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Abstract 
In this paper we present a method for the multi-resolution comparison of biomolecular 
electrostatic potentials without the need for global structural alignment of the 
biomolecules.  The underlying computational geometry algorithm uses multi-resolution 
attributed contour trees (MACTs) to compare the topological features of volumetric 
scalar fields.  We apply the MACTs to compute electrostatic similarity metrics for a large 
set of protein chains with varying degrees of sequence, structure, and function 
similarity. For calibration, we also compute similarity metrics for these chains by a more 
traditional approach based upon 3D structural alignment and analysis of Carbo similarity 
indices. Moreover, because the MACT approach does not rely upon pairwise structural 
alignment, its accuracy and efficiency may make it particularly well-suited to large-scale, 
structural genomics-type efforts. The MACT method discriminates between protein 
chains at a level comparable to the Carbo similarity index method; i.e., it is able to 
accurately cluster proteins into functionally-relevant groups which demonstrate strong 
dependence on ligand binding sitesw.  The results of the analyses are available from 
the linked web databases http://ccvweb.cres.utexas.edu/MolSignature/ and 
http://agave.wustl.edu/similarity/.  The MACT analysis tools are available as part of the 
public domain library of the Topological Analysis and Quantitative Tools (TAQT) from 
the Center of Computational Visualization, at the University of Texas at Austin 
(http://ccvweb.csres.utexas.edu/software).  The Carbo software is available for 
download with the open-source APBS software package at http://apbs.sf.net/.   
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Introduction 
Structural genomics has led to a dramatically increased rate of biomolecular 3D 
structure determination, but relatively few methods have been developed for analyzing 
and interpreting all these structural data in terms of potential physiological functions and 
biochemical properties.  Effective biomolecular comparison and classification methods 
are important for the understanding of their structural and functional properties.  Typical 
protein comparison methods are usually based on the similarities of sequences [16] or 
the three-dimensional structures of biomolecular chains [11].  While such methods have 
proven to be very powerful for geometric comparison of protein structures, they lack a 
description of the chemical features in atomistic detail because some functions may 
arise from chemical heterogeneity that gives (in part) a particular protein structure its 
unique molecular function.  An alternative method of comparing biomolecules is to 
quantitatively calculate volumetric functions of their important properties and match 
those 3D functions.  The two most commonly used functions are molecular shape and 
electrostatic potential although other properties have also been used [19]. 
 
The electrostatic potential is an important characteristic of biomolecules and plays a 
critical role for interactions within and among biological structures.  The electrostatic 
potential of a biomolecule is generally computed from the atomic charges, radii, and 
dielectric characteristics of the biomolecule and solvent via numerical solutions of partial 
differential equations such as the Poisson-Boltzmann (PB) equation [4].  Electrostatic 
properties, especially those obtained by solution of the PB equation, have found a wide 
range of uses in the interpretation of biomolecular structure and functions [4]. 
 
Some effort has also been made to pursue more “informatics”-based approaches to the 
interpretation of electrostatic properties.  Much of this work includes identification of 
functionally-relevant residues in biomolecules by looking at electrostatic destabilization 
of conserved residues [17], highly shifted pKa values [41], clusters of charged residues 
[56], protein-membrane interactions [37], and other structural characteristics [52].  Other 
research has focused on comparisons of electrostatic potentials including global 
analyses of the biomolecular structure [35, 9, 37, 48, 34, 29, 33, 44, 40, 8, 50, 31, 43, 
32, 49] both in three-dimensional space over the entire biomolecular structure and at 
localized regions such as active sites [49, 6, 21].  While the past characterization of 
electrostatic properties of biomolecules has provided insight into a variety of 
biomolecular properties, previous applications focused only on a few quantitative 
measures of electrostatic properties and, with a few exceptions [8, 54], limited their 
studies to relatively small numbers of biomolecules.  However, with the proliferation of 
protein structures elucidated by structural genomics efforts and the burgeoning interest 
in understanding biomolecular interactions in a proteomics context, tools to facilitate the 
analysis of electrostatic properties across thousands of biomolecular structures will 
become increasingly important. 
 
In this paper, we present a new “MACT” method to align local regions of similar 
electrostatic potential and molecular structure in the absence of global structural 
similarity.  While electrostatics and molecular shape are not the sole determinants of 
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chemical specificity, we believe the current methods show promise for identifying 
regions of similar electrostatic potential between structurally-distinct biomolecules.   
Before presenting this new method, we will review some of the existing techniques for 
electrostatic comparison. 

Similarity index methods 
A standard method for comparing functions in numerical analysis is the application of 
various norms and inner products.  Many methods use the fact that solutions to the PB 
equation away from the location of point charges are square-integrable [25] implying 
finite inner products: 
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Similarity indices have been popular in QSAR studies [12, 13, 23] and the study of 
biomolecular electrostatics [50, 8].  The most popular metrics were introduced by 
Hodgkin et al [23, 12]  
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As can be seen from their definitions, these indices only differ by their choice of 
normalization; the Hodgkin index offers the advantage of distinguishing between 
functions which differ by a constant multiple, while the Carbo index provides a natural 
measure of the extent of orthogonality between two functions.  In both cases, these 
indices are essentially modified )(2 ΩL  inner products which return 1 for identical 
functions, -1 for functions which are different only by a constant multiple of 1, and 0 for 
orthogonal (i.e., unrelated) functions.  To prevent numerical instability due to the 
singular nature of the electrostatic potential near atomic point charges, the domain of 
integration )(Ω  is often chosen to be some space outside the union of biomolecular 
volumes [8, 50, 51]. 

Topology-based methods 
The Carbo/Hodgkin metrics are not invariant under transformations such as rigid body 
rotation or translation, and are therefore dependent on an initial accurate structural 
alignment.  While there are a number of tools available for structural alignment [11], 
including some based on electrostatics [49], the task of structural alignment is still 
computationally demanding.  Furthermore, the reliance of similarity index methods on 
structural alignment severely limits their applicability to the comparison of electrostatic 
properties for structurally-similar biomolecules. 
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Contour trees 
Another approach to developing comparison metrics is to exploit the topological 
signatures of  volumetric functions in the form of the contour spectrum [3] and dual 
contour trees (DCTs) [55].  DCTs are assembled by partitioning function domains into 
connected subdomains called interval volumes.  These interval volumes represent 
regions of the domain where the function values lie between two specific isovalues.  
The distribution of the connected interval volumes can represented by a dual contour 
tree (DCT) in which every connected interval volume becomes a node and two nodes 
are connected by an edge if the corresponding interval-volumes are adjacent (sharing 
the same contour at their boundaries).  The construction of a simple DCT is depicted in 
Figure 1. 
 
The DCT structure can be simplified by restricting it to a smaller functional range 
associated with a particular region of interest.  Often, only certain feature regions of the 
3D volume are important for comparing molecular structures, e.g. solvent-accessible 
regions near the surfaces of biomolecules which might influence the binding properties 
of other molecules.  As with the similarity indices, using a sub-range outside of the 
molecular surface removes instabilities due to divergence of the electrostatic potential 
near atomic charge positions.  DCTs can be further simplified by representation in a 
hierarchical multi-resolution form.  This multi-resolution form is constructed from a DCT 
by merging adjacent functional intervals (collapsing tree edges) such that each node 
corresponds to a larger range of the functional value.  Details are again available from a 
previous paper [55]. 
 
In order to quantitatively measure the similarities of multi-resolution DCTs, numerical 
attributes need to be defined for the DCT nodes.  In a previous paper [55], Zhang et al 
describe several affine-invariant geometrical, topological, and functional attributes which 
can be computed and saved in the DCT nodes.  When combined with the multi-
resolution approach described above, these attributed DCTs form the Multi-resolution 
Attributed Contour Tree (MACT) data structure.  For the current application, MACTs are 
assembled from DCTs constructed on solvent accessibility functions representing 
biomolecular shape.  Each node m  of the MACT is assigned a set of attributes based 
on the topology of its corresponding connected interval volume:  the normalized size of 
the interval volume, ( )V m ; the moments of inertia of the interval volume, ( )I m ; and the 
Betti numbers [22] of the interval volume boundaries, ( )B m .  Additionally, interval 
volume is then used to compute additional electrostatic potential attributes for the 
MACT, including:  local potential monopole, ( )P m ; dipole, ( )D m

r
; and quadrupole 

moments, ( )Q m .  Attributes only need to be calculated for the nodes in the finest level 
MACT because the attributes of a node in the coarser level of the hierarchy can be 
easily evaluated from the attributes of its children. 
 
The MACT’s are used to compute a similarity measure (score) for various biomolecules 
in an efficient manner [55].  In particular, the similarity score for two MACT nodes m  
and n  is the weighted average of the similarities of individual attributes defined above.  
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where the weights satisfy 0 1iw≤ ≤  and 1iw =å  control the relative importance of 
different attributes for comparison.  As expected, the maximum similarity score between 
two nodes is 1, which is achieved when they have exactly the same attributes.  
Additionally, the similarity score can also become negative when opposite electrostatic 
potential moments are encountered.  The weights were estimated  maximizing MACT 
scores for pairs of similar proteins (members of the same family and/or different X-ray 
structures) in a small subset of 20 proteins.  Specifically, the weights were chosen to 
maximize the ratio of the total similarity scores of sample pairs within the same families 
to that of different families.  The results presented in this paper were calculated with 
weights w1 = 0.03, w2 = 0.08, w3 = 0.21, w4 = 0.44, w5 = 0.1, and w6 = 0.14, where the 
electrostatic weights (w4, w5, w6) dominate the overall metric.   
 
The MACT’s facilitate the finding of matched node pairs in a hierarchical fashion based 
on their multi-resolution structures [55]. The similarity between two MACT’s is evaluated 
as the average of the similarity scores of DCTs at all levels, except for the coarsest one. 
This score is then used to measure the similarity between molecular structures with 
properties. 

Methods 

Biomolecular test set selection 
The Carbo and MACT similarity scores described above were calculated for a total of 
494 protein chains (full list are available from the linked web databases 
http://ccvweb.csres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/ 
based on the sequence-, structure-, and function-based subsets described below. 
 
Group I: Structure-based subset.  The ASTRAL database [14] was the starting point for 
this dataset.  In particular, we obtained a non-redundant set of approximately 5,400 
chains from the ASTRAL database indexed based on SCOP [24] assignments and 
containing less than 40% sequence identity between all pairs.  Three SCOP 
superfamilies were chosen from this set of 5,400 chains for the present analysis:  P-loop 
containing nucleotide triphosphate hydrolases (SCOP c.37.1; 112 members used), 
NAD(P)-binding Rossmann-fold domains (SCOP c.2.1, 108 members used), and 
immunoglobins (SCOP b.1.1, 75 members used).  Together, these superfamilies formed 
a structure-based subset of 295 proteins used in the current analysis. 
 
Group II.  Sequence- and function-based subset.  The second group of calculations was 
performed on a set of 199 protein chains assembled from several protein families.  First, 
sets of cholinesterase-like proteins (acetylcholinesterases, lipases, cholesterol 
esterases, haloalkane dehalogenases) and kinases (including titin, twitchin, mitogen-
activated, tyrosine, cyclin-dependent, casein, phosphorylase, and cAMP-dependent) 
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were taken from the CE database [46, 10, 45].  Additionally, we assembled sets of 
structures corresponding to the enolase, ferritin, and superoxide dismutase families 
studied by Livesay et al [32].   

Structure preparation and potential calculations 
Structures were compared at the chain level, thus allowing individual subunits of multi-
subunit proteins to be analyzed.  The PDB2PQR service 
(http://agave.wustl.edu/pdb2pqr/) [15] was used to prepare each structure for 
electrostatics calculations by repairing missing atoms, optimizing H-bonding networks 
[38], and assigning protonation states.  Charges and radii were assigned to each atom 
using the AMBER force field [47].  Of the 1557 original structures, 1415 (91%) were 
parameterized into formats acceptable for subsequent electrostatics calculations; the 
remaining 142 encountered various problems, including 19 entries with errors in the 
PDB format or unknown/unspecified residue types, 33 entries with unknown post-
translational modifications or covalently bound ligands, 31 entries with identical atom 
positions, and 59 entries with errors in residue composition (missing atoms) or 
numbering/labeling. 
 
Successfully parameterized structures were then processed by an input generation 
script to set-up the APBS electrostatics calculations.  The electrostatic potentials of the 
sample protein chains were computed using the freely-available APBS software 
package (http://apbs.sf.net/) [5] version 0.3.2 with a protein dielectric of 2, solvent 
dielectric of 80, ionic strength of 150 mM (NaCl), and grid spacing chosen for each 
protein system such that the grid was always finer than 0.5 Å.  

Similarity score calculations 

Carbo index calculations 
We used the implementation of the Carbo similarity index provided with APBS 0.3.2 [5].  
Carbo similarity index calculations were preceded by structural alignment of all chains 
using CE [46].  The resulting alignment translation and rotation information was used to 
superimpose the potentials and calculate the Carbo similarity index (see above) [13] 
using all potential values on the PB calculation grid outside the molecular surface.  A 
total of 243,911 non-unique pairs of chains were generated from this analysis.  Since 
the Carbo analysis provides symmetric similarity scores (e.g., comparing chain A to 
chain B gives the same result as comparing B to A), only the 122,266 unique similarity 
pairs (including self-comparisons) were used in the analyses described below.  A subset 
of the biomolecules was analyzed with the Hodgkin similarity index; the results were 
indistinguishable from the Carbo metric (data not shown). 

MACT calculations 
The implementation of the above MACT scoring and matching algorithms as described 
by Zhang et al [55] are available as part of the public domain library of the Topological 
Analysis and Quantitative Tools (TAQT) from the Center of Computational Visualization, 
at the University of Texas at Austin (http://ccvweb.csres.utexas.edu/software).  Unlike 
the Carbo indices, no alignment of the chains was necessary for this analysis.  For 
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these calculations, the solvent accessibility was represented by a cubic spline function 
[26] with a window of 0.3 Å around the standard van der Waals surface.  The van der 
Waals surface was defined by the union of atomic radii.  Unlike the electrostatic 
calculations, we used AMBER radii [47] inflated by 1.4 Å (roughly a water molecule 
radius) to focus comparison of electrostatic potentials on the region immediately outside 
the molecular surface, which is selected as the volume spanned by spline-based 
solvent accessibility values between 0.3 (more internal) to 0.7 (more external).  A total 
of 250,722 pairs were generated from the MACT analysis.  The MACT scores are not 
necessarily symmetric; therefore, the results were symmetrized by averaging ( ),A B  and 

( ),B A  pair results.  This averaging provided a total of 126,254 unique pairs; the average 

deviation between ( ),A B  and ( ),B A  pairs was 0.01 ± 0.02. 

Results 
The results of these electrostatic comparison analyses are summarized here.  All of the 
calculation data, analysis, and classification results, including visualization of structures, 
are available on-line as cross-linked web-accessible databases at 
http://ccvweb.csres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. 

Classification 
Several databases were used to provide classification of the chains during analysis of 
the results.  Enzyme Commission (EC) classes [39] were assigned to all chains using 
annotation from PDBsum [30] and UniProt [2].  These EC classes were also used to 
infer ligands for each chain using the KEGG database [27].  Ligands were identified for 
all biomolecules using annotation in the PDBsum database [30] and classified via their 
ChEBI ID [18] using the ChEBI chemical ontology.  To provide a more flexible 
mechanism for comparison, ChEBI IDs were clustered at the fifth level of the chemical 
ontology; e.g., at levels such as “nucleosides”, “monocarboxylic acids”, “lactones”, etc.  
Gene Ontology (GO) “molecular function” classes [20] were assigned using entries from 
the InterPro database [36].  Like the ChEBI IDs, these GO classes were clustered 
based on the fifth level of the molecular function ontology to provide a more general 
level of comparison; e.g. at descriptive levels such as “purine nucleotide binding”, 
“oxidoreductase activity, acting on…”, “transferase activity, transferring…”, etc.   

Score normalization 
Different numbers of score pairs were available for the Carbo and MACT similarity 
analyses due to the inability to align some protein chains with CE.  Therefore, the 
following analyses are limited to the 122,265 unique pairs of chains for which both 
MACT and Carbo results are available.  Scores from the Carbo and MACT similarity 
analyses had very different distributions; the Carbo scores had a mean value of 1.69 × 
10-2 and a standard deviation of 3 × 10-4.  The MACT scores had a mean value of 3.076 
× 10-1 and a standard deviation of 9 × 10-4.  To facilitate comparison of the results, raw 
scores were transformed into the following quantities: 

• ( )P S :  the observed probability of choosing a score that is greater than the given 
similarity score S  
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• ( ) ( )( )log 1E S P S= − − :  the expectation value of the given score 

• ( ) ( )1
SZ S S Sσ −= − :  the number of standard deviations Sσ  a given score S  

deviates from the mean score S  

Overall comparison 
There was very little correlation between the Carbo and MACT scores, even after 
transformation to the above scoring schemes; Pearson correlation coefficients were 
0.47 for S and Z, 0.53 for P, and 0.36 for E.  However, strong correlation between the 
scores should not be expected, as these two methods represent and compare global 
and local features of the electrostatic potentials in fundamentally different ways.  With a 
few exceptions [49], the Carbo method is used to provide a global comparison of 
potentials and therefore relies on the structural alignment of two chains.  As such, the 
Carbo-based analysis is expected to correlate strongly with CE scores (see Figure 2).  
On the other hand, MACT performs a more local analysis of the surface shape and 
potential and does not rely on external alignment methods and therefore does not 
necessarily correlate with CE score (see Figure 2). 

Clustering 
The protein chains were clustered using the CLUTO software package [28] using direct 
k-way clustering to divide the Carbo- and MACT-scored datasets into 5, 10, 20, 30, and 
40 clusters.  The detailed clustering results are provided on the website 
(http://agave.wustl.edu/similarity/).  As expected, increasing k gave clusters of better 
internal similarity and external dissimilarity; this behavior is demonstrated in Table 1. 
 
The purpose of clustering based on electrostatic similarity is to attempt to derive classes 
of similar proteins without prior knowledge of their functional role.  As such, we analyzed 
the clustering results in terms of the ChEBI, GO, and EC classes described above by 
calculating p-values for the appearance of each class in a cluster; these p-values 
represent the probability of randomly finding a cluster of the same size with the same or 
greater occurrences of the class.  In particular, the hypergeometric distribution [53] was 
used to describe the probability of sampling a certain number of class instances in a 
cluster without replacement.  The results of this analysis are also provided on the 
website (http://agave.wustl.edu/similarity/) and summarized in Table 2.  As this table 
demonstrates, each cluster has a substantial number of classes with significant 
representation ( )0.05p < .  Additionally, each cluster has a somewhat smaller number of 
unique classes – those which were not found in any other electrostatic cluster.  
Although there is significant variation in the number of assignments, most clusters were 
uniquely associated 2-3 EC categories, 1-2 GO IDs, and 1-2 ChEBI IDs. 

Subset comparison 
In addition to performing analysis on the entire set of results, we also analyzed subsets 
of protein chains based on sequence and structure similarity. 
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High sequence and structure similarity 
As an initial positive control, we compared Carbo and MACT scores for a subset of 
protein chains with greater than 60% sequence identity and less than 5 Å RMSD upon 
structural alignment.  Ignoring chain identities†, this resulted in a subset of 100 pairs of 
55 unique protein chains.  Using these sequence and structural criteria, each chain was 
paired with an average of 3 ± 3 other chains.  The results of this analysis are shown in 
Table 3 (“SeqStr” group).  Carbo scores were large and significant while MACT scores 
were largely non-discriminating.  This conclusion is supported by the global analysis 
above; Carbo scores were much more strongly correlated with RMSD and sequence 
identity than the MACT results. 

High structural similarity 
As a second control, the sequence-similarity constraint was removed to generate a 
larger subset of 494 (all) non-identical protein chains (36,983 unique pairs) with less 
than 5.0 Å structural RMSD.  Using this structural criterion, each chain was paired with 
an average of 150 ± 70 others.  The results of this analysis are shown in Table 3 (“Str” 
group).  When the constraint of high sequence identity was removed, both Carbo and 
MACT scores were relatively non-discriminating. 

Significant similarity scores – all chains 
Subsets of “significant” similarity scores were generated from pairs of non-identical 
chains with p-values less than or equal to 0.05. 
 
For Carbo scores, this criterion resulted in a set of 452 unique protein chains with 5,117 
significant pairs. The average structural RMSD was ( )3.50 0.02±  and sequence identity 

(%) was ( ) 11.99 0.02 10± × .  MACT scores for this group are presented in Table 3 (group 
“Carbo Sig”).  Each of the chains in the subset was assigned GO, EC, and ChEBI 
classes based on its partners’ low p-value values.  The unions of these assignments 
were taken as “predictions” of the true GO, EC, and ChEBI classes of the chain.  Each 
predicted class was also assigned a probability p based on the frequency of the class 
assignment in the database; classes with larger frequencies have greater chances of 
spurious association.  The results of predictions with 0.05p <  are given in Table 4 
(“Carbo Sig”).  The accuracy of each prediction was assessed by the size of the 
intersection between the predicted classes and the actual assignments.  The false 
positive rate was defined as 1 m Nα = −  and the coverage rate was defined as 

n Nβ = , where m  is the number of predictions, n  the size of the intersection, and N  
the number of actual classes.  False positive and coverage rates are shown in Table 4 
(“Carbo Sig”).  Carbo-based predictions resulted in a fairly high false positive rate for all 
assignments; however, the predictions also had a high coverage, indicating the answer 
was usually in the predicted results. 
 

                                            
† Defined for the purposes of this work as pairs with greater than 98% sequence identity or less than 1 Å 
RMSD. 
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For MACT scores, the significant similarity scores criterion resulted in a set of 474 
unique protein chains with 5,352 significant pairs.  Average pair-wise values for these 
significant pairs included:  structural RMSD ( )5.18 0.03±  and sequence identity (%) 

( ) 11.252 0.002 10± × .  Carbo scores for this group are presented in Table 3 (group “MACT 
Sig”).  As described above, each of the chains in the subset of significant MACT scores 
were assigned GO, EC, and ChEBI classes.  The predictions, true assignments, false 
positive rates, and coverage values are given in Table 4 (group “MACT Sig”).  As with 
the Carbo-based predictions, this method generally obtained the correct result; albeit 
with a high false positive rate. 

Significant similarity scores – low sequence and structure identity 
The previous analysis demonstrated that low p-value Carbo and MACT scores could 
accurately reproduce E.C., GO, and ChEBI classification.  However, it should be noted 
that such classification could have probably been determined without electrostatic 
analysis through sequence analysis via Pfam [7], PSI-BLAST [1], etc. or structural 
analysis via services such as CE [46], SCOP [24], or CATH [42].  Therefore, it is 
important to assess the ability of the Carbo and MACT electrostatic analyses to classify 
the properties of the protein chains in the absence of significant sequence or structure 
identity.  As such, we defined subsets of “significant” similarity scores with p-values less 
than or equal to 0.05 and further filtered these subsets to include only chains with 
structural RMSD greater than 4.0 Å and sequence identity less than 60%. 
 
For Carbo scores, this criterion resulted in a set of 298 protein chains with 974 unique 
pairs.  Average pair-wise values for these significant pairs included:  structural RMSD 
( )6.25 0.02±  and sequence identity (%) ( )7.42 0.02± .  MACT scores for this group are 
presented in Table 3 (group “Carbo SigLow”).  As described above, each of the chains 
in the subset of significant MACT scores were assigned “predicted” functional classes.  
These predictions, true assignments, false positive rates, and coverage values are 
given in Table 4 (group “Carbo SigLow”).  This group showed a high false positive rate 
while only capturing 40-50% of the true assignments in the predictions. 
 
MACT scores.  For MACT scores, this criterion resulted in a set of 462 protein chains in 
2,875 unique pairs.  The large increase over the Carbo set is due to the lack of 
structural alignment as a step in the MACT analysis.  Average pair-wise values for these 
significant pairs included:  structural RMSD ( )6.853 0.006±  and sequence identity (%) 

( )6.73 0.08± .  Carbo scores for this group are presented in Table 3 (group “MACT 
SigLow”).  As described above, each of the chains in the subset of significant MACT 
scores were assigned “predicted” functional classes.  These predictions, true 
assignments, false positive rates, and coverage values are given in Table 4 (group 
“MACT SigLow”).  Like the Carbo method, this group showed a high false positive rate 
while only capturing 40-60% of the true assignments in the predictions. 
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Discussion and Conclusions 
The above results demonstrate that MACT similarity metrics provide a reliable 
complement to Carbo similarity methods for biomolecules with very different structures 
where existing structural alignment methods are insufficient.  While both methods have 
very different overall dependences on structural RMSD and sequence identity, they 
were both sufficient to cluster protein chains into functionally-relevant groups.  
Furthermore, analysis of chains with statistically-significant similarity scores revealed 
pairings which had a number of functional attributes (GO, E.C., and ChEBI IDs) in 
common. 
 
However, MACT methods provide two very important benefits which are not available 
with the Carbo methods.  First, the MACT approach are affine-invariant - it does not 
require the structural alignment of biomolecules before electrostatic comparison.  This 
aspect of the MACT methods makes them much more suitable for detecting 
electrostatic motifs across structurally-diverse protein families.  Second, MACT methods 
are able to match electrostatic potentials at a local level – as such, they can detect 
locally-similar electrostatic motifs in the absence of global similarity.  This capability is 
useful for resolving ligand binding sites and other electrostatic features share by 
proteins with different global structural characteristics. 
 
We have described the initial application of MACT methods to demonstrate the ability of 
these methods to correctly cluster protein chains based on electrostatic properties in the 
presence and absence of obvious structure or sequence similarity.  The goal of this 
work was to demonstrate that these methods could provide a level of robustness 
equivalent to traditional Carbo or Hodgkin measures for comparison of electrostatic 
properties for biomolecules with very different structures. While the current results of 
MACT methods were obtained in the regions near the molecular surface defined by  
solvent accessibility functions,  we are implementing new algorithms to automatically 
construct volumetric functions representing the binding sites, i.e. pockets, on molecular 
surfaces. We will explore ways to further improve the results by using the pocket 
functions to specifically compare the electrostatic potential and other features of the 
binding sites. Furthermore, there are numerous possibilities for other applications of this 
pattern recognition methodology, including automated identification of ligand binding 
sites and incorporation of this information into docking algorithms. 
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Tables 
 
Table 1.  Statistics for k-way clustering of Carbo and MACT similarity scores.  “Internal similarity” is the 
average similarity between pairs of data within a cluster; “external similarity” is the average similarity 
between data inside and outside of a cluster. 

 
    Cluster Size 
 k Internal 

similarity 
External 
similarity 

Max Min Avg 

5 0.84 ± 0.06 0.60 ± 0.06 145 47 99 ± 3 
10 0.89 ± 0.03 0.56 ± 0.03 86 2 49 ± 4 
15 0.90 ± 0.02 0.56 ± 0.03 92 2 33 ± 4 
20 0.92 ± 0.01 0.60 ± 0.03 48 2 24.7 ± 0.5 
30 0.94 ± 0.01 0.63 ± 0.02 34 2 16.5 ± 0.5 

C
ar

bo
 

40 0.95 ± 0.01 0.64 ± 0.02 22 2 12.4 ± 0.7 
5 0.94 ± 0.02 0.84 ± 0.04 209 42 99 ± 3 
10 0.95 ± 0.02 0.85 ± 0.03 106 15 49 ± 6 
15 0.96 ± 0.01 0.84 ± 0.02 72 2 32.9 ± 0.5 
20 0.96 ± 0.01 0.85 ± 0.03 54 2 25 ± 2 
30 0.97 ± 0.01 0.86 ± 0.01 42 2 16.5 ±0.3 

M
A

C
T 

40 0.98 ± 0.01 0.86 ± 0.02 34 2 12.35 ± 0.06 
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Table 2.  Classification statistics within clusters for Carbo and MACT similarity scores.  All entries represent 
the number of hits.  Significant hits are classes with p-values less than 0.05 (see text).  Unique significant hits 
are classes with p-values less than 0.05 that are not present in any other cluster.  Shared hits are classes with 
p-values less than 0.05 which are shared by more than one cluster.  In total, there were 31 EC, 48 GO, and 54 
ChEBI classes with assignments to at least one chain. 

 
  OVERALL EC GO ChEBI 

  Sig. hits 
per cluster 

Sig. uniq. 
hits per 
cluster 

Shared 
hits 

Sig. hits 
per 

cluster 

Sig. uniq. 
hits per 
cluster 

Shared 
hits 

Sig. hits 
per cluster

Sig. uniq. 
hits per 
cluster 

Shared 
hits 

Sig. hits 
per cluster 

Sig. uniq. 
hits per 
cluster 

Shared 
hits 

 k Max Avg Max Avg  Max Avg Max Avg  Max Avg Max Avg  Max Avg Max Avg  

5 13 7 ± 8 8 4 ± 5 5 3 2 ± 2 2 1 ± 2 1 4 2 ± 3 4 2 ± 2 2 8 3 ± 4 6 2 ± 3 2 

10 11 6 ± 6 7 3 ± 4 10 2 1 ± 1 1 0.6 ± 0.7 2 4 2 ± 2 4 1 ± 2 5 8 3 ± 4 6 2 ± 3 3 

15 12 5 ± 6 5 3 ± 3 15 3 1 ± 2 2 0.4 ± 0.8 4 4 2 ± 2 3 1 ± 1 5 7 2 ± 3 3 2 ± 2 6 

20 12 5 ± 6 7 2 ± 3 20 3 1 ± 2 2 1 ± 1 5 4 2 ± 2 3 1 ± 1 7 7 2 ± 3 3 2 ± 2 8 

30 10 5 ± 5 9 2 ± 3 25 2 1 ± 1 2 0.4 ± 0.8 5 7 2 ± 2 7 1 ± 2 7 5 2 ± 3 4 1 ± 1 13 

C
ar

bo
 

40 10 4 ± 5 10 2 ± 3 28 3 1 ± 1 2 0.5 ± 0.8 8 7 2 ± 2 7 1 ± 2 8 5 2 ± 2 4 1 ± 1 12 

5 11 7 ± 8 8 5 ± 5 6 3 2 ± 2 3 1 ± 2 2 4 2 ± 3 2 1 ± 2 2 6 2 ± 3 4 2 ± 2 2 

10 10 6 ± 6 6 3 ± 3 12 2 1 ± 1 2 1 ± 1 2 4 2 ± 2 2 1 ± 1 2 8 3 ± 4 3 1 ± 2 8 

15 10 5 ± 6 7 3 ± 4 13 2 1 ± 2 2 1 ± 1 3 5 2 ± 3 3 1 ± 2 2 8 2 ± 3 4 1 ± 2 8 

20 10 5 ± 6 9 3 ± 4 13 2 1 ± 1 2 1 ± 1 3 6 2 ± 2 5 1 ± 2 3 8 2 ± 3 4 1 ± 2 7 

30 10 5 ± 6 8 3 ± 3 23 3 1 ± 1 3 1 ± 1 4 6 2 ± 2 5 1 ± 2 5 8 2 ± 3 4 1 ± 1 14 

M
A

C
T 

40 10 4 ± 5 8 2 ± 3 25 3 1 ± 1 3 1 ± 1 4 6 2 ± 3 5 1 ± 2 7 7 2 ± 2 4 1 ± 1 14 
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Table 3.  Carbo and MACT score results for subset comparison (see text for subset definitions).  Standard 
error in last digit is shown in parentheses. 

Cluster Carbo scores MACT scores 

 Raw (×101) Z P (×102) E (×102) Raw (×101) Z P (×102) E (×102) 

SeqStr 2.6(2) 2.6(2) 1.68(9) 1.7(1) 5.4(1) 1.01(5) 26(2) 4.3(3) 

Str 3.67(3) 0.217(4) 38.0(2) 73.8(5) 3.48(1) 0.179(6) 44.5(2) 86.4(4) 

Carbo Sig     5.34(2) 9.90(8) 23.5(1) 36.27(1) 

MACT Sig 0.734(5) 6.18(6) 23.7(3) 33.2(4)     

Carbo 
SigLow 

    5.4(1) 1.01(4) 21.7(7) 28.1(9) 

MACT 
SigLow 

4.027(6) 2.559(7) 31.9(1) 46.2(3)     
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Table 4.  Functional prediction performance for subset comparison (see text for subset definitions). 

  Carbo Sig MACT Sig Carbo SigLow MACT SigLow 

Predicted 11 ± 9 11 ± 6 9 ± 8 9 ± 5 

True 3 ± 2 2 ± 1 2 ± 1 2 ± 1 

False positive 0.7 0.8 0.8 0.8 C
hE

B
I 

Coverage 1 0.5 0.5 0.5 

Predicted 4 ± 4 4 ± 3 4 ± 4 4 ± 3 

True 0.5 ± 0.5 0.5 ± 0.5 0.6 ± 0.5 0.6 ± 0.5 

False positive 0.8 0.9 0.9 0.9 E
C

 

Coverage 1 1 0.5 0.5 

Predicted 6 ± 4 6 ± 3 4 ± 4 5 ± 3 

True 1 ± 1 1 ± 1 1 ± 1 1 ± 1 

False positive 0.8 0.8 0.8 0.8 G
O

 

Coverage 1 1 0.4 0.6 
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Figures 
(a) (b)

 
Figure 1.  A simple example of a potential-based DCT. (a) A fictitious 2D electrostatic potential a model 
amino acid; colors correspond to potential value from deep red (very negative) to deep blue (very positive).  
(b) The DCT constructed from connected sub-domains of the potential; DCT nodes are color-coded to 
correspond with the appropriate potential sub-domains in (a).  
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Figure 2.  Dependence of Carbo and MACT Z-scores on CE alignment RMSD and alignment sequence 
identity; please see text for more details on these comparisons. 
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Appendix 
 

In this appendix we describe the MACT matching algorithm used in this paper. 
Interested readers please refer to [55] for more details. The major steps of the algorithm 
are:  
 

1. Compute a contour tree (CT) for volumetric functions representing molecular 
shapes, e.g. solvent accessibility functions. 

 
2. Construct the finest level dual contour tree (DCT) from the CT in step 1.  
 
3. Compute the geometrical, topological, and functional attributes for the nodes in 

the DCT.  
 
4. Build a multi-resolution hierarchy of the attributed dual contour tree (MACT) by 

merging adjacent functional intervals.  
 
5. Match two MACT’s and compute their similarity score.   

 
The contour tree (CT) was introduced to find the connected contours of level sets of 
volumetric functions. The topology of a level set changes only at the critical points of the 
function.  The CT captures the topological changes of the level sets for entire range of 
the function of interest.  Each node of the tree corresponds to a critical point of the 
function and each arc corresponds to a contour class connecting two critical points. A 
cut on an arc 1 2( )v v, of the tree by an isovalue 1 2v w v£ £  corresponds a connected 
contour of the level set ( )L w . Due to the large number of critical points in molecular 
functions, CT’s are usually too complex to be compared directly.   
 
A dual contour tree (DCT) can be constructed by partitioning arcs of a CT into sets of 
connected segments, each of which corresponds to a connected interval volume of the 
function domain.  These interval volumes represent regions of the domain where the 
function values lie between two specific isovalues.  The distribution of the connected 
interval volumes contains important information about the original function. Each 
connected interval volume becomes a node in a DCT and two nodes are connected by 
an edge if the corresponding interval volumes are adjacent (sharing the same contour at 
their boundaries). A DCT can be constructed from a given CT as following: 
 

1. Divide the functional range [ ]min maxf f,  of a scalar function f  into N  intervals, 
which cut the CT arcs into segments in N ranges.  

2. For all cut arc segments of CT in range ( )1i i N≤ ≤ , we use a Union Find data 
structure to assign them into disconnected sets. Each set of connected arc 
segments becomes a node of DCT at level i . 

3. If there exists in a node n  at level i  an arc segment one arc segment that is 
connected to that of another DCT node m  at level 1i − , a DCT edge is insert 
between n  and m .  
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The DCT provides a simpler representation of the original function than the CT by 
eliminating small undulations in the function.  On the other hand, significant features like 
high mounds and deep pits are preserved in the DCT. We can concentrate on the 
important regions of molecular structures by restricting the DCT to a smaller functional 
range of particular interest, e.g. solvent-accessible regions near the surfaces of 
biomolecules.   
 
In order to quantitatively measure the similarities of DCT’s, we define some geometrical, 
topological, and functional attributes for the DCT nodes. The function used to represent 
the molecule shapes and construct the DCT is called shape function. Additional 
volumetric functions, e.g. electrostatic potentials, can be treated as properties defined 
on the shapes and used for computing functional attributes of the DCT nodes. Each 
node m  of the DCT is assigned a set of attributes based on the geometry and topology 
of its corresponding connected interval volume:  the normalized size of the interval 
volume, ( )V m ; the principal values of the moments of inertia of the interval volume, 

( )I m ; and the Betti numbers [22] of the interval volume boundaries, ( )B m .  Additionally, 
interval volume is then used to compute additional electrostatic potential attributes for 
the MACT, including:  local potential monopole, ( )P m ; dipole, ( )D m

r
; and quadrupole 

moments, ( )Q m .   
 
In order to facilitate the comparison of attributed DCT’s, they can be further organized in 
a hierarchical multi-resolution form. This Multi-resolution Attributed Contour Tree 
(MACT) is constructed from a fine DCT by merging its adjacent functional intervals. 
Without loss of generality, we assume that the finest DCT D  has 2kN =  intervals. The 
DCT at the next coarser resolution would have / 2N  intervals, each of which is merged 
from two of the finer DCT. A set S  of connected DCT nodes in the two combined 
intervals are merged into a single node n  in the coarser DCT. This can be achieved 
again by using a Union Find data structure. The node n  is called the parent of nodes in 
the set S , which are the children of n . The merging process can be recursively applied 
to the coarser DCTs until there is only a single interval spanning the entire functional 
range under consideration.  If a DCT is constructed using a restricted functional range, 
there may be multiple nodes even in the coarsest DCT because the regions of interest 
may have many disconnected components. However, most of those nodes are very 
small in size and can be pruned as noises. The attributes of a node in the coarser level 
of the hierarchy can be easily evaluated from the attributes of its children. 
 
The MACT matching algorithm is applied from the coarsest to the finest level of the 
hierarchies, where we assume that the MACT’s to be compared have the same number 
of levels.  The matching algorithm attempts to find the maximal set of matched MACT 
node pairs between two MACT’s M  and M ′ . The MACT nodes m M∈  and n M ′∈ of a 
matched pair must satisfy following conditions: 

• The nodes m  and n  don’t belong to any other pairs.  
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• m  and n  must belong to the DCT’s of the same resolution, i.e. im D M∈ ⊂  and 

in MD ′∈ ⊂′ , where iD and iD′  have the same number of functional intervals.  

• m  and n  must belong to the same functional interval of iD  and iD′ .  

• The parents ( )p m  of m  and ( )p n  of n  are also a matched pair ( )( ) ( )p m p n,  in 
the coarser DCT’s. The only exception is level 0, at which nodes have no 
parents.  

We use a greedy algorithm to find the maximal set of matched node pairs, starting from 
level 0 of the hierarchies. The steps to match the DCT iD MÌ  and iD M¢ ¢Ì  at 
resolution level i  ( 0i … k= , , ) are as follows,  

1. Add all nodes of the DCT iD  into a priority queueQ , in which the nodes are 
ranked by their volumes.  

2. Remove the node m  with the highest priority from Q . Search for the best 
matched node n  from possible candidates in the other DCT iD ¢, constrained by 
the conditions mentioned above. The best match should have the highest score 
similarity m n,  (defined below) weighted by their average volumes.  

3. If a node n  is found, the pair ( )m n,  is added to the set of matched pairs at 
resolution level i  and n  is also removed from future consideration.  

4. Repeat step 2 and 3 until the queue Q  is empty or no more candidates in iD′ .  

5. Calculate the similarity score ,i iD D¢  by using the pairs of matched nodes in 
level i . 

6. Repeat the steps 1 to 5 from level 0i =  to k . Calculate the similarity score 
,M M ¢  as the similarity score of two biomolecules.  

 
For two nodes m  and n  in a matched pair, the similarity score is the weighted average 
of the similarities of individual attributes defined before:  

1 2

3 4

5 6

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m n w V m V n w B m B n

w I m I n w P m P n

w D m D n w Q m Q n

, = , + ,

+ , + ,

+ , + , ,

 

  
 

where the weights satisfying 0 1iw≤ ≤  and 1iw =å  control the relative importance of 
different attributes for comparison. The individual terms in the equation above are 
computed as following:  
 

• ( )
( ) ( )

max ( ) ( )( ) ( ) 1 V m V n
V m V nV m V n -

,, = - : the similarity score of the volumes. 
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• 2 min( ( ) ( ))1
3 max( ( ) ( ))0

( ) ( ) i i

i i

m n
m ni

B m B n b b
b b

,
,=

, = å : the similarity of the Betti numbers of lower 

and upper boundaries.  
• 1 2 3

1 1

max ( ( ) ( ) )
max( ( ) ( ))( ) ( ) 1 j j jI m I n

I m I nI m I n = , , -
,, = - : the similarity of the moment of inertia.  

• ( ) ( )
max( ( ) ( ) )( ) ( ) 1 P m P n

P m P nP m P n -
,, = - : the similarity of the integrals of properties.  

• ( ) ( )
max( ( ) ( ) )( ) ( ) 1 D m D n

D m D nD m D n | |−| |
| |,| |, = − : the similarity of the dipole moments.  

• ( )
1 2 3

1 1

max ( ) ( )
max ( ) ( )( ) ( ) 1 j j jQ m Q n

Q m Q nQ m Q n = , , -
,, = - : the similarity of the quadrople moments.  

 
The maximum similarity score between two nodes is 1, which is achieved when they 
have exactly the same attributes.  Additionally, the similarity score may also become 
negative when opposite electrostatic potential moments are encountered. The similarity 
score between the DCT’s D  and D′  is computed as weighted average of scores of 
matched node pairs:  

 
1( ( ) ( ))
2 i i i i

i
D D V m V n m n¢, = + × , ,å   

where ( )i im n, , im D∈  and in D∈ ′ is a matched pair and  the weights are the sum of 
their normalized volumes. So larger interval volumes have bigger contributions to the 
score. The similarity between MACT’s M  and M ′  is evaluated as the average of the 
similarity scores of DCT’s from resolution level 1 to k :  

 
1

1 .
k

i i
i

M M D Dk =
¢, = , ¢å   

The similarity score ,M M ¢ , which clearly satisfies 1M M ′, ≤ , is used to measure the 
similarity between the molecular structures with properties and compute results in this 
paper. 
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