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Abstract. Recent advances in three dimensional Electron Microscopy
(3D EM) have given an opportunity to look at the structural building
blocks of proteins (and nucleic acids) at varying resolutions. In this pa-
per, we provide algorithms to detect the secondary structural motifs (α-
helices and β-sheets) from proteins for which the volumetric maps are
reconstructed at 5 − 10Å resolution. Additionally, we show that when
the resolution is coarser than 10Å, some of the tertiary structural motifs
can be detected from 3D EM. For both these algorithms, we employ the
tools from computational geometry and differential topology, specifically
the computation of stable/unstable manifolds of certain critical points of
the distance function induced by the molecular surface. With the results
in this paper, we thus draw a connection between the mathematically
well-defined concepts with the bio-chemical structural folds of proteins.

1 Introduction

Three dimensional Electron Microscopy reconstruction(3D EM) and in particu-
lar single particle cryo-EM reconstruction [1], has advanced rapidly over recent
years, such that several macromolecules (complexes of proteins and ribo-nucleic
acids or RNA) can be resolved routinely at low resolution (10-20 Å) and in
some cases at sub-nanometer (intermediate) resolution (7-10 Å) [2]. The ultra-
structure of these complexes once elucidated from the 3D EM (henceforth 3D
Maps), provide not only insights into individual protein and RNA folds and
structural motifs, but even more importantly provide information about how the
various structural components interact. In addition, with the increasing capabil-
ity of determining multiple structural folds and conformers (secondary structures
and tertiary arrangements) of a complex [3], there is the promise of studying the
dynamics of such interacting systems.

Proteins are polypeptide chains of amino acids, (and nucleic acids are sugar-
phosphate chains of acidic bases). The secondary structure of proteins are made
up of a set of helical (or crudely, cylindrical) arrangement of sub-chains called α-
helices and mostly planar arrangement of sub-chains called β-sheets. The various
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Fig. 1. Secondary structure elucidation algorithm for Insulin Receptor Tyrosine Kinase
Domain with pdbid: 1IRK. (a) volume rendering of its blurred 3D Map at 8Å resolution
(b) surface rendering of the protein’s molecular surface (c) pointset sampling of the
molecular surface (d) The red patch inside the transparent surface depicts the β-sheet
while the straight lines designate the axes of the cylinders which correspond to the
α-helices (e) The secondary structural motifs, documented in the Protein Data Bank,
where the helices are shown as ribbon coils and the sheets are sets of ribbon strands.
(f) combined display of (d) and (e)

structural conformations of sub-groups of helices and sheets, yield the various
different tertiary folds [4]. Relatively similar configuration of secondary and ter-
tiary folds arise also in RNA [5].

In this paper, we provide a solution to the problem of automatically eluci-
dating the structural secondary and tertiary folds of proteins (and nucleic acids)
from 3D Maps of macromolecular complexes. A 3D Map is akin to a 3D spatial
matrix of electron density values. With the improved reconstruction resolution
of 3D Maps of macromolecules via 3D EM, the secondary and tertiary struc-
tural folds of proteins and RNA can be fully elucidated. Often (as evidenced by
structures in the PDB), the atomic resolution structures of individual proteins or
RNA, that make up the macromolecule are also discerned via X-ray diffraction
and/or Nuclear Magnetic Resonance techniques, allowing us to validate our 3D
EM secondary/tertiary structure elucidation algorithms [6]. Depending on the
resolution of the 3D Map (in Å), our goals here are to either detect the secondary
structural motifs, or segment the molecule into significant components that can
be associated with different tertiary structural folds.

Our processing pipeline has three macro steps, namely, (i) segmentation of
the macromolecular 3D Map into individual protein (or RNA), subvolumes us-
ing the techniques of [7] and implemented in the publicly available VolRover
tool [8]. (ii) computation of a “distance function” to a suitable molecular surface
approximation of the individual protein (or RNA) using the methods detailed
in [9, 10] (iii) medial axis computation, classification, and construction of stable
and unstable manifolds of the critical points of different indices. We skip a de-
scription of the first step, as the most recent developments are summarized in
[7]. Step (ii) is sketched in Section 3, for completeness. The main contributions
of this paper are: (a) Elucidation of secondary structural motifs (α-helices and
β-sheets) from relatively higher resolution (5 − 10Å) 3D Map of individual pro-
tein or RNA molecules, (b) Decomposition of the molecular surface of individual
proteins or RNA, into its tertiary structural motifs, for 3D Maps at relatively



coarser resolution (10−15Å). Figure 1 shows the steps of the secondary structure
elucidation process on the 3D Map of protein 1IRK at a resolution 8 Å.

Prior Work. There are relatively few published algorithms that detect α-helices
and β-sheets of proteins from 3D Maps at coarse resolution (> 6Å). Wen et
al have devised an algorithm called Helix Hunter [11] for detecting α-helices
in a low resolution map where they modeled the helices as cylinders and the
density function of the cylinder is convolved with the original map to detect
the peaks of the cross-correlation. The main disadvantage of this technique is
that it searches exhaustively over the space of all rigid-body transformations
and therefore is very slow. A similar approach for detection of β-sheets was
adopted by Kong and Ma [12, 13] who modeled it as a disk like primitive and
searched through the input map to find the possible positions of the disk that
yielded high cross-correlation. This work, due to its exhaustive search paradigm,
is also extremely compute intensive. Recently, Yu and Bajaj [14] have developed
a secondary structure elucidation algorithm based on the relative magnitudes
of the eigenvalues of the structure tensor computed at various select groups of
voxels.

Given a compact surface Σ smoothly embedded in R
3, a distance function hΣ

can be assigned over R
3 that assigns to each point its distance to Σ. hΣ : R

3 →
R, x 7→ infp∈Σ ‖x − p‖ In applications, Σ is often known via a finite set of
sample points P of Σ. Therefore it is quite natural to approximate the function
hΣ by the function hP : R

3 → R, x 7→ minp∈P ‖x − p‖ which assigns to each
point in R

3 the distance to the nearest sample point in P . Distance functions
have found use in surface reconstruction [9, 15–17], Medial axis approximation
[18, 19], shape segmentation and feature analysis [20]. Recently, Goswami et al
[21] have presented an algorithm to compute the unstable manifolds of the index
1 and index 2 saddle points of this distance function and demonstrated its use
in detecting flat and tubular features of any shape.

2 Preliminaries

Voronoi-Delaunay Diagram: We do not to go over the detail about this well-
known datastructure due to space limitation and encourage reader to consult
a standard computational geometry textbook [22]. In this work, we primarily
use the duality of Voronoi and Delaunay diagram which states that every k ≤ 3
dimensional Voronoi element is dual to a 3 − k dimensional Delaunay simplex.

Critical Points of hP : The critical points of hP are the points in R
3 which lie

within the convex hull of its closest points from P . It turns out that the critical
points of hP are the intersection points of the Voronoi objects with their dual
Delaunay objects [23].

– Maxima are the Voronoi vertices contained in their dual tetrahedra,
– Index 2 saddles lie at the intersection of Voronoi edges with their dual De-

launay triangles,
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Fig. 2. The relative position of Voronoi and their dual Delaunay objects that results
in the generation of critical points.

– Index 1 saddles lie at the intersection of Voronoi facets with their dual De-
launay edges, and

– Minima are the sample points themselves as they are always contained in
their Voronoi cells.

An illustration of the four types of critical points and the relative position of the
Voronoi/Delaunay objects resulting these four types is shown in Figure 2.

At any point x ∈ R
3, one can assign a vector field which is the direction of

the steepest ascent of the distance function. The critical points are assigned zero
vectors. This vector field induces a flow. If a point is allowed to move following
the vector field, it traces an orbit and ends at a critical point. The set of points
whose orbits end at a critical point c is called the stable manifold of c. Similarly, a
point traces an inverted orbit when it follows the steepest descent of the distance
function, and ends at a critical point c′. The set of points whose inverted orbits
end at c′ is called unstable manifold of c′.

The stable manifold of a maximum is a three dimensional polytope which
is bounded by the stable manifold of critical points of lower indices. Similarly,
the unstable manifold of a minimum is a three dimensional polytope which is
bounded by the unstable manifold of critical points of higher indices. In this
paper, our focus is on stable manifold of maxima and unstable manifold of the
index 1 and 2 saddle points.

3 Secondary Structure Identification

The processing pipeline of α-helix and β-sheet identification from 3D Maps,
consists of the following steps:

(a) Molecular Surface Extraction and Sampling: Starting with a 3D EM map
of a protein (or RNA), a molecular surface is extracted via contouring [24]. For
robust contouring, we use the implementation in the publicly available software
TexMol [25]. Although several possible isosurfaces can be computed from the 3D
Map, we select an isovalue using contour trees [26] (also implemented in TexMol),
and topological curation wherein the isosurface is a single connected component,
after removal of smaller completely nested surface components (i.e. voids). We



call this extracted and curated surface component the molecular surface S of the
protein (or RNA). Further, a sufficiently dense set of points are sampled from
S. We call this poinset P which becomes the input to the latter stages of our
algorithm.

(b) Detection of index 1 and index 2 critical points of hP (Sec. 2).
(c) Computing unstable manifold of a subset of those critical points (Sec. 3.1).
(d) Detection of α-helix and β-sheets from the unstable manifolds (Sec. 3.2).

3.1 Computing U1 and U2 from P

Structure and computation of the unstable manifold of an index 1 saddle point
(U1) and an index 2 saddle point (U2) have been described in detail in [21]. For
completeness, we describe it briefly here.

U1: Unstable Manifolds of index 1 saddle points are two dimensional. An index 1
saddle point, c lies at the intersection of a Voronoi facet F and a Delaunay edge.
For any point x ∈ F \c, hP increases radially outward from c. Therefore the orbit
of one such x hits the Voronoi edges bounding F . Thus F is in U(c). Once the
flow hits a Voronoi edge, if the dual Delaunay triangle is acute angled, the flow is
along the Voronoi edge, and otherwise, the flow enters the Voronoi facet dual the
Delaunay edge opposite to the largest angle of the dual Delaunay triangle. This
iterative process computes the unstable manifold of c. The exact computation
and its approximation have been described in [21]. Figure 3(a) illustrates an
intermediate stage of this computation where the blue facet contains c, yellow
facets are currently in U(c) and pink facets are to be included in the subsequent
iterations.

U2: An index 2 saddle point is generated by the intersection of a Voronoi edge
and a Delaunay triangle. The unstable manifold of an index 2 saddle point is
one dimensional. It is a polyline with one endpoint at the saddle point and the
other endpoint at a local maximum. The polyline consists of segments that are
either subsets of Voronoi edges or lie in the Voronoi facets. Due to the later case,
the polyline may not be a subcomplex of VorP . Again, the exact computation
and its approximation have been described in [21]. Figure 3(b) illustrates an
example. Figure 3(c) shows the unstable manifolds of index 1 and index 2 saddle
points on the interior medial axis of the 3D map of molecule 1IRK.

index 2 saddle

maximum

(a) (b) (c)

Fig. 3. General structure of U1 and U2 is shown in (a,b). (c) A collage of U1 (yellow)
and U2 (red) of the molecule 1IRK. Note U2 bounds U1.



3.2 α-helix and β-sheet Selection

The unstable manifold of index 1 and index 2 saddle points restricted to the
medial axis of the molecular surface decomposes the medial axis into linear (U2)
and planar (U1) portions. We call the linear subset ML and the planar subset
MF . The next task is to select a subset of ML and MF that gives the α-helices
and β-sheets of the protein. Typically, an α-helix is a cylindrical subvolume of
the molecule which is of width approximately 2.5Å. Also the subvolume does not
deviate much from a straight cylinder for proteins [4, 11]. These two conditions,
dictate the following computational steps.

The unstable manifold of every index 2 saddle on the medial axis is a polyline
with Voronoi vertices at the joints. Every Voronoi vertex has hP value which
can be computed by the circumradius of the dual Delaunay tetrahedron. Locally
this gives the radius of the cylinder that best fits the molecular surface in the
cylindrical regions. We first populate the set H with the Voronoi vertices whose
hP values fall within 2Å and 3Å. A 3Å neighborhood graph is then computed
over H that clusters the points. The choice of 3Å is dictated by the fact that
pitch of the helices is 1.5Å and usually there is more than 2 turns in every helix.
The diametrical point pair in every cluster is then computed. The maximum
deviation of any intermediate point from the straight line joining the point pair
decided how straight the fitted cylinder to the cluster is. This way we select those
clusters from H and the cylinders fitted to these clusters produce the detected
α helices. The process is shown in 4(b).

(a)

(b)

(c)

(d)

Fig. 4. (a) The molecular surface of 1IRK. (b) The selected Voronoi vertices on U2

and the fitted cylinder. (c) Filtering out subsets of U1 which are small (green) or do
not satisfy the width test (magenta). (d) shows the secondary structures obtained from
the PDB and its correspondence with the computed structure (b,c).

The selection of β-sheets is similar. U1 gives the possible candidates for β-
sheets. First we notice that there are some tiny components that are created due
to sampling artifacts, and they do not correspond to real planar substructures
of the molecule. We first filter these small clusters out (green patches in Figure
4(c)). After this first stage of filtering, we are left with the planar subsets of the



medial axis (cyan in Figure 4(c)). At this point we apply the knowledge, that
β-sheets are of width roughly 1.5Å [4, 12] and we filter out the planar patches
which do not satisfy this “thickness” criterion. The width of a facet in U1 is easy
to check as they are the Voronoi facets and therefore have an 1-1 correspondence
with their dual Delaunay edges which cross the medial axis. Therefore, we select
only those Voronoi facets from U1 whose dual Delaunay edges are of length
between 1Å and 2Å. The portions of U1 which are filtered out by this test are
shown in magenta in Figure 4(c). The rest of U1, which qualify for β-sheets, are
shown in cyan. The sheets detected in are shown to correspond well with the
β-sheets of the molecule 1IRK obtained from Protein Data Bank.

4 Tertiary Fold Elucidation

Tertiary structural folds (or motifs) provide useful information about the con-
formational and packing arrangement of a protein molecule. Such tertiary folds
can be discerned when a coarser resolution 3D Map of the molecule is available.
In this section, we show how such information can be gleaned again by looking
at the distance function hP induced by the set of points P sampled on an ap-
proximation of the molecular surface S extracted from a coarse resolution 3D
Map. Our main focus is on the maxima of hP . We have already seen that the
maxima are the intersection of the Delaunay tetrahedra with their dual Voronoi
vertices. In other words, these are the circumcenters of only those Delaunay
tetrahedra whose circumcenters lie inside them. As a first step of the tertiary
fold detection, we collect the maxima which are the circumcenters of the interior
Delaunay tetrahedra.

Once the set of interior maxima is populated, we use their stable manifolds
to decompose the volume bounded by S into a set of bio-chemically meaningful
segments. These stable manifolds are three dimensional solid subsets of the inte-
rior of the molecular surface S. Such techniques have been proved useful earlier
in segmentation and matching of free-form objects [20]. We follow the algorithm
for computing the stable manifold of a maximum approximately, as described in
[20].

Given two Delaunay tetrahedra σ and σ′ which share a common triangle t,
we say σ < σ′, if the circumcenter of σ lies in the half-space defined by t that
does not contain the fourth vertex of σ. Figure 5(a) describes this case. Note
that σ′ is not always unique (Figure 5(b)). However, this can be proved that, a
Delaunay tetrahedron σ can have at most two neighbors σ1 and σ2, for which
σ < σ1 and σ < σ2. Also, it is to be noted, that the Delaunay tetrahedron σmax

whose dual Voronoi vertex is a maximum, has none of its neighbors σ′ for which
σmax < σ′.

Following the above observation the stable manifold of the maxima are ap-
proximated. The set of maxima is sorted according to hP . Starting from the
biggest maximum, the algorithm collects all σ which falls under the transitive
closure of the relation ‘<’. A subtle problem remains. The stable manifolds of
the maxima are often numerous, and therefore they need to be clubbed carefully
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Fig. 5. (a) σ1 < σ2. (b) The situation when σ has two neighbors σ′ and σ′′ for both of
which σ < σ′ and σ < σ′′. (c) 1TIM: Helices surround the sheets to form the tertiary
structure called α/β-barrel. (d) Molecular surface of 1TIM at 15Å resolution. (e,f) The
initial segmentation and further refinement to bring out the β-fold of the barrel from
the surrounding helices (yellow, magenta and blue).

to bring out the underlying features of the molecule. To this goal, we apply a
merging step, which adjoins two stable manifolds of two maxima sharing a com-
mon boundary when the hP function values at the maxima as well as at a point
on the common boundary are comparable to each other.

Figure 5(c-f) shows an example of the stable manifolds and the tertiary folds
that they correspond to. It is worth mentioning that, in our experience, tertiary
motifs are not always readily decomposable using this algorithm. Nevertheless,
we observe that the decomposition algorithm successfully detects the helical re-
gion and separates them from the beta regions. The beta regions are sometimes
decomposed into more than one component which need to be associated sepa-
rately to reflect a single fold.

5 Implementation and Results

PDBID Protein PDBID Protein

1IRK Insulin Receptor Tyrosin Kinase Domain 1TIM Triose Phosphate Isomerase

1PLQ Proliferating Cell Nuclear Antigen 1RIE Rieske Iron-sulphur Protein

1CID T Cell Surface Glycoprotein CD4 1MBN Myoglobin

1VDF Cartilage Oligomeric Matrix Protein 1JPC Agglutinin

1AOR Aldehyde Ferrodoxin Oxydoreductase 1BBH Cytochrome C’

Table 1. Name and PDBID of the proteins used in the calibration process.

For calibrating our structure elucidation algorithms, we downloaded atomic
level descriptions of proteins from the Protein Data Bank [27]. For each protein,
we first “blurred” them into a 3D map (to correspond to a reconstructed 3D EM
map) at varying resolutions (5 to 15 Å), using publicly available software EMAN

[28]. From these volumetric maps, we extracted the proteins molecular surface



using TexMol [25]. Next we collected a pointset sampling of the molecular sur-
face, and used the Cocone software for surface reconstruction and medial axis
computation [29]. The next step was to detect the critical points and compute
the stable/unstable manifolds of a subset of the critical points. These computa-
tions rely on the Voronoi Diagram - Delaunay triangulation of the pointset, and
were done using the CGAL library [30].

(a) (b) (c) (d)

1BBH (8 Å)

(e) (f) (g) (h)

1RIE (8 Å)

1MBN (5 Å) 1CID (8 Å) 1BP1 (8 Å)

1VDF (6 Å) 1JPC (8 Å) 1TIM (8 Å)

Fig. 6. Performance of our α-helix and β-sheet detection algorithm.

The calibration process is essential before we apply them to 3D EM maps of
unknown atomic descriptions. The datasets used in the calibration process are



summarized in Table 1. Details of the molecules are available from the Protein
Data Bank (PDB) via the pdbid. Figure 6 shows the snapshots of the key steps
of the algorithm. Figure 6(a) shows the U1 (green) and U2 (red) of 1BBH. The
clusters of points lying on U2, selected by the width criterion of α-helix, and the
axis of the cylinders to be fitted to the clusters are shown in Figure 6(b). Figure
6(c) shows the secondary structure of 1BBH documented in the PDB. It has
total 8 helices and all of them are detected correctly (green cylinders) by our
algorithm (Figure 6(d)). The second row in Figure 6 shows similar set of pictures
for 1RIE. It has three β-sheets which are identified correctly (red, yellow and
blue patches). Third and fourth row show the performance of the algorithm on
six more molecules at varying resolutions.

(a) (b) (c) (d)

1AOR (12Å)

(e) (f) (g) (h) (i)

1PLQ (12Å)

Fig. 7. Performance of the tertiary fold elucidation algorithm.

Figure 7 shows the performance of our tertiary fold detection algorithm. Top
row shows the secondary structure of 1AOR as provided by PDB along with
the ensemble of the segments of the protein at 12 Å. The tertiary structure of
1AOR is named as β sandwich. The two red segments (in c) correspond to the
two β-sheets. The bottom row shows similar results for 1PLQ (at 12 Å). The
tertiary fold elucidation can successfully separate the three sheets (red, yellow,
green) from the helices (blue).

6 Conclusions

We have presented an algorithm for secondary and tertiary fold elucidation of
a protein from 3D EM maps at varying resolutions. Similar constructions are
applicable for ultra-structure elucidation of RNA’s. The algorithms work by



analyzing the stable and unstable manifolds of a subset of the critical points of
the distance function, computed from the molecular surface pointset sampling
of the protein.

The algorithm presented in this paper relies on a suitable approximation of
the molecular surface. We plan to further investigate the choice of such surfaces
based on the bond lengths of the atoms present to narrow down the possible
range of selection.

Also we believe the critical points of hP which lie outside the molecular sur-
face, carry useful information about the tertiary structure. For example, pres-
ence of α/β barrels accommodate a through hole in protein surface which can
be characterized by exterior index-2 saddle points.
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