
Time-Varying Contour Topology
Bong-Soo Sohn and Chandrajit Bajaj

Abstract—The contour tree has been used to compute the topology of isosurfaces, generate a minimal seed set for accelerated

isosurface extraction, and provide a user interface to segment individual contour components in a scalar field. In this paper, we extend

the benefits of the contour tree to time-varying data visualization. We define temporal correspondence of contour components and

describe an algorithm to compute the correspondence information in time-dependent contour trees. A graph representing the topology

changes of time-varying isosurfaces is constructed in real-time for any selected isovalue using the precomputed correspondence

information. Quantitative properties, such as surface area and volume of contour components, are computed and labeled on the graph.

This topology change graph helps users to detect significant topological and geometric changes in time-varying isosurfaces. The graph is

also used as an interactive user interface to segment, track, and visualize the evolution of any selected contour components over time.

Index Terms—Contour tree, level set topology, feature tracking, time-varying volume visualization.

�

1 INTRODUCTION

SCIENTIFIC simulations of today often generate large time-
varying scalar fields (i.e., real-valued functions). Com-

putational visualization techniques use modeling and
rendering methods to aid scientific discovery and calibra-
tion of simulations. This involves identification, extraction,
and quantitative analysis of features present in data which
are then visualized. Isosurface extraction or volume
rendering is a common way to visualize the evolution of
features in data. However, just rendering a sequence of
volumes or isosurfaces (i.e., level sets) does not explicitly
yield an effective visualization of its dynamic features. In
this paper, we describe an algorithm to compute corre-
spondence information of contours for all isovalues in time-
varying scalar fields. This allows us to interactively track
the topology changes of time-varying isosurfaces and to
extract additional quantitative information. For instance, in
a cosmological simulation which generates time-varying
density and temperature fields in the universe providing
information about the formation of galaxy clusters, we are
able to detect when and where an individual galaxy cluster
forms, disappears, splits, and merges with other clusters. In
addition, we can measure the extent to which a galaxy
cluster grows or shrinks. The images and videos of the data
are available on our Website [11]. Other examples of feature
tracking can be found in [16], [21].

The Contour Tree (CT) [6], [18] is useful for the

visualization of a scalar field. First, CT provides topological

information of a scalar field which is not directly obtained

from rendering techniques. Second, CT generates a minimal

seed set for efficient isosurface extraction [1], [27]. Third, CT

provides a user interface to segment and render each
individual connected component of an isosurface. How-
ever, CT is used for a single scalar field and its benefits are
limited to the visualization of a static scalar field. Our main
objective is to extend the benefits of CT to time-varying data
visualization.

The input to our approach is a time-varying scalar field
ff1; . . . ; fTg, where ft is a piecewise linear (PL) function
defined on the same simplicial domain mesh for each time t.
We constrain the domain to be a simply connected three-
dimensional volume. A contour tree CTt is constructed for
each time t and embedded on a 2D plane, such that the
y coordinate of each node in CTt is its function value. The
x coordinate of a node can be any arbitrary value. When an
isovalue w is selected, each intersection point ptk between CTt

and a line y ¼ w represents a connected component Ct
k of an

isosurface. We call a connected component of an isosurface
a contour.

Now, we consider two contour trees, CTt and CTtþ1, and
an arbitrary isovalue w. Intersection points can be obtained
from the contour trees. We represent correspondence
information with ptþ1

k fpt1; . . . ; ptng, meaning that each of
Ct

1; . . . ; Ct
n corresponds (evolves) to Ctþ1

k . Colors in Figs. 1a
and 1b depict the correspondence relationship. Since w is an
arbitrary value in an interactive application, it is difficult to
precompute the correspondence information for every
possible value of w. Fortunately, the correspondence infor-
mation of contours has enough coherence such that we can
store the same information over a range of isovalues. The
main idea is to label every edge in CTtþ1 with the
correspondence information for the entire range of isovalues.

Once this correspondence information is computed as a
preprocessing step, a graph showing the topology changes
of time-varying isosurfaces can be immediately constructed
for any selected isovalue. This graph is called the Topology
Change Graph (TCG). TCG is constructed by creating a node
for every intersection point and connecting each pair of
intersection points where their representative contours
correspond to each other (Fig. 1c). We label TCG with
additional quantitative information such as surface area

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

. B.-S. Sohn is with the Department of Computer Sciences, TAY 2.124, The
University of Texas at Austin, 1 University Station C0500, Austin, TX
78712-1188. E-mail: bongbong@cs.utexas.edu.

. C. Bajaj is with the Center for Computational Visualization, Department of
Computer Sciences, and the Institute for Computational Engineering and
Sciences, ACES 2.324, The University of Texas at Austin, Austin, TX
78712-1188. E-mail: bajaj@cs.utexas.edu.

Manuscript received 3 Jan. 2005; revised 14 Mar. 2005; accepted 16 Mar.
2005; published online 9 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0002-0105.

1077-2626/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

and volume of each contour. Some of the applications of
TCG are as follows:

. Dynamic Structure Extraction: One can determine
the topology changes of time-varying isosurfaces
(e.g., merge, split, create, disappear, and genus change of
contours).

. Feature Tracking: One can interactively segment,
track, quantify, and visualize the evolution of any
individual contours.

The main contributions of this paper are: 1) define the
temporal correspondence between contours, 2) create an
algorithm to compute the correspondence information in
time-varying contour trees, and 3) apply the correspon-
dence information to fast construction of TCG for any
selected isovalue.

The remainder of this paper is organized as follows:
After reviewing related papers in Section 2, we define the
temporal correspondence of contours and test conditions in
Section 3. In Sections 4 and 5, we describe an algorithm to
construct contour trees and compute correspondence
information in time-dependent contour trees. Section 6
describes how to construct a topology change graph. In
Sections 7 and 8, we compute geometric properties of
contours in a contour tree and build an interactive system to
segment and track the evolution of interesting contours,
respectively. We present experimental results and real-life
applications of TCG for dynamic structure extraction and
feature tracking in Section 9. Finally, in Section 10, we
conclude this paper.

2 RELATED WORK

Contour Tree. CT has been used in various fields such as
image processing and GIS [23], [25]. Our main interest is
using it in visualization. Van Kreveld et al. [27] described an

OðM logMÞ and OðM2Þ algorithm to construct a contour
tree from a 2D and 3D scalar field, respectively. The
function is defined on a simplicial mesh with M elements
and N vertices. Tarasov and Vyalyi [26] improved the time
complexity to OðM logMÞ in the 3D case. Carr et al. [6]
simplified Tarasov and Vyalyi’s algorithm to construct the
contour tree in all dimensions. The join tree and split tree
are constructed and merged to build the contour tree in
OðM þN logNÞ. Pascucci [17] computed Betti numbers of
contours to distinguish different topology of contours
within an edge of CT. The divide and conquer approach
[18] allows output-sensitive construction [8] of contour trees
from a function defined on a rectilinear grid and easy
extension to parallel implementation. Carr and Snoeyink [5]
used CT as an interface to display topological structures of
isosurfaces and segment individual contours in a scalar
field. They computed path seeds for each edge, which
generate a seed cell [1] necessary for rapid extraction of a
selected contour in runtime. CT evolves as the function
changes over time. Edelsbrunner et al. [10] combined the
evolving sequence of contour trees defined from continuous
space-time data into a single data structure. However,
utilization of this data structure in visualization applica-
tions is not addressed. In contrast, in this paper, we focus on
the development of interactive time-varying visualization
and quantification tools, as described in Sections 6, 7, and 8,
from the discretely evolving sequence of contour trees.

Isosurface Extraction in Time-Varying Fields. Visuali-
zation of time-varying fields has been a challenging
problem because of overwhelming data sizes and heavy
computation requirements. Time-based data structures [20],
[24] are used to minimize unnecessary I/O access and
support out-of-core isosurface extraction [7] in time-varying
fields. The high-dimensional isosurfacing approaches [3],
[28] consider time-dependent data in four-dimensional
space. First, a three-dimensional solid mesh fðx; tÞjfðx; tÞ ¼
wg is generated. Then, an isosurface at time t0, fxjtðxÞ ¼ t0g,
is extracted from the mesh.

Since the data sets are often large and contain many
timesteps, it is useful to automatically detect significant
timesteps and isovalues containing interesting features. The
contour spectrum [2] computes and shows geometric and
topological properties such as surface area, volume, and
gradient integral of isosurfaces over all isovalues and
timesteps. A similar interface, called contour plane [15],
displays the number of contours over all isovalues and
timesteps in a 2D plane.

Feature Tracking. Silver and Wang [21], [22] define a
feature in a volume as a region of interest which satisfies a
predefined thresholding criteria. After feature extraction,
they perform a correspondence matching test of features
based on the degree of overlap in order to track and
quantify the evolution of each isolated feature. Dynamic
events of the features are classified as continuation,
creation, dissipation, bifurcation, and amalgamation, which
can be depicted with a graph [19]. High-dimensional
isosurfacing can be applied to feature tracking [14]. The
correspondence relationship of contours can change only at
the value of critical points in three-dimensional and four-
dimensional functions. Based on the observation, the
correspondence test is performed for each interval of

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 15

Fig. 1. Evolution of three isosurfaces. An intersection point on an edge of
a contour tree represents a contour component. (a) By using precom-
puted correspondence information in time-dependent contour trees and
(b) a graph representing the topology changes of time-varying
isosurfaces is immediately constructed for any selected isovalue.
(c) Seed sets generated from the contour trees are used for rapid
extraction of the time-dependent surfaces of segmented contours. Note
that colors represent correspondence among intersection points in
contour trees, nodes of the graph, and contour components.

adjacent critical values, which allows efficient isosurface
tracking for every possible isovalue [13]. The process is
accelerated by limiting the test to the contour components
that are associated with a critical point. Our method
generates similar correspondence results, but we do not
perform such explicit tests for checking contour correspon-
dence. Our method also naturally allows us to track and
precompute the degree of contour overlap as we visit each
vertex in order. This is quite important for interactive
construction of TCG because runtime overlap computation
for large contours in every timestep would reduce the
interactivity.

3 CONTOUR CORRESPONDENCE

Given two isosurfaces It and Itþ1 from time t and tþ 1, a

correspondence test determines whether a contour Ct
k 2 It

corresponds (evolves) to a contour Ctþ1
k0 2 Itþ1. There are

several ways to define the contour correspondence as it is

difficult to know how an isosurface changes between the

two sampled timesteps without making some specific

assumption. We provide our own rule for the correspon-

dence test.
A region defined as XtðwÞ ¼ fxjftðxÞ � wg is termed an

object set. An object set consists of connected components,

called objects Xt
k. We can represent XtðwÞ ¼ fXt

1; . . . ; Xt
ng.

Similarly, we define Y tðwÞ ¼ fxjftðxÞ � wg ¼ fY t
1 ; . . . ; Y t

mg.
We term Xt

k an upper object and Y t
k a lower object for

convenience. A contour always has only one upper object

and one lower object which have the contour on the border.

For example, green regions A and B in Fig. 2 are the upper

object and lower object of Ct
1, respectively.

We define contour correspondence as follows:

Definition 1: Contour Correspondence. Consider two con-

tours, Ct
k and Ctþ1

k0 . Suppose Ct
k is on the border of an upper

object Xt
a and a lower object Y t

b , and Ctþ1
k0 is on the border of

Xtþ1
a0 and Y tþ1

b0 .

There is overlap between upper objects Xt
a and Xtþ1

a0 and

there is overlap between lower objects Y t
b and Y tþ1

b0 .

() Ct
k corresponds to Ctþ1

k0 , denoted as Ctþ1
k0 Ct

k (i.e.,

Ct
k and Ctþ1

k0 are the same contour at different timesteps).

Fig. 2 illustrates an example of the correspondence test.

There are two contours, Ct
1 and Ct

2, at time t, and three

contours, Ctþ1
1 , Ctþ1

2 , and Ctþ1
3 , at time tþ 1. Upper objects

of Ctþ1
1 and Ctþ1

2 overlap an upper object of Ct
1 and so do

lower objects. On the other hand, the upper object of Ctþ1
3

does not overlap the upper object of Ct
1 and Ct

2. The lower

object of Ct
2 does not overlap other lower objects. The

correspondence relationships of the contours are shown in

the red box of Fig. 2.
According to Definition 1, two large contours which have

even a small overlapping region will correspond. In

practice, this may not be desirable. We may add an

additional condition for the degree of overlap in the

definition such that the correspondence between contours

requires significant overlap between upper/lower objects.

The criteria of the significant overlap is determined as

V ðXt
a \Xtþ1

a0 Þ
minðV ðXt

aÞ; V ðXtþ1
a0 ÞÞ

;
V ðY t

b \ Y tþ1
b0 Þ

minðV ðY t
b Þ; V ðY tþ1

b0 ÞÞ
> �; ð1Þ

where � is a threshold value for specifying the degree of the

contour correspondence. V ðOÞ is a volume of an object O.

V ðA \BÞ is a volume of an overlapping region between

objects A and B. Fig. 3 provides an example for testing the

degree of overlap.
Definition 1 with (1) can be thought of as an extension of

feature correspondence [21] to contour correspondence in

the sense that they are based on overlap between related

objects. The definition is justified by the general observation

that the same objects of successive timesteps have sig-

nificant overlap, when time sampling is sufficient, and

successful real applications [16], [21].
One of the canonical ways to define the contour

correspondence is to construct a higher dimensional

function ft;tþ1 interpolated between ft and ftþ1 and check

whether Ct
k is continuously followed by Ctþ1

k0 in ft;tþ1.

However, this natural definition may also cause undesirable

matchings in practice, as shown in Fig. 4. We adopt

Definition 1 with (1) that gives flexibility in controlling

the criteria for the degree of contour correspondence. The

flexibility allows us to reduce the possibility of undesirable

matchings.

16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

Fig. 2. Contour correspondence test of two successive isosurfaces.

(a) and (b) Upper objects. (d) and (e) Lower objects. (c) and (f) Check

overlaps of upper and lower objects, respectively.

Fig. 3. Test for the degree of overlap. The overlapping region is colored
red. The remainder of objects are colored green and blue in time t and
tþ 1, respectively. (a) Overlap between upper objects of Ct

1 and Ctþ1
2 .

(b) Overlap between upper objects of Ct
1 and Ctþ1

1 . (c) Overlap between
lower objects of Ct

1 and Ctþ1
1 . Note that the degree of overlap in (a) is

small, while the degree in (b) and (c) is reasonably large. If we require
significant overlap (e.g., � ¼ 0:3), Ct

1 does not correspond to Ctþ1
2 , but Ct

1

corresponds to Ctþ1
1 .

4 CONTOUR TREES

The Contour Tree (CT) with a vertex set V and an edge set E
is defined from a scalar field f as follows: V consists of
critical points of f where a contour is created, merged, split,
and destroyed. We define a contour class as a maximal set
of continuous contours which do not contain the critical
points. An edge set E consists of edges connecting two
critical points where a contour class is created and
destroyed.

Our algorithm for computing correspondence informa-
tion between two contour trees is based on [6]. This
section provides high-level algorithm descriptions for
constructing and merging the Join Tree (JT) and Split Tree
(ST), which enable us to build CT. Since construction of JT
and ST is symmetric, we only describe the algorithm for
JT construction.

Starting from the maximum function value, we con-
tinuously decrease an isovalue w and incrementally mark
regions XðwÞ ¼ fxjfðxÞ � wg ¼ fX1; X2; . . . ; Xng on the
domain space, where Xk is a connected component. Each
connected component of the marked regions is concep-
tually the same as an upper object. As an isovalue passes
through the function value of a local maximum, called an
upper leaf, a new component is created. At this moment, a
JT node for the upper leaf is created. In the case of
ST construction, it is called a lower leaf. As an isovalue
passes through a joining saddle point, called a join, two or
more components are merged into one. A split is defined
similarly to the join. A new JT node for the saddle point is
created and edges connecting the new node and the node
for the latest critical point which belongs to the same object
are made. When w reaches the global minimum value, a
JT node is created and connected to the node for latest
critical point. In actual implementation [6], each vertex in a
domain mesh is marked in decreasing order based on the
function value, which causes the creation and, later, the
coalescence of upper objects. When a vertex is marked, the
vertex is connected to the lowest vertex of neighboring
objects, which finally forms JT.

The upper leaves of JT and lower leaves of ST are
successively deleted and adjacent edges of the leaves are
inserted to form an Augmented Contour Tree (ACT). CT can
be obtained by successively deleting regular vertices in ACT.

5 CORRESPONDENCE COMPUTATION

In this section, we present our algorithm to compute the
correspondence information of time-varying contours over
all isovalues as a preprocessing step. Let etk represent an

edge of CTt. The correspondence information is computed
by labeling an edge etþ1

k with a set of edges Et within a
function range ½fa; fb�. This means a contour represented by
an intersection point on etþ1

k evolves from a set of contours
represented by intersection points on etk0 2 Et for an
isovalue w0 2 ½fa; fb�. The goal is to label every edge in
CTtþ1 for the entire function range.

Definition 1 and the process to construct join/split trees
have an interesting relationship. The process of JT con-
struction is similar to checking for coalescence among
upper objects as an isovalue w decreases from the highest
function value. Given ft and ftþ1 on the same domain, we
start from the highest function value, gradually decrease the
isovalue, and mark the regions where the function value is
greater than the isovalue in ft and ftþ1 at the same time.
The marked regions form upper objects from time t and
tþ 1, which are created and later overlap each other. When
two upper objects from time t and tþ 1, Xt

a and Xtþ1
b ,

collide at a point xc and isovalue w0, Xt
a and Xtþ1

b begin to
have an overlapping area. Since the two upper objects grow
as an isovalue decreases, they always overlap with each
other after the collision. This relationship is exactly the same
for ST construction and checking the overlap of two lower
objects from time t and tþ 1. We use join and split trees of
ft and ftþ1 to compute the overlap information of upper
and lower objects over all isovalues. Since Definition 1
requires the overlap of upper objects and lower objects, we
must compute the intersection of the contour correspon-
dence information in JT tþ1 and STtþ1. Note that we use the
term collision and overlap for objects from different time
steps and merge for objects from the same timestep during
the growth of objects.

Fig. 5 shows the growth of upper objects in ft and ftþ1 on
the same domain when w is continuously decreased from
the maximum value. We use the same functions for Figs. 2,
3, 5, 6, and 9. Note that upper objects in time t and tþ 1 are
created and merged and collide with each other at certain
isovalues. At such critical points, correspondence relation-
ship of related objects are updated. Fig. 6 demonstrates that
JT, ST, and CT capture such topological changes.

There are five steps for computing contour correspon-
dence information in CTtþ1 (Fig. 6). Note that the definition
of contour correspondence is applied to the contour trees
over continuous ranges of isovalues. A point on an edge of
JT and CT represents an upper object and a contour,
respectively. In the rest of this paper, we refer to “a
contour/object represented by a point between an edge e
and the line y ¼ w for an isovalue w” as “a contour/object
with w on e” for brevity.

. Step 1: Assign an id to each edge in CTt.

. Step 2: Label each edge e in JT t=ST t with a set of
edges E of CTt. An upper/lower object with w on e
should contain the contours with w on e0 2 E on the
border.

. Step 3: Label each edge e in JT tþ1=ST tþ1 with a set
of edges E of CTt. An upper/lower object with w on
e in time tþ 1 should overlap upper/lower objects
in time t that contain contours with w on e0 2 E on
the border.

. Step 4: Convert the labeled JT tþ1=ST tþ1 into the form
of a contour tree,CTtþ1ðJT Þ andCTtþ1ðST Þ. Consider

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 17

Fig. 4. An example which shows the correspondence definition based on
the degree of overlap gives better matching than the definition based on
the contour continuity. (a) Three contours in time t and tþ 1. Each
contour in time t is slightly translated to the right in time tþ 1. (b) A
contour defined from higher dimensional function interpolated over time
[14]. Each contour in time t corresponds to every contour in time tþ 1
even though their interdistance is big.

that the upper/lower object represented by a point p0

of JT tþ1=ST tþ1 contains a contour represented by a
point p of the contour tree on the border. The label at p
should be the same as the label at p0.

. Step 5: Label each edge e of CTtþ1 with a set of
edges E of CTt such that a contour with w on e
evolves from a set of contours with w on e0 2 E. E is
computed as the intersection of labels (i.e., edge sets)
in CTtþ1ðJT Þ and CTtþ1ðST Þ.

Actual correspondence matching occurs in Step 3 because
Definition 1 requires the comparison of upper/lower objects
at time t and tþ 1. Steps 1, 2, 4, and 5 convert the label
information from CT to JT/ST or from JT/ST to CT.

Since the construction of JT and ST in Step 1 through
Step 5 is repetitive, we omit the case of ST in the algorithm
description. Overall algorithms for the five steps are
described in this section. Algorithm pseudocode is pro-
vided in the Appendix.

Step 1 is performed by the algorithm used for CT
construction described in Section 4. Step 2 processes each
vertex v of the domain mesh Mt in decreasing order based
on its function value. It can be thought of as traversing and
labeling JT in time t from the upper leaves to a global
minimum as an isovalue, w, decreases from the highest
function value. The label changes only at the critical point. If
v is a critical point, a node for JT t is created and connected

with its parent nodes, which belong to the same objects with
v. The label is updated in an incremental way. An edge id
for the destroyed contour class(es) is deleted from and an
edge id for the newly created contour class(es) is inserted
into the label (i.e., edge set) which is kept in the parent
vertex of v in JT t. The blue boxes of Fig. 6 provide an
example. Since the contour class e1 is destroyed and e2 and
e3, which belong to the same upper object, are created at
w ¼ ftðv1Þ, the label fe1g is updated into fe2; e3g at v1 in
JT t. In the same way, since e2 is destroyed at w ¼ ftðv2Þ, the
label fe2; e3g is updated into fe3g at v2.

Step 3 processes each vertex v of domain meshes Mt and
Mtþ1 in decreasing order based on the function value of v.
We assume the vertex positions and connectivity of domain
meshes are the same for each timestep. The regions
fxjftðxÞ � ftvðvÞg and fxjftþ1ðxÞ � ftvðvÞg are marked in-
crementally on Mt and Mtþ1 as each vertex v is processed. tv
is the timestep to which the vertex v belongs. Recall that the
marked region is conceptually the same as an upper object.
Upper objects in time t and tþ 1 grow for each iteration of
the vertex processing loop. It can also be thought of as
traversing the join trees and detecting overlap of upper
objects in time t and tþ 1 as w decreases, like in Step 2.
During a vertex processing loop, there can be three kinds of
events: 1) Two upper objects collide, one object from time t
and the other from time tþ 1, 2) contour topology changes

18 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

Fig. 6. Five steps for computing correspondence of contours in two contour trees.

Fig. 5. The growth of upper objects in time t (green) and tþ 1 (blue) as an isovalue decreases. Collision occurs between green and blue objects at
(b) and at (c). Between (a) and (b), two blue objects are created. Between (b) and (c), a contour on a green object is split. Blue objects merge at (d)
and (e).

in time tþ 1, and 3) contour topology changes in time t.
Events 2) and 3) cannot happen at v at the same time. Each
case is explained as follows.

As we process each vertex v in decreasing order, upper
objects increase in size. We need to check whether two
objects, Xt

k and Xtþ1
k0 , collide at a point xc during the growth.

Two objects that have already collided are not considered
for the test again. Because we use simplicial domain meshes
and PL interpolation, xc is always placed on an edge of the
mesh. To detect the collision, we check the neighboring
vertices of v for each iteration of the vertex processing loop.
If a neighboring vertex v0 is covered by and v is not covered
by an upper object from the other timestep of v, the collision
point xc on the edge (v; v0) and fðxcÞ is computed using the
function values at v and v0 in time t and tþ 1 (see Fig. 7a).
The label in JT tþ1 is updated when w passes through fðxcÞ
if the two objects which meet at xc have not collided yet.

The overlap of the two upper objects indicates that the
contours on the border of the two objects correspond to
each other. Therefore, a new node having fðxcÞ in JT tþ1 is
created and connected with a parent node. The label at the
collision point (red nodes in Fig. 6) is updated into the
union of labels (i.e., edge sets) of the two colliding objects.
We maintain a table indicating whether any combination of
two upper objects from time t and tþ 1 overlap or not
during Step 3 because we have to frequently check whether
any two upper objects overlap. In Fig. 6b, marked with the
dashed red arrow, collision occurs between green and blue
upper objects. The label (i.e., edge set), ;, on the point of
JT tþ1 is updated into the union of the edge sets, fe1g [;, on
the points in JT t and JT tþ1.

In order to specify the additional condition (1) for the
degree of overlap in contour correspondence definition, we
need to detect when the two collided upper objects
significantly overlap as specified by a predefined threshold
value instead of detecting the collision point xc. For the
detection, each object Xtþ1

k in time tþ 1 maintains a list of
objects in time t which have collided with Xtþ1

k and the
number of vertices in the overlapping region. Each object in
time t and tþ 1 maintains the number of vertices which
belong to the object, too. These numbers of vertices
approximate the volume of each object and an overlap
region. It is sufficient to measure the volume only at the

value of each vertex because there cannot be a vertex that
has a value between any two adjacent data values and, thus,
the degree of overlap does not change between the two
adjacent values. In each loop of vertex processing, we
update the numbers of the related objects and check
whether two objects which have collided start to have (or
lose) significant overlap. When they start to have (or lose)
significant overlap, we perform the same process for
updating the label as described in the previous paragraph.

If v is an upper leaf at time tþ 1, a new node n having
ftþ1ðvÞ is created. If there is already an upper object Xt

k at
time t in the place of v, n is labeled with the same edge set as
Xt
k. Otherwise, the label of n becomes an empty set. Also, if

v is a join at tþ 1, a new node n having ftþ1ðvÞ is created.
Since two or more objects are merged at v, n is labeled with
the union of edge sets for the merged objects and connected
to the parent nodes.

If v is an upper leaf at time t, the CTt edge id of the newly
created contour is inserted into the edge set of the object at
time tþ 1, which contains the point v. If v is a join, split, or
lower leaf at time t, then find objects Xtþ1

k at time tþ 1 that
overlap the object at time t, which v belongs to, and update
the edge set of Xtþ1

k . For other cases, a node’s edge set is
maintained until updated because of the above-listed
events. In Fig. 6, the topology of contours in time t changes
at the levels of green dashed arrows. Between Fig. 6b and
Fig. 6c, a contour on e1 of the green object is split into two
contours on e2 and e3. The blue object overlapping the green
object updates its label by subtracting fe1g and adding
fe2; e3g. This process is the same for other green dashed
arrows. At the join node of JTtþ1, the edge set is updated
into the union of the edge sets in the parent nodes.

Since one upper object may contain several contours on its
border, an edge in JT tþ1 corresponds to a set of edges in
CTtþ1. Using this property, the fourth step visits each edge of
JT tþ1 and copies its label to the corresponding edges in
CTtþ1. For example, in Fig. 7b, an edge in JT tþ1 corresponds
to two edges etþ1

1 and etþ1
2 of CTtþ1. Each label on this edge

computed from Step 3 is copied to etþ1
1 and etþ1

2 .
After Step 4, two contour trees with different labels

computed from JT tþ1 and STtþ1 are generated. The fifth
step visits each edge of CTtþ1 and computes the intersection
of edge sets (i.e., labels) in the two contour trees.

Time Complexity Analysis. N , M, and ct are the number
of vertices, tetrahedra, and critical points in ft, respectively.
The number of upper or lower objects at a certain isovalue
in ft cannot be greater than ct. The entire algorithm consists
of five steps.

. Step 1: OðN logN þMÞ. This is analyzed in [6], [18].

. Step 2: OðN logN þ ðctÞ2Þ.

. Step 3: OðN logN þM þ ðctÞ2 � ctþ1Þ.

. Step 4: Oððctþ1Þ2ctÞ.

. Step 5: Oððctþ1Þ2ðctÞ2Þ.
N logN is for sorting vertices and M is for visiting
adjacent vertices for each vertex. In Step 2, updating a
label when processing a critical point may take OðctÞ,
which makes the total complexity OðN logN þ ðctÞ2Þ. In
Step 3, collision can occur no more than ct � ctþ1 times
because there can be at most ct and ctþ1 objects at time t
and tþ 1, respectively. For each collision, we need to

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 19

Fig. 7. (a) Collision of two objects from time t and tþ 1 should occur at a

point xc on an edge of a mesh with a PL function. xc is computed from

the positions of v and v0 and the values ftðvÞ, ftþ1ðvÞ, ftðv0Þ, and ftþ1ðv0Þ.
(b) Example of Step 4: The labels fet1; et2g, fet1g, and ; of an edge in

JT tþ1 are copied to the corresponding edges, etþ1
1 and etþ1

2 , in CTtþ1.

compute the union of edge sets with OðctÞ time. The
complexities for other parts of Step 3 are minor. The total
cost for Step 3 is OðN logN þM þ ðctÞ2 � ctþ1Þ. In Step 4,
visiting each edge e of JT tþ1 takes Oðctþ1Þ. For each e,
there can be at most ctþ1 edges of CTtþ1 corresponding to
e. Also, there can be at most ct labels in e. Therefore,
Step 4 takes Oððctþ1Þ2ctÞ. In Step 5, we take intersections of
edges and their edge sets in the contour trees computed
from JT tþ1 and STtþ1. As a result of Step 4, CTtþ1ðJT Þ,
CTtþ1ðST Þ has at most ðctþ1Þ2ct edges. For each inter-
sected edge, we need to perform edge set (i.e., label)
intersection which takes OðctÞ. The cost for Step 5 is
Oððctþ1Þ2ðctÞ2Þ.

Processing Steps 4 and 5 is generally slow (see the timing
results in Section 9). Although a labeled CTtþ1 is an ideal
structure for capturing the temporal correspondence in-
formation, all the information in the labels of CTtþ1 is
embedded in the labels of JT tþ1 and STtþ1, which are the
output of Step 3. In runtime, every point ptþ1 in CTtþ1 can
be mapped to corresponding points ptJT and ptST on JT tþ1

and STtþ1, respectively, because a contour is contained by
one upper object and one lower object. The edge set (i.e.,
label) on ptþ1 of CTtþ1 can be computed by intersecting the
edge sets on ptJT and ptST . In practice, we perform only
Steps 1, 2, and 3 to save preprocessing time and maintain
labeled JT tþ1 and STtþ1 for runtime correspondence
queries.

6 TOPOLOGY CHANGE GRAPH

This section classifies topological events of time-varying
isosurfaces and describes a runtime algorithm to construct a
graph representing the topological events. When an
isovalue w is selected, isosurfaces for each time t are
defined as It ¼ fCt

1; . . . ; Ct
ng. Six topological events are

defined based on contour correspondence as follows:

. create: Ct
k is created in time t if no contour in

time t� 1 evolves to Ct
k.

. disappear: Ct
k disappears in time tþ 1 if no contour

in time tþ 1 evolves from Ct
k.

. merge: More than one contour in time t� 1 is
merged to form Ct

k at time t if they evolve to Ct
k.

. split: Ct
k is split in time tþ 1 if more than one

contour in time tþ 1 evolves from Ct
k.

. continue: Ct
k continues in time tþ 1 if only one

contour in time tþ 1 evolves from Ct
k.

. genus change: Ct
k changes its genus in time tþ 1 if

Betti numbers of a contour in time tþ 1 which
evolves from Ct

k are different from that of Ct
k. Betti

numbers can be precomputed for all contours [18].

The challenge in topology tracking of contours over time

is to find a correspondence between the contours of

consecutive isosurfaces It and Itþ1 for all t in the time

sequence. Using the algorithms described in Section 5, we

construct the contour trees CTt and CTtþ1. When we select

an isovalue w0 in runtime, we obtain the intersection points

between CTt and CTtþ1 and a line y ¼ w0. Each intersection

point in CTtþ1 represents a contour Ctþ1
k . Since correspon-

dence information is already computed for every edge of

CTtþ1, a point of CTtþ1 representing Ctþ1
k has an edge set E

(i.e., label). Therefore, Ctþ1
k evolves from a set of contours

with w0 on e 2 E. The genus change of a contour is detected

by comparing the Betti number of correlated contours. The

genus change event may occur together with other events

for a contour.
All the above topological events can be visualized via a

graph, called the Topology Change Graph (TCG). Each

contour Ct
k at time t is represented as a node Nt

k and a set

of such nodes St at time t are placed vertically. A sequence

of nodes S1; . . . ; ST are placed horizontally in time order

(Fig. 8b). If Ct
k evolves to Ctþ1

k0 , two nodes Ntþ1
k0 and Nt

k are

connected with an edge. This process is performed for all

contours in each timestep sequentially to construct TCG.

The Betti numbers are stored in each node as a property and

are used to detect the genus change of a contour. Typically,

Betti number 1 is of a particular interest as it indicates the

number of independent tunnels in a closed contour

manifold.
Fig. 8 demonstrates TCG construction from labeled

contour trees. When an isovalue w is selected in runtime,

two points in time t and three points in time tþ 1 are

identified. The points p1 and p3 have an edge set fe3g and

are mapped to the point on e3 in CTt. The label on ptþ1
2 is an

empty set; ptþ1
2 is mapped to no point in CTt. The mapping

of the points constructs the TCG.

20 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

Fig. 8. (a) Checking correspondence by using labeled contour trees.
(b) Topology Change Graph. Note that colors are used to show the
correspondence between the intersection points in contour trees and the
nodes in TCG. This result is consistent with the correspondence
relationship in Fig. 2.

Fig. 9. Quantification for contours in CTtþ1 of Fig. 6. (a) an edge e
divides a contour tree into a set of upper edges and a set of lower edges.
(b) The regions covered by a class of continuous contours correspond-
ing to e (blue), upper edges (red), and lower edges (green). (c) The
function Gðe; wÞ represents a geometric quantity of a contour on e for an
isovalue w.

7 TIME-VARYING QUANTIFICATION

In this section, we quantify the geometric features of
contour evolution. The geometric properties such as surface
area and volume for each contour are computed and labeled
in the topology change graph. This quantitative information
helps users find dynamic features of contour evolution and
isolate and track interesting contours. For example, the
nodes of the graph can be colored based on the surface area
or volume quantities. Users can guess which components
are significant and how a specific component evolves over
time by looking at the quantity changes. In many cases,
contours with small surface area/volume are considered
insignificant noise.

Conventional algorithms [21] extract features (e.g.,
contour surface) first and then compute the geometric
properties of the features. However, such approaches are
not suitable for interactive applications because surface
extraction is an expensive process. Our approach efficiently
precomputes the geometric properties of all possible
contours for each timestep. This allows accurate and real-
time evaluation of the properties for any selected contour.

Consider a 3D scalar field f defined on a simplicial mesh.
The area and volume of isosurfaces in an ith simplex can be
represented with a univariate B-spline function AiðwÞ and
ViðwÞ, respectively. When such functions for all simplices are
merged, two single B-spline functions, AðwÞ ¼

P
AiðwÞ and

V ðwÞ ¼
P
ViðwÞ, are constructed. If a user selects an isovalue

w0 as an interactive parameter, the area and volume of Iðw0Þ is
evaluated from the functions. We refer to [2] for a detailed
description of AðwÞ and V ðwÞ computation.

We can compute the area and volume of every possible
contour in a similar manner by using a contour tree. A class of
continuous contours represented by an edge e covers a region
(e.g., blue region in Fig. 9b). Let’s assume a set of simplices
Se ¼ fsðe;1Þ; . . . ; sðe;nÞg covers the region. An area and volume
function of a contour with w on e, Aðe; wÞ and V ðe; wÞ, is the
sum of a B-spline function for each simplex sðe;kÞ.

Aðe; wÞ ¼
Xn

k¼1

Asðe;kÞ ðwÞ:

Volume computation of a contour involves the entire
inside or outside region in addition to the region covered by
a contour class of e. The inside and outside regions are
identified by a set of upper edges or lower edges of e. An
edge e separates a contour tree into a set of upper edges and
a set of lower edges. See Figs. 9a and 9b.

V ðe; wÞ ¼
Xn

k¼1

Vsðe;kÞ ðwÞ þ
X

e02EðeÞ
Ve0 :

EðeÞ is a set of upper edges or a set of lower edges of e,
depending on the user’s choice on which side to take. Ve0 is a
volume of the region covered by a contour class of e0. Ve0 is
computed for each edge e0 2 EðeÞ and is used to computeP

e02EðeÞ Ve0 in an incremental way through the hierarchical
structure of a contour tree.

OnceAðe; wÞ and V ðe; wÞ are precomputed for each edge e
of a contour tree, the area and volume of any contour withw0

on e are quickly evaluated from Aðe; w0Þ and V ðe; w0Þ in
runtime (Fig. 9c). Each node in TCG can be colored based on

the geometric quantity of the contour the node represents
(Fig. 10c).

An algorithm to compute Se is as follows: Let e ¼ ðv1; v2Þ
such that fðv1Þ � fðv2Þ. First, we pick any seed cell c in e and
use a propagation method similar to [1]. This takes OðjSejÞ.

Input: CT , path seeds [5], e

Output: Se
1: c a seed cell in an edge e of CT ;

2: Enqueue c;

3: Visit(c);

4: while queue is not empty do

5: s Dequeue();
6: t GetFaces(s);

7: for each face ti of s, i ¼ 1; 2; 3; 4

8: if MinðtiÞ < fðv2Þ and MaxðtiÞ > fðv1Þ then

9: c tetrahedron sharing the face ti with s;

10: if c is not visited then

11: Enqueue(c);

12: Visit(c);

In the above pseudocode, GetFaces(s) returns the four
triangles of a tetrahedron s. Min(t) and Max(t) return the
minimum and maximum function values defined in the
triangle t. Line 8 in the code checks whether the triangle ti
overlaps with the continuous contour class of the edge e.
Visit(c) inserts the cell c into Se.

8 INTERACTIVE CONTOUR TRACKING

When time-varying isosurfaces have many evolving con-
tours including noise, users may wish to segment and

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 21

Fig. 10. Simulations of turbulent vortex structures. The color of a node in
(c) represents the surface area of a contour which corresponds to the
node. The marked nodes correspond to segmented contours.
(d) Transparent display of contour evolution. (a) Contour tree.
(b) Contour segmentation. (c) Topology change graph. (d) Segmented
contour tracking.

visualize a subset of contours. This allows the user to focus
on the evolution of interesting features. The topology
change graph combined with quantitative information is
used as an interface to help identify significant contours
and their dynamic patterns. In this section, we describe an
interactive algorithm to select and extract specific contours
and track their evolution over time.

We use a seed set propagation method [1] for contour
surface extraction. A seed set S is defined as a subset of all
cells, with the property that any isosurface component
intersects with at least one cell in S. One advantage to using
the seed set propagation method is its ability to segment a
single connected component of an isosurface. Since we use a
simplicial mesh and PL function, there can be at most one
piece of an isosurface in a cell. Starting from a contour
fragment in a seed cell, the propagation method incremen-
tally traces and triangulates the cells that contain the
remainder of the contour. Propagating a contour for each
seed cell constructs a complete isosurface. This process is
efficient because we can avoid visiting unnecessary cells
which is the main bottleneck of isosurface extraction.

CT is useful for generating a minimal seed set and
isolating individual contours. When a user selects a point
on an edge of CT, a seed cell that intersects with a contour
represented by the point is computed in runtime. The seed
cell is used for efficient extraction of the contour [5].

Consider TCG for an isovalue w0. When a user selects a
node Nt

k at time t in the graph, the point in CTt

corresponding to Nt
k is identified. A seed cell for this point

is computed and used for contour extraction. Edge
connectivity of the graph is used for tracking and display-
ing the evolution of a selected contour. Contours in time
tþ 1 represented by the nodes connected to Nt

k can be
quickly extracted in the same way as the extraction of Ct

k.
Tracking backward can be done in the same manner. Fig. 10
depicts this process.

9 RESULTS

We tested two time-varying data sets generated from
hemoglobin dynamics and turbulent vortex simulations.
The data sets are defined on rectilinear grids. We divided
each cubic cell into six tetrahedra because the algorithm
requires simplicial meshes. This cell decomposition reduces
the speed of the program and generates a few undesirable
artifacts [4] in the extracted surface. Visit our Website [11]
for additional details, including images, videos, and
descriptions.

The first time-dependent data set is an approximate
electron density map of a deforming hemoglobin molecule
(Fig. 11a). Goodsell’s Website [12] describes the hemoglobin
molecule and its dynamics. Hemoglobin is a protein that
binds to oxygen in oxygen-rich areas (lung) and releases the
oxygen in oxygen-poor areas (tissues). The hemoglobin
dynamics data set represents this oxy-deoxy process and has
30 timesteps with 1283 sized electron density map for each
timestep. As shown in Fig. 11, the contour tree (Fig. 11b) of
the density field (Fig. 11a) at time 1 indicates that the
hemoglobin molecule consists of four (two sets of identical)
polypeptide chains. A contour component of each chain is
constructed and visualized with a different color. Each

chain has a flat ring structure called a heme, which is the
active site in the oxy-deoxy process (Fig. 11e). The rest of the
polypeptide chain is called a globin. The contour tree
(Fig. 11b) shows the contour for each chain is divided into
three components: a heme (ring), iron, and globin. Using the
topology change graph, we can detect when and where the
oxygen is bound to and released from the heme group,
shown in Fig. 11d. We can also track, quantify, and
visualize the evolution of each heme group (Figs. 11e, 11f,
and 11g).

The other data set is a pseudospectral simulation of
coherent turbulent vortex structures [21] with a 1283

resolution and 33 time steps. Fig. 10 shows the result of
contour segmentation and tracking. When an isovalue 6.5 is
selected, a TCG is constructed (Fig. 10c) where each node is
colored with the surface area of its contour. A contour can
be segmented and interactively tracked over time using
TCG. The connectivity and colors of nodes are used to
detect topological and geometric changes of contours.

We measured the time for computing correspondence
information for two functions at timestep 1 and 2 on an
SGI ONYX 2 system with R12000 processors and 25GB main
memory. The timing results are summarized in Table 1. The
computation for each sequence of functions ðft; ftþ1Þ can be
done independently in a parallel system. The result shows
Steps 4 and 5 are computationally expensive. As we
mentioned in the time complexity analysis of Section 5, all
of the information in CTtþ1 is embedded in JT tþ1=ST tþ1,
which is the output of Step 3. Therefore, in practice, we can
perform only Steps 1, 2, and 3 to label JT tþ1=ST tþ1 for
preprocessing. In runtime, when the correspondence in-
formation of a contour is requested, we can compute it from
the labels of JT tþ1=ST tþ1.

Every runtime operation is performed at interactive
rates. The construction of a topology change graph,
quantification and tracking is completed in less than
0.1 sec for both data sets. Each of the three contour surfaces
in Fig. 10d is extracted in 0.28s, 0.28s, and 0.29s, where the
number of triangles are 12,025, 12,652, and 12,253, respec-
tively. Generally, the contour extraction time increases
linearly with the number of contour triangles.

10 CONCLUSION

We described an algorithm to compute correspondence
information in time-dependent contour trees. We used this
information to extend the benefits of a contour tree to
interactive and quantitative visualization of time-varying
scalar fields. First, we extracted a graph capturing the
topology changes of time-varying isosurfaces. Second, we
segmented, tracked, visualized, and quantified the evolu-
tion of user selected contours. Finally, we accelerated the
extraction of a contour surface by generating the seed cells
from each contour tree. We implemented an interactive user
interface which adopts the above three features and allows
users to detect significant topological and geometric
changes of time-varying isosurfaces.

APPENDIX

We provide pseudocodes for Steps 2, 3, and 4 in this section.

The functions “CreateNode” and “Connect” generate the

22 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

nodes and edges of output trees. The node is stored with its

function value. The output trees are labeled with appro-

priate edge sets, ESET, in time t and tþ 1. The ESET of an

edge in an output tree is determined when one of the two

nodes in the edge is created. Eðv1; v2Þ returns a CT edge id

for the location of ðv1; v2Þ. P(v) and C(v) return the parent

and child vertex connected to v in Augmented Contour Tree

(ACT) [6]. Note that P(v) or C(v) may return more than one

vertex if v is a join or a split. In such a case, the function “P”

or “C” is applied multiple times. We use an array Nt½v� to

store the latest node in a join tree, which belongs to the

same object with v at time t. ACTt is constructed during the

contour tree construction in Step 1.
In Step 2, the vertices of the domain mesh Mt are sorted

in increasing order and stored in an array va.

STEP 2

Input: ACTt, va

Output: JT tE—labeled JT t

1: for i nv� 1 to 0 // decreasing order

2: v va½i�;
3: if (v is upper leaf) then

4: n CreateNode(ftðvÞ; fEðv; CðvÞÞg);
5: if (v is join or split) then

6: n CreateNode(ftðvÞ,ESET(Nt[P(v)])

�fEðv; P ðvÞÞg þ fEðv; CðvÞÞg);
7: Connect(n;Nt½P ðvÞ�);
8: if (v is lower leaf) then

9: n CreateNode(ftðvÞ,
ESET(Nt[P(v)])�fEðv; P ðvÞÞg);

10: Connect(n;Nt½P ðvÞ�);
11: if (v is regular) then

12: Nt½v� Nt[P(v)];

13: else Nt½v� n;

In Step 3, the vertices of Mt and Mtþ1 are sorted in

increasing order and stored in an array va2.

STEP 3

Input: JT tE , ACTt, ACTtþ1, va2

Output: JT tþ1
C —labeled JT tþ1

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 23

TABLE 1
Timing Results for Correspondence Computation (Unit: Sec)

Fig. 11. Visualization of a hemoglobin molecule and its dynamics. In (c), each chain is segmented and colored. (f) and (g) show a heme group

composed of carbon (gray), nitrogen (blue), iron (yellow), hydrogen (not shown), and oxygen (red) atoms with different timesteps. Note that oxygen

bound to iron in (f) is released in (g). This phenomena is detected in the red circle of (d). (a) Volume rendering. (b) Contour tree. (c) Segmentation of

four polypeptide chains. (d) Topology change graph. (e) Four heme groups. (f) The heme group at time 1. (g) The heme group at time 4.

1: for i ¼ 2vn� 1 to 0 // vertex processing in decreasing
order

2: ðv; timeÞ va2½i�; // time = t or tþ 1.

// collision occurs

3: if collisions between object sets Xt and Xtþ1 occur

when w is decreased from fðva2½i� 1�Þ to fðva2½i�Þ
then

4: for each collision point xc between objects Xt
k and

Xtþ1
k0

5: lv1 LowestVtx(Xt
k);

6: lv2 LowestVtx(Xtþ1
k0);

7: n CreateNode(fðxcÞ,
ESET(Nt½lv1�)þESET(Ntþ1[lv2]));

8: Connect(n;Ntþ1½lv2�);
9: Ntþ1½lv2� n;

// contour topology changes in time tþ 1

10: if time ¼ tþ 1 then

11: if (v is upper leaf) then

12: n CreateNode(ftþ1ðvÞ,
ESET(Nt[LowestVtx(V2Xðv; tÞ)]);

13: Ntþ1[v] n;

14: if (v is join) then

15: n CreateNode(ftþ1ðvÞ,ESET(Ntþ1[P(v)]));

16: Connect(n;Ntþ1½P ðvÞ�);
17: Ntþ1[v] n;
18: if (v is split or lower leaf or regular) then

19: if (v2 is the lowest of the whole tree) then

20: n ¼ CreateNode(ftþ1ðvÞ,NULL);

21: Connect(n;Ntþ1½P ðvÞ�);
22: else Ntþ1[v] n;

// contour topology changes in time t

23: if time ¼ t then

24: if (v is upper leaf) then

25: if V2Xðv; tþ 1Þ 6¼ NULL then

26: n0 Ntþ1[LowestVtx(V2Xðv; tþ 1Þ)];
27: n = CreateNode(ftðvÞ; fEðv;C(vÞÞg+ESET(n0);

28: Connect(n, n0);

29: Ntþ1[LowestVtx(V2Xðv; tþ 1Þ)] n;

30: if (v is join or split or lower leaf) then

31: for each object Xtþ1
k0 in time tþ 1 which

overlaps the object, V2X(v; t), v belongs to
32: w LowestVtx(Xtþ1

k0);

33: n = CreateNode(ftðvÞ, ESET(Ntþ1[w])

� fE(v,P(vÞÞg þ fE(v,C(vÞÞÞg;
34: Connect(n;Ntþ1½w�);
35: Ntþ1[w] n;

LowestVtx(Xt
k) returns the vertex with the lowest value

which belongs to an upper object Xt
k. V2Xðv; t0Þ returns the

upper object at time t0 which covers the place of v. t0 is

either t or tþ 1. If no upper object at time t0 covers the place

of v, NULL is returned. We use a Union-Find data structure

[9] in order to maintain object membership for each vertex v

during above procedures. The data structure is used for

efficient implementation of the functions LowestVtx and

V2X [6].
The input of Step 4 is two join trees labeled differently.

We may apply Steps 1 and 2 to label a join tree, JT tþ1
E , in

time tþ 1. Let the output join tree generated from Step 3 be
JT tþ1

C .

STEP 4

Input: JT tþ1
C , JT tþ1

E

Output: CTtþ1ðJT Þ
1: ea sorted edges of JT tþ1

E

2: for i ¼ sizeofðeaÞ � 1 to 0

3: ðna; nbÞ two nodes of an edge ea½i�;
4: Decompose ðna; nbÞ ! ðna; n1Þ,ðn1; n2Þ; . . . ; ðnm; nbÞ

based on the labels of JT tþ1
C ; (see Fig. 7b)

5: for each ek 2 ESET(ea½i�)
6: Copy labels of ðna; n1Þ; . . . ; ðnm; nbÞ to ek.

The labels are taken from JT tþ1
C .

ACKNOWLEDGMENTS

The authors are grateful to A. Thane for developing the
CVC volume rendering tool (Volume Rover), K. Clarridge
for her help with the presentation, Dr. A. Shamir for helpful
discussions, Dr. D. Goodsell for providing the hemoglobin
dynamics data set, and Dr. V. Fernandez, S.Y. Chen, and
Dr. Silver for providing the vortex data set. This work was
supported in part by US National Science Foundation
grants ITR-ACI-022003 and ITR-EIA-0325550 and the US
National Institute of Health grants P20 RR020647-01 and
R01-GM074258-02.

REFERENCES

[1] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Fast Isocontouring for
Improved Interactivity,” Proc. 1996 Symp. Volume Visualization,
pp. 39-46, 1996.

[2] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “The Contour
Spectrum,” Proc. IEEE Visualization Conf., pp. 167-173, 1997.

[3] P. Bhaniramka, R. Wenger, and R. Crawfis, “Isosurfacing in
Higher Dimensions,” Proc. IEEE Visualization 2000, pp. 267-274,
2000.

[4] H. Carr, T. Möller, and J. Snoeyink, “Simplicial Subdivisions and
Sampling Artifacts,” Proc. IEEE Visualization Conf., pp. 99-108,
2001.

[5] H. Carr and J. Snoeyink, “Path Seeds and Flexible Isosurfaces
Using Topology for Exploratory Visualization,” Proc. IEEE TCVG
Symp. Visualization (VisSym), pp. 49-58, 2003.

[6] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in
All Dimensions,” Computational Geometry: Theory and Applications,
vol. 24, no. 2, pp. 75-94, 2003.

[7] Y.-J. Chiang, “Out-of-Core Isosurface Extraction of Time-Varying
Fields over Irregular Grids,” Proc. IEEE Visualization Conf., pp. 217-
224, 2003.

[8] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal
Output-Sensitive Construction of Contour Trees Using Monotone
Paths,” Computational Geometry: Theory and Applications, vol. 30,
no. 2, pp. 165-196, 2003.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 1990.

[10] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci,
“Time-Varying Reeb Graphs for Continuous Space-Time Data,”
Proc. ACM Symp. Computational Geometry, pp. 366-372, 2004.

[11] Website for Time-Varying Contour Topology, 2005, http://
www.ices.utexas.edu/~bongbong/time_analysis.

[12] D. Goodsell, “Hemoglobin: Cooperation Makes It Easier,” http://
www.scripps.edu/pub/goodsell/pdb/pdb41/pdb41_2.html,
2005.

[13] G. Ji and H.-W. Shen, “Efficient Isosurface Tracking Using
Precomputed Correspondence Table,” Proc. Eurographics-IEEE
TCVG Symp. Visualization, pp. 283-292, 2004.

[14] G. Ji, H.-W. Shen, and R. Wenger, “Volume Tracking Using
Higher Dimensional Isocontouring,” Proc. IEEE Visualization Conf.,
pp. 209-216, 2003.

24 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY-FEBRUARY 2006

[15] L. Kettner, J. Rossignac, and J. Snoeyink, “The Safari Interface for
Visualizing Time-Dependent Volume Data Using Iso-Surfaces and
Contour Spectra,” Computational Geometry: Theory and Applications,
vol. 25, nos. 1-2, pp. 97-116, 2003.

[16] W.S. Koegler, “Case Study: Application of Feature Tracking to
Analysis of Autoignition Simulation Data,” Proc. IEEE Visualiza-
tion Conf., pp. 461-464, 2001.

[17] V. Pascucci, “On the Topology of the Level Sets of a Scalar Field,”
Proc. 12th Canadian Conf. Computational Geometry, pp. 141-144,
2001.

[18] V. Pascucci and K. Cole-McLaughlin, “Efficient Computation of
the Topology of Level Sets,” Proc. IEEE Visualization Conf., pp. 187-
194, 2002.

[19] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, “Visualizing
Features and Tracking Their Evolution,” Computer, pp. 20-27, July
1994.

[20] H.-W. Shen, “Isosurface Extraction in Time-Varying Fields Using
a Temporal Hierarchical Index Tree,” Proc. IEEE Visualization
Conf., pp. 159-166, 1998.

[21] D. Silver and X. Wang, “Tracking and Visualization Turbulent 3D
Features,” IEEE Trans. Visualization and Computer Graphics, vol. 3,
no. 2, pp. 129-141, Apr.-June 1997.

[22] D. Silver and X. Wang, “Tracking Scalar Features in Unstructured
Datasets,” Proc. IEEE Visualization Conf., pp. 79-86, 1998.

[23] J.K. Sircar and J.A. Cerbrian, “Application of Image Processing
Techniques to the Automated Labelling of Raster Digitized
Contours,” Proc. Int’l Symp. Spatial Data Handling, pp. 171-184,
1986.

[24] P.M. Sutton and C.D. Hansen, “Isosurface Extraction in Time-
Varying Fields Using a Temporal Branch-on-Need Tree (T-BON),”
Proc. IEEE Visualization Conf., pp. 147-154, 1999.

[25] S. Takahashi, T. Ikeda, Y. Shinagawa, T.L. Kunii, and M. Ueda,
“Algorithms for Extracting Correct Critical Points and Construct-
ing Topological Graphs from Discrete Geographical Elevation
Data,” Computer Graphics Forum, vol. 14, no. 3, pp. 181-192, 1995.

[26] S.P. Tarasov and M.N. Vyalyi, “Construction of Contour Trees in
3D in OðN logNÞ Steps,” Proc. ACM Symp. Computational Geometry,
pp. 68-75, 1998.

[27] M.J. van Kreveld, R. van Oostrum, C.L. Bajaj, V. Pascucci, and D.
Schikore, “Contour Trees and Small Seed Sets for Isosurface
Traversal,” Proc. ACM Symp. Computational Geometry, pp. 212-220,
1997.

[28] C. Weigle and D.C. Banks, “Extracting Iso-Valued Features in
4-Dimensional Scalar Fields,” Proc. IEEE Symp. Volume Visua-
lization, pp. 103-110, 1998.

Bong-Soo Sohn is currently a PhD candidiate
in computer sciences at the University of Texas
at Austin. He received the BS degree in
computer science from Seoul National Univer-
sity, Seoul, Korea, and the MS degree in
computer sciences from the University of Texas
at Austin in 1999 and in 2001, respectively. His
research interests are in the areas of 3D
computer graphics, visualization, and multime-
dia processing.

Chandrajit Bajaj graduated from the Indian
Institute of Technology, Delhi, with the bache-
lor’s degree in electrical engineering in 1980 and
received the MS and PhD degrees in computer
sciences from Cornell University in 1983 and
1984, respectively. He is the CAM Chair in
Visualization Professor of Computer Sciences at
the University of Texas at Austin, as well as the
director of the Center for Computational Visua-
lization in the Institute of Computational Engi-

neering and Sciences (ICES). Prior to joining the University of Texas, he
was a professor of computer sciences at Purdue University and director
of the Purdue Center for Image Analysis and Visualization. Bajaj’s
research spans the areas of image processing, computer graphics,
geometric modeling, visualization, and computational mathematics.
Current research problems include denoising, reconstruction, and
compression algorithms for volumetric and time-dependent imaging,
as well as data structures that support multiresolution finite element
approximations of very large geometries and multiple function fields. He
is also involved in integrated approaches to computational modeling,
simulations, mathematical analysis, and interrogative visualization,
especially for dynamic biomedical phenomena. He has more than 200
publications, has written one book, and edited three other books in his
area of expertise. He is on the editorial boards for the International
Journal of Computational Geometry and Applications, the ACM
Transactions on Graphics, and ACM Computing Surveys. He is on
numerous national and international conference committees and has
served as a scientific consultant to industry. His research has been
supported by DOE, NASA, the US National Science Foundation, NIH,
and the Whitaker Foundation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SOHN AND BAJAJ: TIME-VARYING CONTOUR TOPOLOGY 25

