets whose pixel distances to the border of the

image are less than a pre-defined threshold bT were

removed before the computation of the FNR and FPR.

Given the average width of the side view KLH particles

as bT (134 pixels) and half of this width as dT (67 pixels),

a confusion matrix was generated, shown in Table 2.

Among the many observations that can be made

from Table 2 it is clear that the two manual selection
results are noticeably different from one another. Taking

Haas�s selections as the truth set, the FNR and FPR

of Mouche�s results are, respectively, 2.3 and 11.7%.

In another words, Mouche only picked 922 out of the

944 KLH particles selected by Haas in the common
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dataset though he selected 98 more particles. An ex-
ample image outlined with particles selected by the two

participants is shown in Fig. 3A. For the 13 particles
Fig. 3. Illustration of the comparisons between particles selected by two bakeo

red circle were selected by Haas and those outlined with a blue dot were pick

eight of them were selected by both of them. The three particles pointed to

selected one of them and Mouche only selected the other two. (B) Particles ou

with a blue dot were picked by Zhu�s algorithm. The particle pointed to by a

sign, but only the latter one was manually selected. The example image reve

particle may vary with time and images.

Fig. 5. A screenshot of the interface of the web-based particle selection tool.

compare one selection against another. The screenshot shows one selection
picked by the two participants in the example image
only eight of them were selected by both of them. Three

out of the five other particles merit a further discussion.
ff participants on the same example image. (A) Particles outlined with a

ed by Mouche. For the 13 particles picked by the two participants only

by yellow arrow signs are visually undistinguishable, but Haas only

tlined with a red circle were again selected by Haas and those outlined

green arrow sign is visually better than the one marked by a red arrow

als that the criteria used by a person as to whether to select a specific

Users may use the tool in two different modes: to pick particles or to

overlaid with green dots and the other outlined by red circles.
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The three particles, marked by yellow arrow signs, have
visually almost the same image quality, but Haas only

selected one of them and Mouche only selected the other

2. This particular example and the overall difference

between the two selection sets further demonstrates that

different experts may use different criteria when manu-

ally selecting particles in the same set of micrographs

and that the criteria used by a single expert may vary

with time or from image to image. Moreover, the criteria
used by an expert as to whether to select a specific

particle may be biased sometimes. As shown in Fig. 3B,

where the above example image was outlined with the

particles selected both manually (by Haas) as well as

automatically (by Zhu�s algorithm), the particle pointed

to by a green arrow sign is visually better than the other

particle pointed to by a red arrow sign, but the former

was automatically targeted but not manually and the
latter was manually selected but not automatically. Had

the former one been manually selected, the FPR of the

machine algorithm would be even lower on this dataset.

As proposed in a previous work (Zhu et al., 2003), this

actually raises the question ‘‘How do we build truth da-

tasets of single particles to evaluate machine algorithms?’’

This question was intensively discussed during a special

session at the workshop. One suggestion was that the
basis for particle selection should be determined purely

by the final 3D reconstruction. However, it was pointed

out that the final 3D reconstruction could be biased by

the initially selected particles. Another proposal was

that evaluation of particle selection algorithms should

be independent of the later 3D reconstruction and all

particles should be selected without regard to contami-

nation, broken shape, etc. Apparently, no immediate
answer was available to this question and a consensus

was not reached.

The more seriously one takes the goal of evaluating

the success of automated particle selection, however, the

more one also begins to question the success of semi-

automated selection (as described in Section 1) or even

fully manual (human) selection of particles. Unless a

bakeoff is done with synthetic data in which the coordi-
nates of all particles are known in advance, there is al-

ways a high probability that there will be some human

error in selecting the true particles that represent the

‘‘gold standard’’ that is needed for making such a com-

parison. Two suggestions for dealing with the potential

ambiguity emerged in the workshop discussion. The first

suggestion was that the ‘‘gold standard’’ reference-data

used in future bakeoffs could be annotated to indicate:
(1) the level of human confidence that is attached to the

selection of each particle, e.g., ‘‘certain,’’ ‘‘probable,’’

and ‘‘unsure’’ and (2) the reasons why some of the can-

didate particles were not included in the human selec-

tions (distorted; broken or incomplete; too close to other

particles, etc.). The second suggestion was that all new

(candidate) particles, which were not identified as being
part of the original ‘‘gold standard’’ dataset, should be
used to produce a three-dimensional (3D) reconstruction

on their own. If another reconstruction is produced with

the same number of particles from the ‘‘gold standard’’

dataset, and if both reconstructions are generated with

the same number of cycles of refinement, one could then

use the Fourier shell correlation to evaluate the quality of

the data contained in a dataset that consists exclusively

of excess, candidate particles.
A second question one would naturally raise is how

these algorithms perform in selecting side view KLH

particles. Although the performances of different algo-

rithms varied, most algorithms achieved human-level

performances. High performances were achieved by

both template matching-based approaches (e.g., Rose-

man�s algorithm) and feature-based approaches (e.g.,

Mallick�s algorithm). As listed in Table 2, several algo-
rithms can select over 90% of the particles that have

been manually picked either by Haas or Mouche, in-

cluding Bajaj�s, Roseman�s, and Zhu�s, with false posi-

tive rates ranging from 15 to 30%. The lowest false

negative rate reported in the Table is 1.5% with a false

positive rate of 23.9% by Roseman�s algorithm, taking

Haas�s selections as the truth set. The lowest false po-

sitive rate in the Table is 4.5% with a false negative rate
of 23.2%, achieved by Sigworth�s algorithm, taking

Mouche�s results as truth set. Compared to manual se-

lections, the highest false negative rate was 46.8% by

Penczek�s algorithm with the false positive rate of 30.7%.

This level of performance seems poor in comparison to

most of the other algorithms. After further examination,

we found that the high false positive rate is due to the

fact that the algorithm did not successfully separate top
view particles from side view ones, as shown in Fig. 4.

Since top view particles are considered false positives in

the bakeoff, a high threshold had to be used in selecting

side view particles, which in turn led to a high false

negative rate. If the selection of top view particles had

been included in the bakeoff, the algorithm would have a

better performance. This also explains why Ludtkes�
algorithm did not perform well in the bakeoff.

A third question that arises is just how good the process

of automated particle selection needs to be, before it is good

enough for routine use. Two points are important in this

regard: (1) how efficient is a given algorithm in selecting

most of the particles that a human operator would select,

and (2) how many false positives (non-particles) are in-

cluded in the dataset? Most experimentalists will take a

pragmatic view on how efficient the automated data se-
lection process needs to be: if it takes less time to collect

additional micrographs than it does to manually select

the same number of particles from existing micrographs,

then most would prefer to collect a larger number of

micrographs and let the computer do the boring job of

selecting particles. As a rough guide, at least, most would

agree that automated particle selection would be well



Fig. 4. Illustration of why two of the algorithms did not perform as well as the other ones. A particular example image is outlined with the ‘‘side

view’’ particles selected by Penczek�s algorithm (A) and those by Ludtke�s algorithms (B), respectively. Clearly, the two algorithms did not separate

effectively the side views from the top views. Top views are considered false positives in the bakeoff. If the selection of top view particles had been

included in the bakeoff, the algorithms would have higher performance.
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received as soon as it could routinely select 75% of the

particles (i.e., a false negative rate of 25% or below) that

an experienced human operator would pick. An impor-

tant caveat will be that the automated selection process

must not systematically miss the selection of one or more
sets of views. There is at present no strong evidence on

how many false positives can be included in a dataset

without corrupting the reconstruction to an unacceptable

extent.Most experimentalists would be uncomfortable to

use a dataset that is known to contain (or to be likely to

contain) 50% or more false positives. Most would surely

do a manual editing of such a dataset before proceeding

with the 3D reconstruction. On the other hand, however,
most would agree that having fewer than 10% false pos-

itives in the initial dataset would be quite acceptable. The

false positives, if they are structurally uncorrelated with

the true positives, will only add to the noise in quadrature

(as does the noise that is already present in the images of

the true particles). The actual situation is even better than

that argument would indicate, however, since many of

the false positives that are present in the original dataset
will also be deleted early in the data analysis, either be-

cause they show up as outliers in a classification step or

because they do not adopt stable values of the orientation

or position parameters in successive cycles of refinement.

The general sense therefore seemed to be that automated

particle selection would be likely to become popular once

it could be shown to meet or exceed the 25%/10% rule

described above. Obviously, further improvements in
performance beyond that point would only further

cement the acceptance of any given selection tool.

In addition to the confusion matrix, the bakeoff re-

sults were also loaded into a web-based particle selection

tool, developed at NRAMM. Using the tool, users
cannot only select particles in a set of micrographs

managed from a database, but also compare the results

of two different selections. The comparison is visualized

by superimposing two different kinds of icons, each as-

sociated with a particular selection, onto the selected
particles. Fig. 5 shows a screenshot of the interface of

the tool where particles selected by one algorithm

were overlaid with green dots and those by the other

algorithm were outlined by red circles. The URL of the

web-based particle selection tool is http://ami.scripps.

edu/leginon/particle_viewer/. Readers can visually com-

pare one bakeoff participants� results against another�s
by exploring the site. (Note: in order to keep bakeoff
results from being changed by a third party, readers in

the public domain are only allowed to view particles

selected by the bakeoff participants.)
4. Summary and conclusions

Particle selection is critical and could become a bot-
tleneck in moving toward high-throughput high-resolu-

tion structure determination of macromolecules using

cryoEM. Automatic selection of asymmetric particles in

low-contrast cryoEM images is an unresolved chal-

lenging problem. This in turn demands a rapid devel-

opment of fast and accurate algorithms for this purpose.

To expedite the algorithm development and to reveal the

state of the art in automatic particle selection, a bakeoff
was held in which 12 representative groups in the field

submitted results of particle selection, either manually

or automatically, using a common image dataset con-

taining KLH particles. The results were then tabulated

in a confusion matrix where both the false positive rates

http://ami.scripps.edu/leginon/particle_viewer/
http://ami.scripps.edu/leginon/particle_viewer/
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and false negative rates were calculated for each par-
ticipant�s results against every other result. In addition,

images outlined with particles picked by different par-

ticipants were made publicly available using a web-

based particle selection tool.

The 10 different algorithms tested in the bakeoff can be

more or less grouped into two categories: those based on

template matching and usually requiring a initial refer-

ence structure and those based on image feature recog-
nition without the requirement of 3D reference

structures. Several approaches from both categories

achieved a high performance in selecting side view KLH

particles in the common dataset. Although selecting

KLHparticles is a relatively ‘‘easy’’ problem to approach,

as the particles are large, symmetric and readily visible,

the bakeoff did serve as a common basis for a productive

discussion at the workshop and a starting point toward
establishing representative benchmark particle datasets

as well as setting up criteria for evaluating algorithms for

automatic particle selection. It is agreed that both well-

annotated benchmark particle datasets and agreed-upon

criteria for evaluating particle selection methods are es-

sential aspects to the overall success of fully automated

particle selection. Therefore, it was agreed that the in-

frastructure set up to support the bakeoff should be
maintained and extended to include larger and more

varied datasets and more criteria for future evaluations.

Selecting different particles may require different

approaches. Given the specific nature of the dataset,

algorithms that work well in selecting KLH particles in

the bakeoff might perform completely differently on

other datasets. The generalization of the ability of var-

ious approaches reported in this paper will remain to be
tested in the future.
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