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Abstract

FFT-based techniques are actively
used to register 2-D images, i.e., to
find the shift, rotation, and scaling
necessary to align one image with
the other. It is desirable to extend
these techniques to the problem of
registering 3-D images. Registration
of 3-D images is an important prob-
lem in areas such as bioinformatics
(e.g., in protein docking) and geoin-
formatics (e.g., in earth modeling).
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1 Image Registration: A Practical
Problem

Formulation of the problem. In many
areas of science and engineering, we have two
images I1(~x) and I2(~x) (2-D or 3-D) which
represent the same object but viewed from
different angles and positions, in a possibly
different scale. Since these images represent
the same object, they can be obtained from
each other by an appropriate shift ~x → ~x +~a,
rotation ~x → R~x, and scaling ~x → λ · ~x, i.e.,
I2(~x) ≈ I1(λ ·R~x + ~a).

In many practical situations, we do not know
the relative orientation of the two images. In
such situations, it is desirable to register these
images, i.e., to find the rotation and the shift
after which the images match as much as pos-
sible.

A similar problem occurs when we have the
images of two different objects whose shapes
should match. For example, we may have im-
ages of two bioactive molecules. We know
that in vivo, these molecules interact because
one of these molecules “docks” to the other
one, i.e., gets into a position where their sur-
faces match. In such situations, it is also
important to find orientation and shift cor-
responding to this match.

Comment. Sometimes, the images also differ
in lighting conditions, as a result of which we
may have I2(~x) ≈ C · I1(λ · R~x + ~a) for some
unknown factor C.

General image registration problem vs.
its particular cases. In the general prob-
lem, images may differ by shift, by orienta-
tion, and by scale. In such a general case, we
need to find all three groups of parameters:
shift ~a, rotation R, and scaling λ.

In practice, we sometimes do not need to find
all three of these parameters. For example, we
sometimes know that the images are already
similarly oriented and they are in the same
scale, so all we need to do is find the shift ~a
between the two images.

In other practical problems, we know that the
images are scaled right, but we need to find
the shift ~a and the rotation R. For example,
when a molecules docks into another mole-
cule, it can shift and rotate, but it cannot
seriously shrink or expand. Thus, in the pro-
tein docking problem, we must find the shift
~a and the rotation R – but not the scaling.



In short, in general, all three groups of para-
meters are unknown: the shift ~a, the rotation
R, and the scaling λ. In practice, in addi-
tion to this complex general image registra-
tion problem, we sometimes face (somewhat)
simpler particular cases of the general image
registration problem, cases in which we only
need to determine some of these parameters.

2 First Case: Registration of
Similarly Oriented 2-D and 3-D
Images

Formulation of the Problem. We have
two images I1(~x) and I2(~x), we know that
they are obtained from each other by an (un-
known) shift ~a, i.e., that I2(~x) ≈ I1(~x + ~a),
and we want to find this shift.

How an image is represented. In the 2-
D case, each image on a 2-D n×n grid consists
of n2 intensity values at different grid points.
In the 3-D case, an image on a 3-D n× n× n
grid consists of n3 intensity values. In gen-
eral, an image is represented by nd intensity
values, where d = 2 or 3 is the dimension of
the image.

Registration in time O(nd). In some real-
life problems, we can register the two similarly
oriented images in the smallest possible time
O(nd). One example if when we are regis-
tering the two images which have clear land-
marks: e.g., points where the intensity have
the largest possible value, or saddle points
which are useful in describing the structure
of the image.

In such situations, to match the two images, it
is sufficient to find, for each of the two images,
the point ~x with the largest possible intensity
value; this point can be found by searching
over all nd points ~x so it can be done in O(nd)
steps. Once the corresponding landmark lo-
cations ~d1 and ~d2 are found, we can find the
desired shift ~a as ~a = ~d2 − ~d1.

For many important images, we cannot use
this fast algorithm for image registration, be-
cause there are no easy-to-find landmark loca-
tions – namely, for every special point in the

image, there are several similar points in the
same image. For example, in multi-cellular
biological images, whether we have a point on
the border between several cells, or a special
point of a special structure within a cell, there
are many different points with the similar val-
ues of intensity at different cells. Similarly, in
a satellite image, if the maximum of the im-
age intensity corresponds to, e.g., road inter-
section or a river, we may have many road in-
tersections and several rivers within the same
image.

In some such situations, however, we can still
use a fast (O(nd)) algorithm for image reg-
istration. For example, in astronomical im-
ages, we often have an image of an object
surrounded by empty space. In this case, we
can use the moments to find out the shift
between the images. It is easy to see that
when we apply a shift to an image, i.e., re-
place the original image I1(~x) with a shifted
image I2(~x) = I1(~x + ~a), then the 0-th order
moment (overall intensity) Mi =

∫
Ii(~x) d~x

does not change (M2 = M1), while the 1-st
order moments Mij =

∫
Ii(~x) · xj · d~x change

to M2i = M1i − ai · M1. Thus, we can find
the desired shift ~a by comparing the corre-
sponding moments: ai = (M1i − M2i)/M1.
An integral is, in effect, a sum over all nd grid
points, so computing each of the integrals M1

and Mij requires O(nd) steps. Thus, we still
need computation time O(nd).

This method has a natural geometric mean-
ing: the ratio Mji/M1 is the i-th coordinate of
the image’s center of gravity. Thus, in effect,
this algorithm consists of the following three
steps:

• first, we compute the center of gravity
d1i = M1i/M1 of the image I1(~x);

• then, we compute the center of gravity
d2i = M2i/M2 of the image I2(~x);

• finally, we find the desired shift as the
difference between the centers of gravity:
~a = ~d1 − ~d2.

Comment. This reformulation works also
when the images are not only shifted, but also



“re-scaled”, i.e., I2(~x) ≈ C ·I1(~x+~a) for some
(unknown) constant C > 0, due, e.g., to dif-
ferent lighting conditions related to these two
images.

Situations when O(nd) algorithms are
not applicable. In many practical situa-
tions, none of the above O(nd) algorithms
is applicable. For example, in satellite and
multi-cellular images, not only we do not have
landmark points, we also do not have empty
space around an image. As a result, e.g.,
the shifted satellite image contains the val-
ues which are not present in the original im-
age. When both images cover the same rea-
sonably homogeneous area, then the intensity
is of about the same value throughout both
images, and hence, the center of gravity of
each image is close to the geometric center
of the image. Thus, if we apply the above
center-of-gravity algorithm to detect the shift
between the images, then, no matter what the
actual shift is, the above algorithm will return
(approximately) 0.

Straightforward approach: computa-
tional complexity. A natural idea is to
look for a vector ~a for which the distance∫

(I2(~x)− I1(~x + ~a))2 d~x (1)

attains the smallest possible value.

For this formula, a straightforward approach
would mean that we compute the value of this
scoring function for all possible shifts ~a, and
then find the shift for which this value is the
smallest.

Each image on a 2-D n × n grid consists of
n2 intensity values at different grid points.
Computing each integral requires time O(n2):
for each pixel ~x, we need one subtraction
and one multiplication to compute the value
(I2(~x)−I1(~x+~a))2, and then we must add all
these values to get the integral.

According to the straightforward approach,
we must compute the value of the L2-norm for
all possible shifts ~a. For an n×n grid, it is rea-
sonable to consider n2 possible shifts. Com-
puting each integral requires time O(n2), so
overall, we need time O(n2) ·O(n2) = O(n4).

For many real-life images, the size n is approx-
imately 103, so n4 ≈ 1012 computational steps
require a large mount of time. It is therefore
desirable to find faster algorithms for image
registration.

It is known that many signal and image
processing techniques can be made faster if
we use Fast Fourier Transform (FFT); see,
e.g., [12]. FFT of an image of size N re-
quires N · log(N) steps, so for an image of
size N = nd, we need O(nd · log(n)) steps.

Using Fast Fourier Transform for shift
detection. For a shifted image I2(~x) =
I1(~x +~a), the Fourier transform has the form
F2(~ω) = exp(i · ~ω · ~a) · F1(~ω). Thus, in the
presence of measurement noise and inaccu-
racy, when we have I2(~x) ≈ I1(~x+~a), we have
F2(~ω) ≈ r(ω)·F1(~ω), where r(ω) ≈ exp(i·~ω·~a).

The complex number exp(i · ~ω ·~a) has magni-
tude 1; so, it is reasonable, for every spatial
frequency ~ω, to find the value r(~ω) for which
the approximation error |F2(~ω)−r(~ω)·F1(~ω)|2
is the smallest possible under the constraint
that |r(~ω)| = 1.

By using the Lagrange multiplier method, we
can show that the solution to this constrained
optimization problem is given by

r(~ω) =
F1(~ω) · F2(~ω)∗

|F1(~ω) · F2(~ω)| . (2)

In the ideal case, r(~ω) is a sinusoidal wave,
and its inverse Fourier transform is an impulse
function δ(~x−~a), i.e., a function which is only
non-zero for ~x = ~a. It is therefore reasonable
to find the shift ~a by applying the inverse FFT
to the above function r(~ω) and to find the
shift as the point at which this inverse FFT
attains the largest possible value.

We thus arrive at the following algorithm.

Resulting algorithm. We are given two
images I1(~x) and I2(~x); we must find the shift
~a between these images. For that, we do the
following:

• first, we apply FFT to both images
I1(~x) and I2(~x), and compute the Fourier
transforms F1(~ω) and F2(~ω);



• then, for each frequency ~ω, we compute
the ratio (2);

• after that, we apply the inverse FFT to
the resulting function r(~ω) and obtain a
new function P (~x).

Finally, we find the shift ~a as the value at
which the function P (~x) attains its largest
possible value.

Comment. This algorithm was first pro-
posed in [26] (without the least squares jus-
tification); for 2-D images, it requires time
O(n2 · log(n)). This same algorithm can be
used for 3-D images, it then requires time
O(n3 · log(n)).

Comment. The above method – based on
traditional FFT techniques – is applicable
when we have data on a rectangular grid. In
many practical problems, e.g., in biomedical
imaging, we often have areas with few grid
points and areas with a large number of grid
points. For such non-equispaced data, the tra-
ditional Fast Fourier Transform algorithm is
not applicable.

What can we do in this situation? The idea
behind Fourier transform is that instead of
representing each image I(~x) by its values at
different pixels, we use one of the possible
bases – namely, the basis of sinusoid functions
– and describe the image by the coefficients of
this expansion:

I(~x) =
1
2π

·
∫

F (~ω) · exp(i · ~ω · ~x) d~ω.

For non-equidistant data, we cannot use only
this expansion to get an efficient algorithm.
Thus, it is natural to use the expansion over
other bases – e.g., polynomials – to help com-
putations.

Several fast algorithms for nonequispaced
Fourier transform have been proposed; see,
e.g., [2, 6, 15, 16, 17, 34, 35, 43, 44, 47]. The
main difference between the standard FFT
and the nonequidistant FFT (NFFT) is that
the standard FFT produces the exact Fourier
transform, while the nonequidistant FFT only

compute the values of the Fourier transform
with a given accuracy.

Many of the NFFT algorithms use (local)
polynomial approximations as an intermedi-
ate computational step; for example:

• in [44], an interval domain is divided into
subintervals, and Chebyshev polynomials
are used in each subinterval;

• in [2], Taylor polynomials are used in-
stead of the Chebyshev ones;

• splines (a special class of locally polyno-
mial functions) are used in [17, 34, 43].

In [4, 5, 9, 42], the spline-based methods from
[17, 34, 43] and several other similar tech-
niques have been successfully applied to the
docking problem; the comparison seems to in-
dicate that the spline-based methods are in-
deed the fastest.

3 Registration of General 2-D and
3-D Images

Formulation of the problem. We have
two d-D images I1(~x) and I2(~x); we must
find the shift ~a and the rotation R for which
I2(~x) ≈ I1(R~x + ~a).

Registration in time O(nd). To find the
shift between the two images, it is sufficient
to find one landmark point. To find both shift
and rotation, we can use two different land-
marks:

• we can use the first landmark to find the
shift between the two images, and then

• we can compare the location of the sec-
ond landmark in both images, and thus
find the corresponding rotation.

Finding the landmarks in the image requires
time O(nd).

If there are no easily detectable landmarks,
but the images are objects surrounded by
an empty space, then we can use the mo-
ments method to determine both shift and



rotation. The values of the 0-th and 1-st
order moment Mi and Mij could only de-
termine the shifts. So, to find the rotation,
we must also use the second order moments
Mijk =

∫
xj · xk · Ii(~x) d~x.

To compare the second order moments (also
called moments of inertia) of the two im-
ages, it is necessary to first shift both im-
ages to the same point of origin, e.g., to the
center of gravity. As a result, we replace
the original value Mijk with the new value
Mijk − dj · dk ·Mi, where dj = Mij/Mi is the
j-th coordinates of the center of gravity.

Second order moments of each image form
a symmetric non-negative definite matrix.
Thus, this matrix has orthogonal eigenvec-
tors. When the image rotates, these eigen-
vectors rotate as well. So, we can find the
rotation angle by comparing the orientations
of the eigenvectors.

New algorithm for the general case:
motivation and description. In general,
the images may not have clear landmarks and
they may not be surrounded by an empty
space, so the above O(nd) methods may not
be applicable. Let us show that in these case,
we can use FFT-based techniques.

It is known that if the two images I(~x) and
I ′(~x) differ not only by shift but also by a
rotation R and a scaling λ, the absolute values
M(~ω) and M ′(~ω) of their Fourier transforms
F (~ω) and F ′(~ω) differ from each other only
by the corresponding rotation and scaling.

While the original images were not sur-
rounded by an empty space, in many practi-
cal situations, the corresponding magnitudes
of Fourier transforms are actually rapidly de-
creasing as the spatial frequency ω increases;
see, e.g., [39, 40].

Comment. For smooth images, the magni-
tudes of their Fourier transforms do decrease
with frequency. However, for non-smooth im-
ages, e.g., for a point source I(~x) = δ(~x − ~a)
located at a point ~a, its Fourier transform
is equal to exp(−i · ~ω · ~a). So, the magni-
tude of this Fourier transform is equal to 1

for all the frequencies and thus, does not de-
crease with frequency. Thus, if both given
images contain a bright spot on a reasonably
uniform background, then we cannot use this
moments technique to find the rotation that
registers these images. However, the case of
bright spots (landmarks) is exactly the case
when we can use landmark algorithms.

In situations when the magnitude of the
Fourier transform decreases with frequency,
we can use the moments method to find the
appropriate rotation. Namely, based on the
function M1(~ω), we compute the second mo-
ments M1ij

def=
∫

M1(~ω) · ωi · ωj d~ω; similarly,
based on the function M2(ω), we compute the
second moments

M2ij =
∫

M2(~ω) · ωi · ωj d~ω.

For each of these matrices, we compute
the eigenvectors corresponding to the largest
eigenvalue; by comparing the orientations of
these eigenvectors, we can then find the de-
sired rotation R in time O(nd).

Comment. Images are usually given on a 2-
D or 3-D grid, in the shape of a box. When
we rotate the images an transform them back
into a box shape, the corner information dis-
appears. The only values which are preserved
after all rotations are the values inside a cir-
cle (sphere) subscribed into the box. Since the
corner values cannot match anyway, it is rea-
sonable, before computing the moments, to
only consider values M(~ω) inside this circle
(sphere).

Once we know the rotation R, we can align
the images – e.g., by rotating the Fourier
transform F1(~ω) of one of the image I1(~x) to
F1(R~ω). Now, the images I1(R~x) and I2(~x)
differ only by shift, so we can use the above
O(nd · log(n)) method to find this shift.

Our preliminary results show that the result-
ing method indeed works well for registering
3-D images.

New algorithm: computational com-
plexity. Overall, in the d-D case, we thus



need O(nd · log(n)) time to compute the origi-
nal Fourier transforms, O(nd) time to find the
rotation, and then O(nd · log(n)) time to find
the shift – to the total of

O(nd · log(n)) + O(nd) + O(nd · log(n)) =

O(nd · log(n))

computational steps.
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