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Abstract

Accurate and automatic particle detection from cryo-electron microscopy (cryo-EM images) is very important for high-reso-

lution reconstruction of large macromolecular structures. In this paper, we present a method for particle picking based on shape

feature detection. Two fundamental concepts of computational geometry, namely, the distance transform and the Voronoi diagram,

are used for detection of critical features as well as for accurate location of particles from the images or micrographs. Unlike the

conventional template-matching methods, our approach detects the particles based on their boundary features instead of intensities.

The geometric features derived from the boundaries provide an efficient way for locating particles quickly and accurately, which

avoids a brute-force searching for the best position/orientation. Our approach is fully automatic and has been successfully applied to

detect particles with approximately circular or rectangular shapes (e.g., KLH particles). Particle detection can be enhanced by

multiple sets of parameters used in edge detection and/or by anisotropic filtering. We also discuss the extension of this approach to

other types of particles with certain geometric features.

� 2003 Elsevier Inc. All rights reserved.

1. Introduction

The single particle technique (Baker et al., 1999;

Frank, 1996; Heel et al., 2000) has been widely used for

3D reconstruction of large molecular complexes from

electron micrographs. In contrast to X-ray diffraction

technique, the single particle method does not require

formation of crystals. However, the signal-to-noise ratio

(SNR) in most cryo-EM images is very low due to
various reasons, such that high-resolution single particle

analysis often has to rely on averaging of a large number

of identical particles (Frank, 1996; Heel et al., 2000).

Therefore, locating most, if not all, of the particles in the

digitized cryo-EM images is a crucial step in high-reso-

lution single particle reconstruction. This task, com-

monly known as particle picking or particle detection in

single particle analysis, can certainly be carried out
manually (by mouse clicks). However, as the recon-

structed resolution approaches the atomic level, hun-

dreds of thousands of particles may be necessary

(Henderson, 1995), which makes it impractical to man-
ually pick the particles. In addition, particle detection

by visual observation may be inaccurate and fairly

subjective.

Several methods have been proposed for automatic

or semi-automatic particle detection (see Nicholson and

Glaeser, 2001 for a recent review). The first automatic

method was proposed by Heel (1982). In this approach

the local variance over a small area around each point is
computed, and each local maximum of the variance map

is then considered as a particle. Another commonly used

approach is based on template-matching (Frank and

Wagenknecht, 1984; Saad et al., 1998; Thuman-Com-

mike and Chiu, 1995, 1996), where the template is

chosen as a rotationally averaged image of manually

picked particles. The template is cross-correlated with

the entire image and the ‘‘peaks’’ of the resulting cross-
correlation map are identified as particles. This method,

however, may fail for non-spherical particles or for

multiple-view particles. A more robust approach is to

use multiple references, each of which stands for one of

the non-symmetric orientations or one of the views of

the same object/particle (Ludtke et al., 1999; Stoschek
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and Hegerl, 1997). This approach is computationally
intensive when multiple views or orientations are con-

sidered (Zhu et al., 2002). A more recent approach is

based on the fast local correlation technique (Roseman,

2003). Due to the numerical scaling, this method proves

to be more sensitive than the conventional cross-corre-

lation methods, in discriminating peaks from the cross-

correlation maps.

The above-mentioned techniques, as well as some
other methods such as the crosspoint method (Martin

et al., 1997), the texture analysis method (Lata et al.,

1995), the ring-filter based method (Kivioja et al., 2000),

and the neural network approach (Ogura and Sato,

2001), are all explicitly or implicitly based on intensity

comparison. In other words, all the intensities within a

local window around a pixel have to be considered and

compared in order to determine whether or not a par-
ticle is located at that pixel.

Another group of particle detection algorithms are

based on edge detection. In Andrews et al. (1986), the

authors employ edge detection to estimate the perimeter

of the particle being considered, from which the mass of

the particle is calculated as a measure for particle se-

lection. However, this method only works for dark field

electron micrographs. A more general approach, pro-
posed by Harauz and Fong-Lochovsky (1989), uses edge

detection followed by component labeling and symbolic

(high-level) processing. This method relies on the con-

nectivity of the detected edges. As the signal-to-noise

ratio becomes too low, inaccurate edges may make it

difficult to deal with some situations (e.g., edges of two

particles are incorrectly connected or edges of one par-

ticle are incorrectly split). Recently, Zhu et al. proposed
a method, based on edge detection followed by Hough

transforms, for automatic detection of particles (Zhu

et al., 2001, 2002). This method is more robust to noise

because using the Hough transform one can extract

critical features from the edges, and all the features are

then integrated to make the decision.

In this paper we present a new method for automatic

particle detection. Our method, similar to the one pro-
posed by Zhu et al. (2001, 2002), is based on edge de-

tection followed by feature extraction from the edge

map. However, our method uses two fundamental

constructions from computational geometry, namely,

the Voronoi diagram and the distance transform. Unlike

conventional template-matching techniques, where the

templates are ‘‘real’’ intensity images, we only need to

know the geometric information of the true particles
(e.g., the radius of circular particles or width/length of

rectangular particles). A ‘‘virtual’’ shape is generated

from the given geometric information and matched

against the edge map of the original electron micro-

graph. The scoring function of this feature-based ap-

proach is evaluated with the help of the distance

transform. The speed of the detection process can be

largely improved by a good initialization of the ‘‘virtu-
al’’ shape in the edge map with the help of the Voronoi

diagram and the distance transform. This avoids a

brute-force search for the best position/orientation. We

also describe how to refine the centers/orientations of

the detected particles by moving the particles along the

distance map. In the case of circular and rectangular

particles (e.g., Keyhole Limpet Hemocyanin (KLH)

particles Zhu et al., 2002, as we consider in the follow-
ing), the competitions between particles (circle–circle,

rectangle–rectangle, and circle–rectangle) are introduced

to guarantee a very small number of false positives in

most of the images we investigated. We also discuss

several other issues such as the use of multiple sets of

parameters for Canny edge detection, the signal-to-noise

improvement by anisotropic filtering and the extension

of our geometric-feature-detection based method to
other shapes.

The rest of this paper is as follows. Section 2 gives a

brief review of the Voronoi diagram and the distance

transform. We describe the details of our method in

Section 3, where circular and rectangular particles are

considered. Results and discussions on several other

issues will be given in Sections 4 and 5, respectively.

Finally we describe our conclusions and future work.

2. Related work: distance transform and Voronoi diagram

Given a set of discrete points (called feature points) Pi,
i ¼ 1; 2; . . . ; n in 2D space R2, we define the nearest

neighbor, denoted as NNðAÞ, of an arbitrary point A as

one of the feature points Pk such that dðA; PkÞ6 dðA; PiÞ
for any i ¼ 1; 2; . . . ; n, where the function dð�; �Þ is Eu-
clidean distance function between two points. Therefore,

given a set of feature points in R2, we can define a

function value for any point A as the Euclidean distance

between A and its nearest neighbor NNðAÞ. The obtained
function map is known as the distance transform (DT) of

the feature points. An example of the distance transform

can be seen in Fig. 1A, where the feature points are
shown by white dots for better illustration although the

distance map is always zero at any feature point.

If we recall the definition for the nearest neighbor, we

would notice that some points in R2 might have two or

more nearest neighbors. Those points are of great in-

terest in computational geometry. In fact, all of those

points form a well-known diagram, called the Voronoi

diagram (VD). A Voronoi diagram generally consists of
a set of polygons, each of which corresponds to one

feature point, and all polygons form a partition of the

space R2. Fig. 1B shows an example of a VD.

Both the distance transform and the Voronoi dia-

gram have been widely used in computer vision, image

analysis as well as many other fields. In this paper, we

shall show how they are applied to particle detection
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from electron micrographs. Although many algorithms
exist for fast computations of DT and VD, we found

that the list-processing approach (Guan and Ma, 1998)

was most suitable for our application. This approach

calculates the nearest neighbor of every pixel in the

digitized space of R2 and stores the results in a number

of lists of segments, from which the DT and VD can be

easily calculated.

3. Approach

In this section we shall describe the details of our

particle detection algorithm. We consider only two types

of particles here: circular particles and rectangular par-

ticles (e.g., KLH data). Particles with other shapes can

be detected in a similar way if certain geometric features
of the particles are available, as discussed in Section 5.

Our method is based on geometric feature detection

from particle boundary edges and template matching

against the edge map. We do not need the ‘‘real’’ in-

tensity templates. This avoids manual picking of a

number of particles and the generation of templates

(e.g., by projections from a 3D reference map). What we

need is just the geometric information of the templates.

Specifically, we assume that the template circle has a
fixed radius Rd and the template rectangle has a fixed

width Wd and a fixed length Ln. As an example, a small

portion of a KLH micrograph, shown in Fig. 2A, will be

considered in this section.

3.1. Pre-computations

Edges are first computed using a Canny edge detector
(Canny, 1986). To improve the robustness to the noise,

an edge-cleaning operation is applied to the detected

edge map, where all small connected components of

edges are removed. In other words, a connected com-

ponent of edges (based on an 8-neighbor connectivity)

are removed if the total number of edge pixels in that

component is less than a given threshold. As seen in

Fig. 2B, the most important features are roughly kept in
the cleaned edge map. Note that the ‘‘features’’ here are

the geometric features that depend only on the shapes

(or contours) of the particles. The edges inside the

shapes are considered as ‘‘noise,’’ although they may

correspond to some internal structures from the bio-

logical point of view.

It has been pointed out that distance transform is

very useful for boundary-based template matching
(Gavrila, 1998; Huttenlocher et al., 1993; Rucklidge,

1995). The essential idea is to calculate the distance

transform of the edge map of the target image. The

average distance value calculated along the template

contour at a certain location in the target image gives

the goodness of the matching between the target image

and the template at that location. Obviously a smaller

average distance value means better matching. We also
exploit this idea in our method. In addition, as we will

see in the following, the distance transform is used in

our approach for two additional reasons. First, it is used

for the initial location of the circles in the circle detec-

tion. Second, it is used for the center and/or orientation

refinement in both circle detection and rectangle detec-

tion. The distance transform of Fig. 2B is shown in

Fig. 2C.
The Voronoi diagram is computed in order to esti-

mate the initial locations and orientations of the rect-

angular particles. More details on how to do this will be

given in the following. Fig. 2D shows the Voronoi dia-

gram of the edge map. Both the distance transform and

Voronoi diagram are computed using the list-processing

approach (Guan and Ma, 1998).

3.2. Circle detection

3.2.1. Initial circle detection

From the distance transform of the edge map (shown

in Fig. 2C), we can see that most circular particles have a

local maximum near their centers in the distance map.

Therefore, we begin circle detection by detecting the

Fig. 1. An example of distance transform and Voronoi diagram. (A)

Distance transform and (B) Voronoi diagram.
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local maxima of the distance map. Our goal here is to

find all possible circles, although local maxima in the

distance map do not always mean the center of a circle

(for example, the rectangles also have local maxima near

their centers). The local maximum is defined in our al-

gorithm within a 3� 3 local window, which means that a

pixel is said to be a local maximum if its distance value is

no less than the distance values of its surrounding (eight)
neighbors. Besides this, the distance values at (valid)

local maxima must be less than the radius Rd of the

template circle and greater than a small fixed value (say,

5). Fig. 3A shows the initial circles that we detect using

these criteria. Remember that the reason we see so many

‘‘local maxima’’ in Fig. 3A is that the edges obtained by

Canny detector do not show perfect circles or rectangles

due to the ‘‘noise’’ seen in the original images.

3.2.2. Circle–circle competition

From the initial circle detection, we see too many

circles that do not correspond to the true circular par-

ticles. Hence we need to delete most of them. One of the

criteria for deleting false circles is the assumption in the

single particle reconstruction that all particles should be

isolated. This assumption immediately gives the fol-

lowing rule for deleting false circles: if two circles in-

tersect, then we must delete one of them. It is quite easy

to determine whether two circles intersect or not. But the

remaining question is how to choose the ‘‘winner’’ from
two intersecting circles. As we said before, the average

distance value along a template contour indicates the

goodness of the matching. The average distance value of

a circle with center C is defined by

AdvðCÞ ¼ 1

n

X
jdðP ;CÞ�Rdj6 1

DT ðP Þ; ð1Þ

where n is the number of pixels satisfying jdðP ;CÞ�
Rdj6 1 and dð�; �Þ is Euclidean distance between two

pixels. DT ðPÞ is the distance value at P in the distance

map. Therefore, the ‘‘winner’’ of two intersecting circles

should be the one with smaller average distance value.

Fig. 2. Illustration of the edges, distance transform, and Voronoi diagram. The edge map is obtained by Canny edge detector (Canny, 1986) followed

by edge cleaning (we remove short edges with length below 20 pixels). The distance transform and Voronoi diagram are calculated by list-processing

approach (Guan and Ma, 1998). (A) Original image, (B) edge map, (C) distance transform, and (D) Voronoi diagram.
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By this way, we can delete most of the false circles seen

in the initial circle detection. The remaining circles are

shown in Fig. 3B, from which we can see that the

number of circles is largely reduced. But we still see two
problems. One is that several circles are more or less

away from their true centers due to the noise in the edge

map. The other is that some rectangles are wrongly

recognized as circles. Both problems will be addressed in

the following. Although we said above that all circles

must be completely isolated, in Fig. 3B we allow the

circles to partially intersect with each other. The reason

is that, at this moment, some circles are not well cen-
tered. If all survival circles were required to be com-

pletely isolated, then some true circles that are not well

centered might be wrongly deleted.

3.2.3. Center refinement

As we said before, some circles seen in Fig. 3B do not

have correct centers. It is necessary to refine the centers

of those circles. How do we do that? Recall the defini-
tion of distance transform that we give in Section 2.

Before we calculate the distance transform, we need to

identify the nearest neighbor of every pixel in the image

domain. Therefore, given a circle with center C, we can

define a force on that circle as follows

~FF ðCÞ ¼ 1

n

X
jdðP ;CÞ�Rdj6 1

P ;NNðP Þ
������!

; ð2Þ

where n and dð�; �Þ are defined the same as in Eq. (1).

NNðP Þ is the nearest neighbor of P . P ;NNðP Þ
������!

is the

vector from P to NNðP Þ. The force ~FF ðCÞ indicates how
far the circle should be moving to the correct center.

This is an iterative process. Once the circle moves to a

new position C0, the new force ~FF ðC0Þ is calculated and
the circle keeps moving in this way until j~FF ðC0Þj is

smaller than a given value. Generally two or three iter-

ations should be enough for a circle to reach its correct

center. Fig. 3C shows the result after center refinement.

An interesting observation is that some circles may

move to the same location such that the total number of

circles is reduced.

Fig. 3. Illustration of the four steps seen in circle detection. (A) Initial circles, (B) after circle–circle competition, (C) after center refinement, and (D)

after further refinement.
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3.2.4. Further refinement

From Fig. 3C we can see that some circles intersect

again due to the center refinement. So we need to run the

circle–circle competition again. But this time we allow no

intersection at all between any two circles. In addition,

we delete those circles that have too large average dis-

tance value. The final result for the circle detection is

shown in Fig. 3D. Remember that we still have the

problem that some rectangles are wrongly recognized as
circles. This problem will be easily resolved after the

rectangle detection described below.

3.3. Rectangle detection

The rectangle detection is performed separately from

the circle detection. It also includes four steps: initial

rectangle detection, rectangle–rectangle competition,
center/orientation refinement, and further refinement. We

will explain them step-by-step, but special treatment will

be given to the first step, the most different part from the

circle detection.

3.3.1. Initial rectangle detection

As we saw before, the local maxima of the distance

map indicate not only the centers of the circles but the
centers of the rectangles as well. Hence, a simple way to

detect the initial rectangles is again by detecting the local

maxima of the distance map. However, since every

rectangle has its center as well as its own orientation, it

is too much time-consuming for us to try every possible

orientation at each local maximum for the best-matched

rectangle. Therefore, we need to seek for other efficient

ways for initial rectangle detection. In the following we
will consider a method based on Voronoi diagram of the

edges (see Fig. 2D). This method begins with corner

detection followed by conversion from corners to cen-

ters/orientations.

A corner of a rectangle is illustrated in Fig. 4A, where

the edges (dark dots) are discrete points forming a right

angle at C. We construct the Voronoi diagram (dashed

lines in Fig. 4A) of those edge points and check every
point A on the Voronoi diagram. If A happens to be on

the ‘‘bisector’’ of the corner as shown in Fig. 4A, then A,
together with its two nearest neighbors B and D, should
roughly form a right angle (that is, \BAD � 90�). In
addition, the directions of the edges at B and D should

be roughly perpendicular to the vector from A to B
(denoted by A;B

��!
) and the vector from A to D (denoted

by A;D
��!

), respectively. In this case, we can compute the

corner C by C ¼ Bþ D� A. On the other hand, if A is

not on the ‘‘bisector’’ of the corner, then A and its
nearest neighbors do not satisfy the above conditions.

Therefore, we have the following algorithm to detect all

the corners in an edge map based on Voronoi diagram.

Algorithm for detecting corners:

1. Check every point A on the Voronoi diagram (VD).

2. Find its nearest neighbors B and D. This is readily

available after we compute VD (Guan and Ma,
1998).

3. If \BAD � 90� and both vectors, A;B
��!

and A;D
��!

, are

roughly perpendicular to the edges at B and D,
respectively, then mark C (C ¼ Bþ D� A) as a

corner.

4. Repeat (1)–(3) until all points on the VD are checked.

It is worth noting that many corners detected by the

above algorithm often correspond to the same corner
although they may stay a little bit away from the true

corner due to the noisy edges. The above method for

corner detection is quite robust to noise because, even if

part of the edges around a corner are damaged, other

undamaged edges can still contribute to the detection of

that corner.

After we detect the corners, we then need to convert

each of the corners into the center and orientation that
uniquely represent each of the rectangles (remember that

we assume the width and length of all the rectangles are

Fig. 4. Illustration of corner detection by Voronoi diagram and the two

cases for converting corners to centers. (A) Corner detection and (B)

from corner to center.
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fixed). Given a corner, we actually have two cases, as
shown in Fig. 4B, which correspond to two possible

centers/orientations. Hence we need to choose one of

them. Again, the ‘‘winner’’ is chosen by calculating the

average distance value on each of these two rectangles

and the one with smaller average distance value is the

‘‘winner.’’ It is worth noting that every rectangle has

four corners and thus a rectangle can be detected from

any one of its four corners even if the others are dam-
aged. Fig. 5A shows the result of the initial rectangles

detected by our method. Similar to the initial circle de-

tection, there are many false rectangles due to the noisy

edges detected by Canny edge detector. Therefore, we

need to let all the initial rectangles compete with each

other as described in the following. Compared to the

simple approach that searches for the local maxima of

the distance map and checks every possible orientation
to detect the initial rectangles, the method described

above tremendously reduces the number of the candi-

date rectangles for further processing and hence

improves the performance.

3.3.2. Rectangle–rectangle competition

The competition between rectangles is similar to what

we saw for circle–circle competition. However, deter-

mining whether two rectangles intersect or not is more

complicated than the circle–circle intersection. In addi-

tion, the average distance value for each rectangle is now

computed along the rectangular contour.

3.3.3. Center/orientation refinement

The center refinement of the remaining rectangles is

similar to the center refinement of circles seen above. It

is possible that the orientations of the rectangles should

also be refined. But our experience shows that the ori-

entation refinement (and sometimes even the center re-

finement) is often unnecessary since the results after the

first two steps always give accurate orientation and/or

center for each detected rectangle.

3.3.4. Further refinement

Similar to the circle detection, we need to run the

rectangle–rectangle competition again for those rectan-

Fig. 5. Illustration of rectangle detection and the circle–rectangle competition. (A) Initial rectangles, (B) refined rectangles, (C) circle–rectangle

combined, and (D) final results.
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gles that intersect after the above steps. Again, it is
useful to delete the rectangles that have too large aver-

age distance value. The final result of the rectangle de-

tection is shown in Fig. 5B, from which we can see that

there are still a small number of false rectangles. Re-

member that in circle detection we have an unsolved

problem that some rectangles are wrongly recognized as

circles. Now it is time for us to solve both problems

together by circle–rectangle competition as described
below.

3.4. Circle–rectangle competition

We first put together the detected circles and rectan-

gles as shown in Fig. 5C. Then we check each of the

circles and see if it intersects with any of the surrounding

rectangles. If it does, then the circle–rectangle compe-
tition is applied. The circle–rectangle competition is

similar to the circle–circle competition or rectangle–

rectangle competition seen before. The ‘‘winner’’ is also

chosen to be the one that has the smaller average distance

value. The final result is shown in Fig. 5D.

4. Results

In this section we demonstrate the performance of

our particle detection algorithm on several examples of

Cryo-EM images, known as Keyhole Limpet Hemocya-

nin (KLH) (Zhu et al., 2002). The original datasets,

consisting of 82 defocus pairs, were kindly provided by

National Resource for Automated Molecular Micros-

copy (NRAMM). They were collected at the magnifi-
cation of 66 000� using Philips CM200 transmission

electron microscope equipped with a 2048� 2048 CCD

Tietz camera (Carragher et al., 2000; Potter et al., 1999)

(also see the bakeoff paper in this issue). The images we

work on in this paper were acquired at far-from-focus

conditions ()2 lm).

The original image (2048� 2048 pixels) is first down

sampled to a smaller image (1024� 1024 pixels). The
edges are detected using Canny edge detector with the

following parameters: tlow ¼ 0:9, thigh ¼ 0:8, sigma ¼
4. Here both tlow and thigh are in the range of [0.0–1.0].

These two parameters, however, must be converted into

the ‘‘true’’ thresholds before they can be applied to the

edge magnitude maps of the images. Two thresholds in

Canny method are set as follows (Heath, 1996). We first

count the number (denoted by n) of pixels that pass the
non-maximal suppression. The higher threshold is set as

the magnitude value of the pixel whose magnitude ranks

the dn� ð1� thighÞ þ 0:5eth among all the pixels that

pass the non-maximal suppression. The lower threshold

is simply set as the higher threshold multiplied by tlow.
We clean the edge maps by removing all small connected

components of edges. In other words, a connected

component of edges (based on an 8-neighbor connec-
tivity) are removed if the total number of edge pixels in

that component is less than 20. The radius of the tem-

plate circle is 35 pixels. The width and length of the

template rectangle are 65 and 80 pixels, respectively.

The false negatives/positives for each example, eval-

uated against visual detection, can be found from Figs.

6–8. From these examples we can see that our approach

gives accurate centers and/or orientations for most of
the detected particles. The false positive rate (FPR) is

defined as the number of false positives divided by the

total number of particles in the test set. The false neg-

ative rate (FNR) is defined as the number of false neg-

atives divided by the total number of particles in the

truth set. The FPR and FNR for the side views (the

rectangular particles) of the entire far-from-focus KLH

datasets are 24.7 and 8.3%, respectively, evaluated
against Mouche�s criteria (a manual method for particle

picking, also see the bakeoff paper in this issue). Note

that the false positive rate is a little bit high due to the

fact that our method recognized many ‘‘long’’ rectan-

gular particles (about half of the total false positives),

which, however, are considered as false positives in

Mouche�s criteria. In case of the top views (the circular

particles), the total number of recognized particles by
our method is 1351, among which 184 particles are false

positives. In addition, 31 true particles are missing in our

results. Therefore, the FPR and FNR for the top views

are 13.6 and 2.6%, respectively, based on the above

definitions of FPR and FNR. Here both the false posi-

tives and the false negatives are evaluated against visual

detection.

Fig. 6. Example I: Circles: 20 particles detected; 1 false positive; 0 false

negative. Rectangles: 27 particles detected; 0 false positive; 1 false

negative.
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We tested our method on SGI Onyx2 with single

processor (400MHz MIPS R12000) and the total com-

putational time is about 20 s for each image with a size

of 1024� 1024 pixels. About 18%, 2%, and 6% of the

total time are used for edge detection, edge cleaning, and

computations of DT & VD, respectively. The particle

detection (including circle detection, rectangle detection,
and circle–rectangle competition) takes about 74% of

the total time, which is roughly four times of that for

Canny edge detection. The source code is available for

free download under the GNU public license, from
http://www.ices.utexas.edu/CCV/software.

5. Discussions

5.1. Using multiple sets of parameters

The edges detected by Canny method are sensitive to
the selection of the three parameters (thigh, tlow, and
sigma). Although a certain level of noise in the edge map

does not affect the performance of our feature-based

particle picking algorithm, the edges with completely

wrong parameters may exclude some geometric features

and hence some particles may be misrecognized. One

way to reduce the sensitivity-to-parameter is to utilize

multiple sets of parameters and the results from each of
them are then combined for better results. We demon-

strate this strategy in Fig. 9, where two sets of param-

eters are used in Canny method. It is obvious that each

set of parameters alone cannot correctly detect particles

(one rectangular particle is wrongly recognized as cir-

cular particle). However, these two sets of parameters

are complementary to each other in the sense that wrong

particles in one case are correctly detected in the other.
The combined particles shown in Fig. 9 give correct

result. Two sets of results are combined by inter-com-

petition, which is similar to the competitions we intro-

duced in Section 3. Each of the particles from one result

competes with each of the particles from the other one if

both particles intersect. The ‘‘winner’’ is again the one

with smaller average distance value along its own shape

contour. Fig. 10 shows particles detected using three sets
of parameters. One can compare it with Fig. 7 and see

the improvements. A disadvantage of using multiple sets

of parameters is that the computational time may in-

crease by several times depending on how many sets of

parameters are considered.

5.2. Anisotropic filtering

Edges play a crucial role in our particle detection

approach but they are often corrupted by noise com-

monly seen in the electron micrographs. Therefore, it is

expected that noise reduction would be in great demand

as a pre-processing step. Traditional image filters in-

clude Gaussian filtering, median filtering, and frequency

domain filtering (Gonzalez and Woods, 1992). Most of

recent research has been devoted to anisotropic filters
that smooth out the noise without blurring the geo-

metrical details such as edges and corners. Several cat-

egories of anisotropic filters have been proposed in the

area of image processing. Bilateral Filtering (Durand

and Dorsey, 2002; Elad, 2002; Tomasi and Manduchi,

1998) is a straightforward extension of Gaussian filter-

ing by simply multiplying an additional term in the

Fig. 7. Example II: Circles: 24 particles detected; 2 false positives; 1

false negative. Rectangles: 22 particles detected; 1 false positive; 7 false

negatives.

Fig. 8. Example III (with low contrast): Circles: 20 particles detected; 0

false positive; 4 false negatives. Rectangles: 24 particles detected; 0 false

positive; 3 false negatives.
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weighting function. A partial differential equation
(PDE) based technique, known as anisotropic heat dif-

fusion, has also been studied (Perona and Malik, 1990;

Weickert, 1998) and a fundamental relationship was

discussed between this technique and the bilateral fil-

tering (Barash, 2002). Another popular technique for

anisotropic filtering is by wavelet transformation (Xu

et al., 1994). The basic idea is to identify and zero out

wavelet coefficients of a signal that likely correspond to
image noise. Finally, the development of nonlinear me-

dian-based filters in recent years has also resulted in

promising results. One of those filters is called mean-
median (MEM) filter (Hamza et al., 1999).

We have tested several methods for noise reduction,

including Perona–Malik model (Perona and Malik,

1990), bilateral filtering (Tomasi and Manduchi, 1998),

and anisotropic diffusion (Bajaj et al., 2003). Fig. 11

shows the difference between the results on the original

image and the results enhanced by bilateral filter

(Tomasi and Manduchi, 1998) and by anisotropic
diffusion (Bajaj et al., 2003). The particle detection on

the filtered data gives more accurate results due to the

Fig. 9. Particle detection can be enhanced by multiple sets of parameters in Canny edge detection. Top row: results (edges and particles detected)

using one set of parameters (sigma ¼ 4; tlow ¼ 0:9; thigh ¼ 0:8). Middle row: results using another set of parameters (sigma ¼ 6; tlow ¼ 0:7;

thigh ¼ 0:8). In both cases, there is one rectangle that is wrongly recognized as circle. Bottom row: combined results using the above two sets of

parameters. All edges are cleaned by removing short edges with length below 20 pixels.
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anisotropic filtering that smoothes the noise while pre-

serving sharp edges.

5.3. Particles with other shapes

The particles we have been working on so far are

restricted to circular and rectangular shapes. However, a

similar pipeline also works for particles with other types

of shapes if some kind of geometric features can be

derived from the shapes (e.g., icosahedral viruses). The

general pipeline is described as follows:

1. From the given electron micrographs, determine the
template shapes (e.g., radius for circle, width/length

for rectangle, and so on).

2. Smooth original images using anisotropic filtering.

3. Apply Canny edge detection followed by edge clean-

ing.

4. Compute distance transform and Voronoi diagram of

the edges.

5. Detect geometric features from the distance trans-
form and/or Voronoi diagram. In case of circular/

rectangular particles, the geometric features are cen-

ters/corners, respectively.

6. From the geometric features, guess the initial parti-

cles (including the centers and, if applicable, the ori-

entations). Every candidate particle is attached with

a ‘‘survival’’ factor, which is defined by the inverse

of the average distance value along the particle�s con-
tour.

7. Any two candidate particles, if they intersect, should

compete with each other. The ‘‘winner’’ in a competi-

tion is the one that has a larger ‘‘survival’’ factor than
its competitor. As described in Section 3, particle re-

finement may be necessary to improve the detection

accuracy. In addition, multiple sets of parameters

for Canny edge detection can be helpful.

8. The output is the final ‘‘winners’’ of all the particle

competitions.

Detecting particles of arbitrary shapes is much more

challenging. However, particle detection in the single
particle analysis does not require accurate boundary

segmentation. Edge detection, coupled with anisotropic

filtering and edge-linking based on distance transform,

may still be a feasible way in such cases.

6. Conclusions and future work

In this paper we described an automatic method for

particle detection from electron micrographs. Our

method is based on shape matching between the edge

map calculated from the original/filtered image and the

template shapes of the true particles (what we call

‘‘virtual’’ templates). Unlike the conventional template-

matching method that is based on cross-correlation of

intensities, our method only needs the geometric fea-
tures of the particles and hence avoids the manual

picking of a number of particles and the tedious gen-

eration of the reference images (e.g., by projections

from a 3D reference map). Multiple views of the par-

ticles are allowed by simply applying different geometric

features to each view (e.g., the circular/rectangular ex-

amples as we considered in Section 3). In addition, with

the help of the distance transform and Voronoi dia-
gram, we can quickly identify the geometric features

from the edges and make a good guess on the initial

positions/orientations of the candidate particles. Good

initialization is a crucial part of our algorithm in order

to reduce the computational time as well as improve the

detection accuracy. Since our method is based on

boundaries (or edges), which are said to be the most

important features of an image, other irrelevant details
(or noise) have a very small influence on the detection

of a particle from the original image. This ‘‘weighted’’

matching approach differs a lot from the conventional

template-matching methods where all intensities around

a pixel under consideration evenly influence the

matching score.

Part of our future work is flexible shape matching,

meaning that, in particular, the radius of the template
circle and the width/length of the template rectangle

could be flexible. We expect that this could further re-

duce the sensitivity of our particle detection algorithm to

the determination of template shapes. Another inter-

esting work is that the geometric features of each par-

ticle may also help to enhance the particle alignment and

particle classification in the single particle analysis.

Fig. 10. Particle detection is enhanced by three sets of parameters in

Canny edge detection. Set I: sigma ¼ 4; tlow ¼ 0:9; thigh ¼ 0:8. Set II:

sigma ¼ 4; tlow ¼ 0:7; thigh ¼ 0:8. Set III: sigma ¼ 4; tlow ¼ 0:85;

thigh ¼ 0:75. Edges are cleaned by removing short edges with length

below 20 pixels.
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