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Figure 1: The steps of the algorithm are shown on an example dataset CLUB. Starting with an input set of points sampled from the surface
(a), the medial axis in the interior of the shape is computed (b). The algorithm then detects the set of index 1 and index 2 saddle points lying
on the interior medial axis and computes the unstable manifold of these saddle points (c). The unstable manifold of an index 1 saddle point is
two dimensional (green) and the unstable manifold of an index 2 saddle point is one dimensional (red). The algorithm then collects the local
maxima lying on the boundaries of these two types of unstable manifolds and tag them as falling into two different categories. The stable
manifolds of these maxima are then used to map the 2-dimensional and 1-dimensional part of the medial axis back to the surface. The flat
portion on the surface is colored cyan and the tubular region is colored golden (e).

Abstract

We present an algorithm to identify the flat and tubular regions of
a three dimensional shape from its point sample. We consider the
distance function to the input point cloud and the Morse structure
induced by it on R

3. Specifically we focus on the index 1 and index
2 saddle points and their unstable manifolds. The unstable mani-
folds of index 2 saddles are one dimensional whereas those of index
1 saddles are two dimensional. Mapping these unstable manifolds
back onto the surface, we get the tubular and flat regions. The com-
putations are carried out on the Voronoi diagram of the input points
by approximating the unstable manifolds with Voronoi faces. We
demonstrate the performance of our algorithm on several point sam-
pled objects.
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1 Introduction

Problem and motivation. Many applications in shape model-
ing require to identify the salient features of a given shape. Some
of them such as assembly planning, feature tracking, animations,
structure elucidation of bio-molecules, human-body modeling ben-
efit from a semantic annotation of the features. One such natural
annotation is achieved by classifying the features as ‘tubular’ and
‘flat’. Obviously, this annotation is ambiguous since the feature-
space is a continuum resulting into features that cannot be sim-
ply classified as tubular or flat. Nevertheless, many designed and
organic shapes have pronounced features that are perceived to be
tubular and flat. We seek to identify these features using a topo-
logical method. The unstable manifolds induced by a shape dis-
tance function identify some one- and two-dimensional subsets of
the medial axis. The preimage of a function that maps the points on
the surface to the medial axis provides an association of the shape
to these one- and two-dimensional subsets. The preimage of the
one-dimensional subset is called tubular whereas that of the two-
dimensional subset is called flat. Our experimental result shows
that this classification can be effectively approximated for many
datasets in practice.

Previous results. Because of the significance of the problem,
quite a few work spanning various approaches have been reported
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in the literature. To mention a few, we refer to the curvature based
methods of [Várady et al. 1997] and [Mortara et al. 2004a; Mortara
et al. 2004b], the fuzzy clustering method of [Katz and Tal 2003],
the method based on PCA of surface normals by [Pottmann et al.
2004], the hybrid variational surface approximation by [Wu and
Kobbelt 2005] and the Reeb graph approach of [Shinagawa et al.
1996] and [Verroust and Lazarus 2000]. Remarkably the distance
function over R

3 which is defined by the distance to the bound-
ary of the shape has not been fully used for feature annotation. In
the context of surface reconstruction, topological structures induced
by distance functions have been analyzed by Edelsbrunner [Edels-
brunner 2002], Chaine [Chaine 2003] and Giesen and John [Giesen
and John 2003]. Chazal and Lieutier [Chazal and Lieutier 2004]
and Siddiqi et al. [Siddiqi et al. 1998] have used it for medial axis
approximations. Dey, Giesen and Goswami used the topological
structures induced by the distance function to segment a shape [Dey
et al. 2003]. However, this work stops short of using the topolog-
ical structures for feature annotations. In this paper we complete
this step.

Results. Given a compact surface Σ smoothly embedded in R
3,

a distance function hΣ can be assigned over R
3 that assigns to each

point its distance to Σ.

hΣ : R
3 → R, x 7→ inf

p∈Σ
‖x− p‖

In applications, Σ is often known via a finite set of sample points P
of Σ. Therefore it is quite natural to approximate the function hΣ by
the function

hP : R
3 → R, x 7→ min

p∈P
‖x− p‖

which assigns to each point in R
3 the distance to the nearest sample

point in P.

In this paper, we start with a finite sample P of Σ and identify the
index 1 and index 2 saddle points of hP from the Voronoi diagram
VorP and its dual Delaunay triangulation DelP of P. We then se-
lect only the saddle points of both indices which lie on the interior
medial axis of Σ and compute their unstable manifolds. The un-
stable manifold of index 1 saddle points (U1) are two dimensional
whereas those of index 2 (U2) are one dimensional. Exact computa-
tions of U1 is prone to numerical error. So, we present an algorithm
to compute them approximately. We then map the points belonging
to U1 and U2 back to Σ. The image of U1 under the mapping gives
the flat regions of Σ and that of U2 gives its tubular regions.

Thus, the main contributions of this paper are:

• Algorithms to compute the unstable manifolds of the index 2
saddles points of hP exactly and those of the index 1 saddle
points approximately,

• Identification of the tubular and flat features of Σ from its point
sample P via the unstable manifolds of the saddle points,

• Experimental results exhibiting the performance of our algo-
rithm on several point sampled objects.

The paper is organized as follows. In Section 2 we state some def-
initions and explain the terms such as Voronoi-Delaunay diagram,
induced flow, stable/unstable manifolds etc. In Section 3 we de-
scribe the relation between the Voronoi-Delaunay diagram of the
point set P and the induced flow. In Section 4 we describe the
structure of the unstable manifolds of index 1 and index 2 saddle
points and present an algorithm to compute them. In Section 5 we
give an algorithm to map the unstable manifolds back to the surface
to identify its flat and tubular features. In Section 6 we demonstrate

the results of our algorithm on several models ranging from CAD
objects to protein molecules. We conclude in Section 7.

2 Preliminaries

2.1 Voronoi-Delaunay Diagram of P

In this paper we always assume the distance metric to be Euclidean
unless otherwise stated. For a finite set of points P in R

3, the
Voronoi cell of p ∈ P is

Vp = {x ∈ R
3 : ∀q ∈ P−{p}, ‖x− p‖ ≤ ‖x−q‖)}.

If the points are in general position, two Voronoi cells with non-
empty intersection meet along a planar, convex Voronoi facet, three
Voronoi cells with non-empty intersection meet along a common
Voronoi edge and four Voronoi cells with non-empty intersection
meet at a Voronoi vertex. A cell decomposition consisting of the
Voronoi objects, that is, Voronoi cells, facets, edges and vertices is
the Voronoi diagram VorP of the point set P.

The dual of VorP is the Delaunay diagram DelP of P which is a
simplicial complex when the points are in general position. The
tetrahedra are dual to the Voronoi vertices, the triangles are dual to
the Voronoi edges, the edges are dual to the Voronoi facets and the
vertices (sample points from P) are dual to the Voronoi cells. We
also refer to the Delaunay simplices as Delaunay objects.

2.2 Induced Flow

The distance function hP induces a flow at every point x ∈ R
3. This

flow has been characterized earlier [Giesen and John 2003]. See
also [Edelsbrunner 2002]. For completeness we briefly mention it
here.

Critical Points. The critical points of hP are those points where
hP has no non-zero gradient along any direction. These are the
points in R

3 which lie within the convex hull of its closest points
from P. It turns out that the critical points of hP are the intersection
points of the Voronoi objects with their dual Delaunay objects.

• Maxima are the Voronoi vertices contained in their dual tetra-
hedra,

• Index 2 saddles lie at the intersection of Voronoi edges with
their dual Delaunay triangles,

• Index 1 saddles lie at the intersection of Voronoi facets with
their dual Delaunay edges, and

• Minima are the sample points themselves as they are always
contained in their Voronoi cells.

In this discrete setting, the index of a critical point is the dimen-
sion of the lowest dimensional Delaunay simplex that contains the
critical point.

Flow. For every point x ∈ R
3, let V (x) be the lowest dimensional

Voronoi object that contains x and D(x) be its dual. Now driver of
x, denoted as d(x), is defined as

d(x) = argminy∈D(x)‖x− y‖
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The direction of steepest ascent can be uniquely determined by a
unit vector in the direction of x−d(x). The critical points coincide
with their drivers. Now one can assign a vector v at every x with a
zero vector assigned at the critical points. The resulting vector field
is not necessarily continuous. Nevertheless, it induces a flow in R

3.
This flow tells how a point x moves in R

3 along the steepest ascent
of hP and the corresponding path is known as the orbit of x. We can
also define an inverted orbit of x where x moves in the direction of
steepest descent.

Stable and Unstable Manifolds. For a critical point c its sta-
ble manifold is the set of points whose orbits end at c. The unstable
manifold of a critical point c is the set of points whose inverted or-
bits end at c. The structure and computation of stable manifolds
of the critical points of hP were described in [Giesen and John
2003]. They can be computed from the Delaunay triangulations
of the given point sets though they may not be subcomplexes of
the Delaunay triangulations. For computational advantages they
are also approximated by Delaunay subcomplexes as in [Dey et al.
2003].

We are interested in computing unstable manifolds and their ap-
proximations. As the Delaunay and Voronoi diagrams, the struc-
tures of stable and unstable manifolds have a duality. Interestingly,
one can compute the unstable manifolds and their approximations
from the Voronoi diagrams. Here we state some of the facts about
the unstable manifolds of the critical points.

1. MAXIMA. The unstable manifold is the local maximum itself.

2. INDEX 2 SADDLES. The unstable manifold of an index 2 sad-
dle point is a polyline starting at the saddle point and ending
at a maximum.

3. INDEX 1 SADDLES. The unstable manifold of an index 1 sad-
dle point is a two dimensional surface patch which is bounded
by the unstable manifold of index 2 saddle points.

4. MINIMA. The unstable manifold of a local minimum is a
three dimensional polytope bounded by the unstable manifold
of critical points with higher indices.

In Section 4 the computation of the unstable manifold of index 1
and index 2 saddle points is described.

3 Flow on Voronoi Objects

Before we state the connection between the flow induced by hP
and the Vor-Del diagram of P, we would like to state some facts
about the relative position of Voronoi and Delaunay objects. These
relative positions can describe the nature of flows in the Voronoi
objects. These facts were clearly explained in [Edelsbrunner 2002]
for a more general setting of power distance.

Fact 1 The unoriented normal to the supporting plane of a Voronoi
facet is along its dual Delaunay edge and the plane passes through
the midpoint of the edge. The Delaunay edge, though, may or may
not intersect the dual Voronoi face.

Figure 2 illustrates the two possibilities that may arise. The left
figure corresponds to the situation that results in an index 1 saddle
point.

Fact 2 The supporting line of a Voronoi edge always intersects the
plane of the dual Delaunay triangle at its circumcenter and is along
its unoriented normal. The Voronoi edge may or may not intersect
the interior of the Delaunay triangle.

p qd

p q

index 1 saddle

Fsupporting
plane

F

Figure 2: Relative position of a Voronoi facet F with respect to its
dual Delaunay edge pq. The left picture shows the creation of an
index 1 saddle point. The right picture shows the position of the
driver d of F .

Figure 3 lists the four possible scenarios. The bottom right corre-
sponds to the generation of an index 2 saddle point.
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Figure 3: Relative position of a Voronoi edge e with respect to
its dual Delaunay triangle pqr. The blue circles denote the two
Voronoi vertices defining e. The driver of e is marked d and the
supporting plane of triangle pqr is drawn in cyan.

We have already seen that the critical points of hP can be computed
from VorP and DelP. Also, the driver of a point x comes from the
Delaunay object dual to the Voronoi object x lies in. In this context
we would like to state the following lemma which is key to the
further computations.

Lemma 1 All interior points of a Voronoi object have the same
driver.

This result can be easily proved by considering all the different
cases regarding the dimension of the Voronoi object and its posi-
tion with respect to its dual Delaunay object.
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By Lemma 1 and Facts 1 and 2 we can list the possible position of
the drivers of the points lying in the interior of a certain dimensional
Voronoi object.

Position of Drivers

Voronoi Cell

For a Voronoi cell Vp, the dual Delaunay object is a singleton set
containing the sample point p and therefore all points x in the inte-
rior of Vp has p as their driver.

Voronoi Facet

Consider a Voronoi facet in the intersection of Vp and Vq. The dual
Delaunay edge is pq and the midpoint of pq is the driver of all x
lying in the interior of the Voronoi facet (Figure 2(right) ).

Voronoi Edge

Next, consider a Voronoi edge in the intersection of Vp,Vq,Vr. As
Fact 2 and Figure 3 indicate, the infinite line segment containing
the Voronoi edge may or may not intersect the convex hull of p,q,r
leading to two different possibilities

Case 1.1 In case of intersection, the circumcenter of pqr is the
driver. Such Voronoi edges will be termed non-transversal
edges as the flow is along the edge itself. The Voronoi edge
has two Voronoi vertices as its endpoints. If both of them are
in the same half-space defined by pqr, the closer Voronoi ver-
tex is called source and the further one is called terminus of
the Voronoi edge because the flow is directed from the closer
to the further vertex. Figure 3 (top right) illustrates this case.

Case 1.2 If the Voronoi edge does not intersect the affine hull of
p,q,and r, the midpoint of the edge opposite to the largest an-
gle of pqr is the driver. These Voronoi edges will be termed
as transversal. If any point x moving along its orbit hits one
such edge, the position of the driver implies that it will en-
ter the Voronoi facet dual to the Delaunay edge opposite to
the largest angle in pqr. Such Voronoi facet will be termed
acceptor facets of that transversal Voronoi edge. Figure 4
illustrates the situation.

Voronoi Vertex

The case of Voronoi vertex again requires the analysis of two differ-
ent cases. We assume, that it is outside its dual tetrahedron because
otherwise it is a local maximum and hence is its own driver. Let v be
a Voronoi vertex with the dual tetrahedron σ whose four neighbors
are σi, i = 1 . . .4. Further, let the corresponding shared triangles be-
tween σ and σi be ti, i = 1 . . .4 where wi, i = 1, . . .4 is its opposite
vertex in σ .

Case 2.1 There is only one triangle ti of σ for which the Voronoi
vertex v and the opposite vertex wi lie in two different half-
spaces defined by ti. Let ei be the Voronoi edge between the
duals of σ and σi. Then, the driver for v (dual to σ ) is same
as the driver of ei. In such cases, ei is termed as the outgoing
Voronoi edge of v. See top row of Figure 5 for an illustration.

Case 2.2 There are two triangles ti, t j of σ for which the Voronoi
vertex v and the opposite vertex (wi and w j) lie in two different
half-spaces defined by the corresponding triangles. Let ei,e j
be the Voronoi edges defined as in Case 2.1. Note, in this case,
both ei,e j are the outgoing Voronoi edges of v. There are two
possibilities that we need to consider further.

Case 2.2.1 Both ei,e j are transversal: In this case the ac-
ceptors of both of them is dual to the Delaunay edge

e

F

F

F

1

3

2

Figure 4: Transversal Voronoi edge e is shown in red with three
incident Voronoi facets. Flow direction is shown with arrows. Flow
from either of F1 or F2 hits e and enters F3, the acceptor of e.

ti ∩ t j and the corresponding driver is the midpoint of
ti ∩ t j . See bottom-left subfigure of Figure 5.

Case 2.2.2 One of ei,e j is transversal: The driver is same as
that of the non-transversal Voronoi edge. See bottom-
right subfigure of Figure 5.

v

e e1 2 e1e
2

Figure 5: Possible driver positions of a Voronoi vertex v accord-
ing to the cases 2.1 and 2.2.(1− 2). The acceptor Voronoi facet is
shown in pink. The flow along a non-transversal Voronoi edge is
shown with a double arrow. The driver is shown in red circle.

In this context we state another lemma that is important for subse-
quent developments.

Lemma 2 Let F be an acceptor Voronoi Facet for the transversal
Voronoi edges e1 = (v1,v2) . . .ek = (vk,vk+1) around it.
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1. The Voronoi edges e1 . . .ek form a continuous chain around
F.

2. The Voronoi vertices v2 . . .vk fall in the category 2.2.1. The
Voronoi vertices v1 and vk+1 fall in the category 2.2.2.

3. F, e1 . . .ek, v2 . . .vk have same driver which is the midpoint of
the Delaunay edge dual to F.

We omit the proofs of all of the above claims.

4 Computing Unstable Manifolds

4.1 Unstable Manifold of Index-2 Saddle Points

In this section we describe the structure and computation of the
unstable manifolds of index 2 saddle points.

The unstable manifold of an index 2 saddle point is one dimen-
sional. In our discrete setting it is a polyline with one endpoint at the
saddle point and the other endpoint at a local maximum. The poly-
line consists of segments that are either subsets of non-transversal
Voronoi edges or lie in the Voronoi facets. Due to the later case, the
polyline may not be a subcomplex of VorP.

Let us consider an index 2 saddle point, c, at the intersection of
a Delaunay triangle t with a Voronoi edge e. Let the two tetrahe-
dra sharing f be σ1,σ2. The edge e has the endpoints at the dual
Voronoi vertices of σ1 and σ2, denoted as v1,v2 respectively. The
unstable manifold U(c) of c, has two intervals - one from c to v1
and the other from c to v2. We look at the structure of one of them,
say the one from c to v1, and the other one is similar.

At any point on the subsegment cv1, the flow is toward v1 from c.
Once the flow reaches v1, the subsequent flow depends on the driver
of v1. Instead of just looking at v1, we consider a generic step,
where the flow reaches at a Voronoi vertex v and we enumerate the
possible situations that might occur depending on the position of
driver of v. If v is a local maximum, the flow stops there, as the
driver of v is v itself. Otherwise there are two cases to consider.

• v falls into Case 2.1: Let the dual tetrahedron be σ and
the driver of v is same as that of the Voronoi edge e which
is between the dual of σ and one of its neighbors, say σ ′. If
e is non-transversal, the flow will be along the Voronoi edge
e till it hits the Voronoi vertex at the other endpoint (dual to
σ ′). Otherwise, the flow enters the acceptor Voronoi facet F
of e. Due to Lemma 2, the driver of F is same as the driver
of e. Therefore the next piece of the unstable manifold can be
uniquely determined by the driver of e, say d and the Voronoi
vertex v. It is the segment between v and the point where the
ray

−→
dv intersects a Voronoi edge of F .

• v falls under Case 2.2.x: This situation is similar to the one
described above. In case of both of the Voronoi edges being
transversal (Case 2.2.1), the flow enters the acceptor Voronoi
facet. In the other case (Case 2.2.2), the flow follows the non-
transversal Voronoi edge.

Some segments of U(c) are not along the Voronoi edges. Wherever
the flow encounters a transversal Voronoi edge, it seizes to follow
the Voronoi edge and enters a Voronoi facet which is acceptor for
that Voronoi edge. This calls for the analysis of the flow when
it crosses an acceptor Voronoi facet and hits a Voronoi edge. We
have already characterized the position of the driver for a Voronoi
edge and thereby classified those edges as either transversal or non-
transversal. If the current edge intersected by the ray from the driver

to v is a non-transversal edge, the flow will follow that Voronoi
edge and hit a Voronoi vertex. Otherwise, it will enter the acceptor
Voronoi facet of the Voronoi edge again. There is a technical dif-
ficulty we need to point out. Unless the acceptor for this Voronoi
edge is different from the Voronoi facet the flow came from, we
may encounter a cycle. The following lemma saves us from this
awkward situation.

Lemma 3 Let F be a Voronoi facet and let d be its driver. Let e
be a Voronoi edge for which F is acceptor and x be any point on e.
Also assume the ray from d to x intersects a Voronoi edge e′. If e′ is
transversal, the acceptor of e′ is different from F.

index 2 saddle

maximum

Figure 6: Unstable manifold U(c) of an index 2 saddle point c. c
is drawn with a cyan circle. The portion of U(c) which is a collec-
tion of Voronoi edges is drawn in green with intermediate Voronoi
vertices drawn in blue. The pink circle is a Voronoi vertex on U(c)
where the flow enters a Voronoi facet. The portion of U(c) which
lies inside the Voronoi facets is drawn in magenta. The transversal
Voronoi edges intersected by this portion of U(c) are dashed. U(c)
ends at a local maximum which is drawn in red.

Figure 6 shows an example of the unstable manifold of an index 2
saddle point.

Following the above discussion on the structure of U(c) we devise
the algorithm to compute the unstable manifold of an index 2 sad-
dle point c. We assume, the saddle point c carries the information
about the two neighboring tetrahedra σ1,σ2 and additionally we
have access to DelP which is used to evaluate the utility routines
like acceptor() , terminus() etc. The pseudo-code of the algorithm
is given in Figure 7.

4.2 Unstable Manifold of Index-1 Saddle Points

Unstable Manifold of index 1 saddle points are two dimensional.
Due to hierarchical structure, they are bounded by the unstable
manifold of index 2 saddle points. In this section we first describe
the structure of the unstable manifolds and then describe an algo-
rithm that computes an approximation of the unstable manifold of
an index 1 saddle point.

Let us consider an index 1 saddle point, c. This point lies at the
intersection of a Voronoi facet F and a Delaunay edge. For any
point x ∈ F \ c, the driver is c. For all such x, if they are allowed
to move in the direction of flow, they will move radially outward
and hit the Voronoi edges bounding F . Thus F is in U(c). Now we
analyze the flow when a point hits a Voronoi edge.

We have characterized the position of the drivers for a Voronoi edge
and we have also seen that depending on the driver, one can clas-
sify the Voronoi edges into two categories - transversal and non-
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UM INDEX 2(c)
1 U1 = cv1 and U2 = cv2
2 v = v1
3 end(U1) = v1
4 while (v is not a maximum) do
5 if(v is not a Voronoi vertex)
6 e = Voronoi edge containing v
7 if(e is non-transversal)
8 end(U1) = terminus(e)
9 U1 = U1 ∪ segment(v,end(U1)

10 v = terminus(e)
11 else
12 F = acceptor(e)
13 d = driver(F) = driver(e)
14 x =

−→
dv∩ e′ 6= /0, e′ is a Voronoi edge of F

15 end(U1) = x
16 U1 = U1 ∪ segment(v,end(U1)
17 v = x
18 else
19 if(v falls under Case 2.1)
20 e = outgoing Voredge (v)
21 repeat steps 7-17.
22 else if(v falls under Case 2.2)
23 F = acceptor(v)
24 repeat steps 13-17.
25 endwhile
26 Similarly compute U2.
27 return U1 ∪U2.

Figure 7: Pseudo-code for computation of unstable manifold of an
index 2 saddle point.

transversal. For a non-transversal Voronoi edge, the flow is along
the Voronoi edge. Such Voronoi edges lie on the boundary of U(c).
On the other hand, U(c) grows via the acceptor facets of transversal
Voronoi edges. Depending on the position of the driver, which by
Lemma 2 is same for both the edge and the acceptor facet, a trun-
cated cone defines the extension of U(c) into the acceptor Voronoi
facet. Consider the cone defined by the two rays emanating from the
driver and passing through the endpoints of the transversal Voronoi
edge. The intersection of the acceptor facet with the cone defines
the truncated cone. The truncated cone hits a continuous chain of
Voronoi edges in the acceptor facet. Some of them are completely
contained in the truncated cone and some of them are intersected
by the two rays and hence are partially contained in it. This chain
of edges defines the new boundary of U(c) through some of which
U(c) can be extended further recursively. Figure 8 shows an exam-
ple truncated cone in a Voronoi facet F by the driver d and the end
Voronoi vertices of the transversal Voronoi edge (green).

To compute U(c) accurately, one therefore needs to compute the
intersection of a ray and a line segment in three dimension. Such
computations are prone to numerical errors. Therefore, we rely on
an approximation algorithm that computes a superset of U(c). The
algorithm works as follows.

Starting from the Voronoi facet F containing c, we maintain a list of
Voronoi facets which are already in U(c) and a list of active Voronoi
edges which are transversal edges and lie on the boundary of the
current approximation of U(c). Through these transversal edges we
collect their acceptor facets and grow U(c). Instead of computing
the new set of active edges by an expensive numerical calculation of
ray-segment intersection, we collect all the transversal edges of this
new acceptor Voronoi facets. This way we grow U(c) recursively

p qd

F

(a) (b)

Figure 8: (a) Truncated Cone. Accurate computation selects only
the pink region from the yellow Voronoi facet as part of unstable
manifold of an index 1 saddle point c (not shown). (b) Snapshot of
approximate computation of U(c) at a generic stage.

till we have a set of Voronoi facets which are bounded by only a set
of transversal Voronoi edges.

Figure 8(b) illustrates an intermediate stage of this computation.
The index 1 saddle point c is contained in the blue Voronoi facet.
The yellow Voronoi facets are already in U(c). The red edges des-
ignate the static boundary as they are non-transversal and the green
edges designate the active boundary through which the pink facets
are included in U(c) in the later stage of the algorithm. Follow-
ing is the pseudo-code for this algorithm. Given an index 1 saddle
point c it computes an approximation of U(c). We assume c also
has information about the Voronoi facet F it is contained in.

APPROX UM INDEX 1(c)
1 U = F
2 B = Voronoi edges of F
3 while (B 6= /0) do
4 e = pop(B)
5 if (e is transversal)
6 U = U ∪ acceptor(e)
7 B = B∪unvisited edges of acceptor(e)
8 endwhile
9 return U .

Figure 9: Pseudo-code for approximate computation of unstable
manifold of an index 1 saddle point.

4.3 Classification of Medial Axis

In the previous two subsections we have described the structures of
the unstable manifolds of an index 1 and index 2 saddle points. We
have also given an accurate and an approximate algorithm to com-
pute them. Our goal is to identify the unstable manifolds near the
medial axis of Σ. Ultimately these manifolds are mapped back to
Σ for the feature annotation. For this we first compute a Voronoi
subcomplex that approximates the medial axis MΣ and then iden-
tify different regions of this approximate medial axis as the unsta-
ble manifolds computed by the two subroutines UM INDEX 2 and
APPROX UM INDEX 1.
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Before we describe our approach, we briefly mention a recent re-
sult by Dey, Giesen, Ramos and Sadri [Dey et al. 2005] where they
proved that under sufficient sampling of Σ by P, the critical points of
hP lie either close to Σ or close to MΣ. This motivates our approach.
Applying the same result, we filter out only the index 1 and index
2 saddle points near MΣ instead of Σ. Further, we consider only
the components of MΣ which lie in the interior of the solid bounded
by Σ. For this purpose we use the TIGHTCOCONE algorithm by
Dey and Goswami [Dey and Goswami 2003]. The implementation
of this algorithm is freely available in the public domain [Cocone
] along with the software for medial axis approximations which is
computed as a Voronoi subcomplex according to the algorithm by
Dey and Zhao [Dey and Zhao 2004]. For the purpose of reconstruc-
tion, any other reconstruction algorithm also could be used [Bernar-
dini et al. 1999; Bajaj et al. 1995]. Applying TIGHTCOCONE fol-
lowed by medial axis approximation we get the approximate inte-
rior medial axis of Σ. We perform the critical point detection only
within the Voronoi subcomplex that approximates this medial axis.
Let us call this set of index 1 saddle points C1 and that of index 2
saddle points C2. We then apply UM INDEX 2(c) for all c∈C2 and
APPROX UM INDEX 1(c) for all c ∈C1. U(c ∈C1) is two dimen-
sional and U(c ∈C2) is one dimensional. Therefore, by restricting
the unstable manifold computation only within MΣ we obtain two
subsets of MΣ. In the next section, we describe how this classifica-
tion can be mapped back to Σ for automatic identification of its flat
and tubular regions.

Figure 10: Removal of small patches in the tubular region via star-
ring. Magenta circles indicate the centroids of these patches, green
circles are the boundary vertices which connect a patch with a lin-
ear portion (red line) and cyan circle indicates where two different
patches join at a common vertex. Blue lines are the replacements
of these small patches obtained by the starring process.

Because of sampling artifacts, sometimes the interior medial axis in
the tubular regions have a few index 1 saddle points. The unstable
manifold of these saddle points need to be detected and approxi-
mated by lines. We partition the set C1 based on the connectivity
of their unstable manifolds via a common edge and every partition
creates a patch which is the union of the unstable manifolds of all
the index 1 saddle points falling into that partition. We further as-
sign an importance value based on the area of the patch and sort the
patches according to their importance. One could also employ other
attributes like diameter, width etc. to evaluate the importance. The
small clusters are then detected either by a user-specified threshold
value or by simply selecting the k-smallest clusters where k is also a
user-supplied parameter. These insignificant planar regions are then
approximated by a set of straight lines emanating from the centroid
of the patch to the boundary points which are connected to either a
polyline (green circles in Figure 10) or another patch (cyan circle
in Figure 10). We call this process starring.

The resulting one dimensional and two dimensional subsets of the
interior medial axis is shown in Figure 11. Left column shows the
approximate medial axis computed by [Dey and Zhao 2004]. The

right column shows the subset of medial axis captured by U(C2)
and U(C1).

Figure 11: Results of Medial Axis classification. Top row shows
the result for HEADLESS MAN. Two closeups have been shown to
highlight the planar clusters in the palm of the hand and the feet.
The closeup of hand has been rotated for visual clarity. The middle
row shows the result on HAND dataset and the bottom row shows
the result on a molecule data 1BVP.

5 Feature Annotation Algorithm

5.1 Mapping of Unstable Manifolds to Σ

There is a natural association between the medial axis MΣ and Σ
via the map φ : Σ → MΣ where φ(x) is the center of the medial ball
touching Σ at x. Following this map, any subset A ⊆ MΣ can be
associated with φ−1(A) ⊆ Σ. Let A1 and A2 be the closure of the
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unstable manifolds of index 2 and index 1 saddles in MΣ defined
by the distance function hΣ. Recall that, generically, A1 is one-
dimensional and A2 is two-dimensional. Ideally, we would like to
identify φ−1(A1) ⊆ Σ as tubular and φ−1(A2) ⊆ Σ as flat. As we
have an approximation of hΣ by hP, we compute these tubular and
flat regions for the unstable manifolds in the approximate medial
axis which we denote also as MΣ for convenience.

We face a difficulty to compute an approximation of the preimage
of φ from the approximate medial axis MΣ. We are interested in
computing an approximation of the preimage of M ′

Σ = A1 ∪A2 ⊆
MΣ under the map φ .

Unfortunately, this requires an expensive computation to cover the
entire M′

Σ which often spans a substantial portion of MΣ. A naive
approach is to take only a sample of M′

Σ, namely the Voronoi ver-
tices, and then associate them to P, a sample of Σ, via the Voronoi-
Delaunay duality. This also proves useless because M ′

Σ does not
contain all the Voronoi vertices and therefore many points in P can-
not be covered by this Voronoi-Delaunay duality.

It turns out that the distance function hP again proves to be useful
to establish a correspondence between Σ and M′

Σ. Recall that, the
stable manifold of a critical point is a collection of points whose
orbits terminate at that critical point. Let X and Y be the set of
maxima in A1 ⊆ M′

Σ and A2 ⊆ M′
Σ respectively. Consider the stable

manifolds of the maxima in X and Y . The points in P that are in
the stable manifolds of X are associated with the tubular regions
and those in the stable manifolds of Y are associated with the flat
regions. If a point belongs to the stable manifolds of maxima in
X as well as in Y , we tag it arbitrarily. These points belong to the
regions where a tubular part meets a flat part. Subsequently, every
triangle of the surface reconstructed by TIGHT COCONE is tagged
as flat or tubular if at least two of its vertices are already marked as
flat or tubular respectively.

Computation of stable manifold of maxima has been described in
[Giesen and John 2003] and its approximation was given in [Dey
et al. 2003]. We follow the approximate algorithm to compute the
stable manifolds of the local maxima lying on M′

Σ.

Figure 12: One dimensional subset of the interior medial axis is
drawn in red and the two dimensional subset of the medial axis
is drawn in green for the molecule data 1IRK. The right subfig-
ure shows the selection of local maxima of the distance function in
those two parts, colored accordingly.

Figure 12 shows the set M′
Σ of the molecule data 1IRK, and the

set of maxima belonging to that set and identified as linear or pla-
nar. The corresponding flat and tubular portions of the surface cap-
tured by the mapping via stable manifold of these maxima - colored
golden and cyan respectively - are shown in Figure 14. We col-
lected the protein from Protein Data Bank [Berman et al. 2000] and
blurred the molecule at a resolution 8 angstrom. Further we took

the vertex set of a suitable level set as the input to our program. We
verified the result with the existing literature in structural biology
and we have seen that the flat regions identified by our algorithm
correspond to the β -sheets of the protein molecule.

5.2 Annotation Algorithm

The modules described in the previous sections and subsections can
thus be combined to devise an algorithm for automatic feature an-
notation of Σ. We give the pseudo-code of this annotation algorithm
here.

IDENTIFY FLAT AND TUBULAR REGIONS(P)
1 Compute VorP and DelP.
2 Compute the interior Medial Axis MΣ

by TIGHTCOCONE AND MA (P)
3 C1 = set of index 1 saddle points lying on MΣ and

C2 = set of index 2 saddle points lying on MΣ,
4 A1 = A2 = /0
5 for all c ∈C2
6 A1 = A1∪ UM INDEX 2(c)
7 for all c ∈C1
8 A2 = A2∪ APPROX UM INDEX 1(c)
9 X = maxima in A1

10 Y = maxima in A2
11 ΣTubular = MAPPING VIA STABLE MANIFOLD(A1)
12 ΣFlat = MAPPING VIA STABLE MANIFOLD(A2)
13 return ΣTubular and ΣFlat.

Figure 13: Pseudo-code of the feature annotation algorithm.

6 Results

6.1 Implementation Issues

The algorithm works on the Voronoi-Delaunay diagram of the set
of sample points lying on the surface. To robustly compute the
Delaunay triangulation and its dual Voronoi diagram for the input
set of points we use the library CGAL [CGAL Consortium ] which
is freely available.

Even in CGAL-framework, we sometimes face the degenerate case
of five or more points being cospherical. This case has to be han-
dled with special care because only one Voronoi vertex is repeated
and therefore the flow along the Voronoi edges is not well-defined
anymore. To deal with such situations, we modify the algorithm
slightly. At the start of the algorithm we collect the sets of tetrahe-
dra which are cospherical. While computing the unstable manifold
of index 2 saddle points, if the polyline hits a Voronoi vertex whose
dual is a member of one such cospherical cluster, the algorithm
automatically advances through the non-degenerate Voronoi edges
which are dual to the triangles bounding the cospherical lump. This
degeneracy poses a more serious threat to the computation of un-
stable manifold of index 1 saddle points and at this stage, we do not
extend the manifold through any Voronoi edge whose dual Delau-
nay triangle is shared by two cospherical tetrahedra.

There are some parameters involved in the full feature annotation
process. For surface reconstruction and medial axis approximation
we used the software [Cocone ]. The parameters for these rou-
tines are described in [Dey and Goswami 2003], [Dey and Zhao
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2004]. For noisy inputs we replace TIGHT COCONE by ROBUST
COCOCNE and the parameters for that step are again described in
[Dey and Goswami 2004]. The rest of the algorithm requires only
one parameter k which is the number of flat regions to be output.

6.2 Performance

(a)
(b)

(c) (d)

(e) (f)

Figure 14: Performance of the feature annotation algorithm. The
models are (a) PIN, (b) MUG, (c) molecule 1CID (d) molecule
1IRK, (e) HAND, (f) ALIEN

Figure 14 shows the performance of the annotation algorithm on
six datasets. The datasets have been chosen to represent different
domains this algorithm can possibly be applied in. PIN is a CAD
dataset which has two tubular parts joined in the middle through a
flat portion. The algorithm can identify them correctly. Similarly
the method can correctly identify the handle as the tubular and the
body as the flat region for the MUG dataset. In the second row
we show the performance of our method on two protein molecules
obtained from Protein Data Bank [Berman et al. 2000]. We took the
crystal structure of these two molecules (PDB ID 1CID and 1IRK)
and blurred them with Gaussian kernel. We further took a level set
which represents a molecular surface and used the vertex set of that
isosurface as the input to our algorithm. The flat features identified

by our method correspond to the β -sheets of the secondary structure
of those two proteins. In the last row we show the result on two free
form objects containing both flat and tubular features. As we can
see, the palm of the HAND has been detected as flat whereas the
fingers have been detected as tubular. Our method can also capture
the major flat and tubular features of ALIEN.

We purposefully show the performance of the algorithm on ALIEN
as it brings forth the limitations of our algorithm. We see that a
portion of the arm has been identified as flat. This is because the
initial reconstruction phase could not separate the beginning of the
arm from the torso due to lack of sampling. Secondly, one of the
feet could not be fully identified as flat by our algorithm. This is
because the approximate medial axis, that we started with, is not
a close approximation of the true medial axis in that region, again
due to lack of sampling. Because of that, our method fails to col-
lect sufficiently many index 1 saddle points leading to incomplete
identification of flat features in that region.

Figure 15 shows the performance of our method on noisy dataset
HORSE. Instead of applying TIGHT COCONE, we first mark the in-
terior and exterior of the closed surface from its noisy point sample
by ROBUST COCONE ([Dey and Goswami 2004]) and then obtain
the interior medial axis and proceed further with the unstable man-
ifold computation and feature identification. Originally there were
some thin flat regions due to the unstable manifold of some index 1
saddle points near the hind legs which we filtered out by threshold-
ing in order to get a clean skeleton of the HORSE. In the rightmost
picture we see some white triangles near the ears. These triangles
appear as the mapping via stable manifold misses some points on
the surface in that portion.

6.3 Timings

The time and space complexity of the algorithm is dominated by
the complexity of Delaunay triangulation. We report the timings of
the entire execution into four major steps

1. Step 1: Building the Voronoi-Delaunay diagram of the point
set (Line 1 of Figure 13).

2. Step 2: Computation of interior medial axis. (Line 2 of Fig-
ure 13).

3. Step 3: Computation of unstable manifold of index 1 and
index 2 saddle points lying on the interior medial axis. (Line
3-8 of Figure 13).

4. Step 4: Mapping the maxima in the planar and linear portion
of the medial axis back to the surface. (Line 9-13 of Figure
13).

We built the code using CGAL [CGAL Consortium ] and gnu C++
libraries. The code is compiled at an optimization level −O2. We
run the experiments in a machine with INTEL XEON processor with
1GB RAM running at 1GHz cpuspeed. Table 1 reports the time
taken in the four steps of the algorithm for a number of datasets.
It is clear from the breakup of timing that the first two steps of
building the Delaunay triangulation and then computing the interior
medial axis are the two most expensive steps. For noisy datasets,
additionally ROBUST COCONE is used to obtain an initial in-out
marking. This step is comparatively inexpensive. For example, for
NOISY HORSE (48,000 points) this step only adds 10 sec to the
whole computation time which is approximately 100 sec.
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Figure 15: Results on Noisy Data.

# points Step 1 Step 2 Step 3 Step 4
object (sec.) (sec.) (sec.) (sec.)
1CID 5170 7.59 15.63 6.69 0.39
1IRK 13940 29.88 43.93 15.63 1

HEADLESS 16287 18.63 51.30 16.01 1.26
MAN
PIN 15530 15.73 41.4 21.53 0.92

CLUB 16864 20.54 47.3 19.83 1.24
MUG 27109 37.68 83.28 47.14 2.19
HAND 40573 53.48 120.16 40.67 2.69

P8 48046 33.46 136.59 39.97 3.22
1BVP 53392 148.18 159.52 62.19 3.53
ALIEN 78053 102.62 242.33 64.11 5.4

Table 1: Timings

7 Conclusions

In this work, we first described the structure of the unstable man-
ifold of index 1 and index 2 saddle points of the distance function
induced by a set of points sampled from a surface. We further used
this analysis to compute the unstable manifold of an index 2 sad-
dle point exactly and the unstable manifold of an index 1 saddle
point approximately. We then used the unstable manifold of index
1 and index 2 saddle points near the medial axis of the surface to
automatically detect the flat and tubular features of the shape.

We believe that this work will be useful in many areas of science
and engineering. One natural connection to structural biology is the
elucidation of secondary structural properties of protein molecules.
Secondary structure of a protein molecule is made up of a collec-
tion of α-helices and β -sheets. α-helices are tubular and β -sheets
are flat. The results of our algorithm on protein molecules have
been verified against the true structural information obtained from
Protein Data Bank [Berman et al. 2000] and the existing literatures
in structural biology. We have seen that our method can identify
the secondary structural motifs correctly. Often the applications in
structural biology require to elucidate the secondary structural in-
formation in the absence of atomic level representation of a protein
molecule. This is particularly the case when a protein molecule is
present in a larger assembly such as in virus capsid and the input
is obtained only at a resolution coarser than 4 angstrom via elec-
tron microscopy. This method will prove fruitful in analyzing the
secondary structural properties in such situations.

This work has triggered several questions. We have collected the

initial set of index 1 and index 2 saddle points only from the interior
medial axis computed by [Dey and Zhao 2004]. This is only an
approximation of the true medial axis. As a result, the collection
thus obtained often misses some critical points which are close to
the true medial axis but do not lie on the approximation. One needs
to devise an algorithm to collect all the critical points near the true
medial axis efficiently, say by the critical point separation algorithm
of Dey et al. [Dey et al. 2005]. Most likely this will improve the
performance of our algorithm.

The algorithm sometimes fails to collect a flat region completely as
can be seen from the feet of ALIEN in Figure 14. This is partly due
to the fact that we map the linear and planar regions of the medial
axis via the stable manifold of the maxima lying in those regions.
We apply the approximation algorithm of [Dey et al. 2003] to com-
pute the stable manifolds of the maxima. This method computes
these stable manifolds approximately as subcomplexes of DelP. To
improve the performance of our algorithm, while still maintaining
efficiency, we plan to investigate how we can use the exact com-
putation presented in [Giesen and John 2003] only for those local
maxima that border a one- and a two-dimensional region in the me-
dial axis.
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