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Abstract

We use various nonlinear partial differential equations to efficiently solve several surface modelling pro
including surface blending,N -sided hole filling and free-form surface fitting. The nonlinear equations use
clude two second order flows, two fourth order flows and two sixth order flows. These nonlinear equati
discretized based on discrete differential geometry operators. The proposed approach is simple, efficient
very desirable results, for a range of surface models, possibly having sharp creases and corners.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We use various partial differential equations (PDE) to solve several surface modelling problem
PDEs we use include the mean curvature flow, the averaged mean curvature flow, two fourth ord
face diffusion flow and quasi surface diffusion flow) and even higher order flows. All these equatio
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nonlinear and the geometry is intrinsic, i.e., the PDEs do not depend upon any particular param
tion. The problems we solve include surface blending,N -sided hole filling and free-form surface fittin
with high order boundary continuity.

For the problems of surface blending andN -sided hole filling, we are given triangular surface mes
of the surrounding area. Triangular surface patches need to be constructed to fill the openings enc
the surrounding surface mesh and interpolate the hole boundary with some specified order of co
For the free-form surface fitting problem, we are possibly given a set of points, or a wire frame of
that defines an outline of the desired shape, or even some surface patches. We construct a surfa
interpolates the points or curves or the boundaries of the patches with specified order of continu
free-form surface fitting problem is the most general, including the surface blending andN -sided hole
filling problems, as its special cases.

Our twofold strategy for solving these problems is as follows: First we construct an initial tria
lar surface mesh (“filler”) using any of a number of automatic or semi-automatic free-form mod
techniques (see (Bajaj and Ihm, 1992; Bajaj et al., 1993; Greiner, 1994; Peters and Wittman
Xu et al., 2001)). One may also interactively edit this “filler” to meet the weak assumptions for a
tial solution shape. This “filler” may be bumpy or noisy, and in general this “filler” does not satisf
smoothness boundary conditions, though it may roughly characterize the shape of the surface to
structed. Second we deform the initial mesh by solving a suitable flow PDE. Unlike most of the pr
free-form modelling techniques, our approach solves high-order boundary continuity constraints
any prior estimation of normals or derivative jets along the boundary. The solution of the PDE i
dependent. We consider two possibilities for the time span of the evolution. One is a short time ev
where we require the solution to respect to the initial shape or geometry (see Fig. 7). The other i
time evolution, where the initial filler provides a topological structure, and what we look for is a s
solution state of the flow (see Figs. 1 and 4). In this paper, we focus our attention on these twofo
tions of PDEs with boundary continuity constraints, rather than the construction of initial filler me
Section 3.4, we present automatic approaches for constructing the initial filler mesh, and our pr
choice.

Previous work. Earlier research on using PDEs to handle surface modelling problems trace b
Bloor et al.’s papers at the end of the 1980s (Bloor and Wilson, 1989, 1990). The basic idea o

Fig. 1. (a) shows a head mesh with a hole around the nose. (b) shows an initial filler construction of the nose with a
minimal surface. (c) the filler surface, after 30 iteration, generated using fourth order flow (k = 2 in (2.9)) with time step size
0.0002. (d) the filler surface, after 20 iteration, generated using sixth order flow (k = 3 in (2.9)) with time step size 0.00002.
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papers is the use of biharmonic equations on a rectangular domain to solve the blending and ho
problems. One of the advantages of using the biharmonic equation is that it is linear, and th
easier to solve. However, the equation is not geometry intrinsic and the solution of the equati
geometry of the surface) depends on the concrete parameterization used. Furthermore, these me
inappropriate to model surfaces with arbitrary shaped boundaries.

The evolution technique, based on the heat equation∂tp − �p = 0, has been extensively us
in the area of image processing (see (Preußer and Rumpf, 1999; Weickert, 1998). In (W
1998), there are 453 relevant references listed), where� is a 2D Laplace operator. This was e
tended lately to smoothing or fairing noisy surfaces (see (Clarenz et al., 2000; Desbrun et al.
Meyer et al., 2002)). For a surfaceM, the counterpart of the Laplacian� is the Laplace–Beltrami opera
tor �M (see (do Carmo, 1992)). One then obtains the geometric diffusion equation∂tp−�Mp = 0 for a
surface pointp(t) on the surfaceM(t). Taubin (1995) discussed the discretized operator of the Lapla
and related approaches in the context of generalized frequencies on meshes. Kobbelt (1996) co
discrete approximations of the Laplacian in the construction of fair interpolatory subdivision sch
This work was extended in (Kobbelt et al., 1998) to arbitrary connectivity for purposes of multi-reso
interactive editing. Desbrun et al. (1999) used an implicit discretization of geometric diffusion to
a strongly stable numerical smoothing scheme. The same strategy of discretization is also adopt
analyzed by Deckelnick and Dziuk (2002) with the conclusion that this scheme isunconditionally stable.
Clarenz et al. (2000) introduced anisotropic geometric diffusion to enhance features while smo
Ohtake et al. (2000) combined an inner fairness mechanism in their fairing process to increase t
regularity. Bajaj and Xu (2003) smooth both surfaces and functions on surfaces, in aC2 smooth function
space defined by the limit of triangular subdivision surfaces (quartic Box splines). Similar to the s
diffusion using the Laplacian, a more general class of PDE based methods calledflow surface techniques
have been developed which simulate different kinds of flows on surfaces (see (Westermann et a
for references) using the equation∂tp −V (p, t) = 0, whereV (p, t) represents the instantaneous stati
ary velocity field.

Level set methods were also used in surface fairing and surface reconstruction (see (Bajaj et a
Bertalmio et al., 2000; Chopp and Sethian, 1999; Museth et al., 2002; Osher and Fedkiw, 2000; W
and Breen, 1998; Zhao et al., 2000)). In these methods, surfaces are formulated as iso-surfac
surfaces) of 3D functions, which are usually defined from the signed distance over Cartesian g
a volume. An evolution PDE on the volume governs the behavior of the level surface. These
set methods have several attractive features including, ease of implementation, arbitrary topolo
(Breen and Whitaker, 2001)) and a growing body of theoretical results. Often, fine surface str
are not captured by level sets, although it is possible to use adaptive (see (Preußer and Rump
and triangulated grids as well as Hermite data (see (Kobbelt et al., 2001)). To reduce the compu
complexity, Bertalmio et al. (2000) solve the PDE in a narrow band for deforming vectorial functio
surfaces (with a fixed surface represented by the level surface).

Recently, surface diffusion flow has been used to solve the surface blending problem and fre
surface fitting problem (Schneider and Kobbelt, 2000; Schneider and Kobbelt, 2001). In (Schnei
Kobbelt, 2000), fair meshes withG1 conditions are created in the special case where the meshe
assumed to have subdivision connectivity. In this paper, local surface parameterization is still
estimate the surface curvatures. The later paper (Schneider and Kobbelt, 2001) uses the same
for smoothing meshes while satisfyingG1 boundary conditions. Outer fairness (the smoothness in
classical sense) and inner fairness (the regularity of the vertex distribution) criteria are used in thei
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process. The finite element method is used by Clarenz et al. (2004) to solve the Willmore flow eq
based on a new variational formulation of the flow, for the aim of surface restoration. Willmore fl
also used to smooth triangular mesh in (Yoshizawa and Belyaev, 2002).

Main results. We use second order flows (mean curvature flow and averaged mean curvature fl
G0 continuity, fourth order flows forG1 continuity and sixth order flows forG2 continuity in each of
several surface modelling problems. The proposed approach is simple and easy to implement. I
eral, solves several surface modelling problems in the same manner, and gives very desirable res
range of complicated free-form surface models, possibly having sharp features and corners. Furth
it avoids the estimation of normals or tangents or curvatures on the boundaries.

The rest of the paper is organized as follows: Section 2 describes several nonlinear PDEs use
paper. In Section 3, we give details of the discretization and the numerical computation for the so
of the PDEs. Examples to illustrate the different effects achievable from the solution of the PD
given in Section 4.

2. Partial differential equation models

Let M be a smooth surface andp ∈M be the surface point. The general form of the geometric fl
we consider is in the following form (see (Westermann et al., 2000))

∂p

∂t
= V (p, t),

whereV (p, t) ∈ R
3 represents a velocity field. We shall focus our attention on using two classes ve

fields, one is curvature driven velocity field in the normal direction, the other is the higher order La
Beltrami operators acting on surface pointp.

2.1. Geometric partial differential equations

We now describe several geometric PDE models we use in this paper. More details on the existe
uniqueness of the solutions, the numerical computations of the solutions and evolution behavior
found in a series of papers by Mayer, Simonett, Escher (Escher et al., 1998; Escher and Simone
Simonett, 2001) and Huiskens’ (1987) paper. LetM0 be a compact closed immersed orientable sur
in R

3. A curvature driven geometric evolution consists of finding a family{M(t): t � 0} of smooth
closed immersed orientable surfaces inR

3 which evolve according to the flow equation

∂p

∂t
= N(p)Vn(k1, k2,p), M(0) = M0. (2.1)

Herep(t) is a surface point onM(t), Vn(k1, k2,p) denotes the normal velocity ofM(t), which depends
on the principal curvaturesk1, k2 of M(t), N(p) stands for the unit normal of the surface atp(t). In
this paper we identify the surface pointp and surface normalN(p) as 3× 1 matrices (column vectors
Hence, the arithmetic operations of these quantities are regarded matrix operations. The prod
scalara ∈ R and a matrixM is written as eitheraM or Ma.
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Let A(t) denote the area ofM(t), V (t) denote the volume of the region enclosed byM(t). Then it
has been shown that (see (Willmore, 1993, Theorem 4))

dA(t)

dt
=

∫
M(t)

VnH dσ,
dV (t)

dt
=

∫
M(t)

Vn dσ, (2.2)

whereH = 1
2(k1 + k2) is the mean curvature ofM(t).

2.1.1. Mean curvature flow (see (Dziuk, 1991; White, 2002))
TakingVn = −H = −1

2(k1 + k2) in (2.1), we obtain the mean curvature flow PDE:

∂p

∂t
= −N(p)H(p), M(0) = M0. (2.3)

It follows from (2.2) that

dA(t)

dt
= −

∫
M(t)

H 2 dσ. (2.4)

(2.4) implies that the mean curvature flow is area reducing.

2.1.2. Averaged mean curvature flow (see (Escher and Simonett, 1998; Huiskens, 1987; Sapiro, 200
In (2.1), if we takeVn = h(t) − H(t), whereh(t) = ∫

M(t)
H dσ/

∫
M(t)

dσ , then we have the average
mean curvature flow PDE:

∂p

∂t
= N(p)

[
h(t) − H(p)

]
, M(0) = M0. (2.5)

The existence proof of the global solutions to this flow can be found in Huiskens’ (1987) paper. It f
from (2.2) that

dA(t)

dt
=

∫
M(t)

(hH − H 2)dσ =
∫

M(t)

[
hH − H 2 − h(h − H)

]
dσ = −

∫
M(t)

(h − H)2 dσ � 0, (2.6)

since obviously
∫
M(t)

h(h−H) = h(h
∫
M(t)

dσ −∫
M(t)

H dσ) = 0. On the other hand, the second equa
of (2.2) implies that

dV (t)

dt
= h(t)

∫
M(t)

dσ −
∫

M(t)

H dσ = 0.

Hence the averaged mean curvature flow is volume preserving and area shrinking. The area s
stops ifH ≡ h.

2.1.3. Surface diffusion flow (see (Schneider and Kobbelt, 2001))
If we takeVn = �H , we get the so-called surface diffusion flow PDE:

∂p = N(p)�H(p), M(0) = M0, (2.7)

∂t
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where� := �M is Laplace–Beltrami operator which acts on functions defined on surfaceM(t). The
existence and uniqueness of solutions for this flow is given in (Escher et al., 1998). From (2.
Green’s formula we have

d

dt
A(t) =

∫
M(t)

�HH dσ = −
∫

M(t)

|∇H |2 dσ � 0,

d

dt
V (t) =

∫
M(t)

div(∇H)dσ = −
∫

M(t)

∇H∇(1)dσ = 0,

where∇ stands for the (tangential) gradient operator (see (do Carmo, 1976, pp. 101–102)) ac
differential functions defined on the surfaceM. Hence, the surface diffusion flow is area shrinking,
volume preserving. The area stops shrinking when the gradient ofH is zero. That is,M is a surface with
constant mean curvature.

2.1.4. Higher order geometric flows
∂p

∂t
= (−1)k+1N(p)�kH(p), M(0) =M0. (2.8)

Using Green formula, we have∫
M(t)

�kH dσ =
∫

M(t)

�(�k−1H)dσ =
∫

M(t)

∇(�k−1H)∇(1)dσ = 0.

Hence, the flow (2.8) is volume preserving ifk � 1 from the second equation of (2.2).

Remark 2.1. We should note that the area/volume preserving/shrinking properties for the flows
tioned above are valid for closed surfaces. In our application of these flows, these properties m
be true since the surfaces always have fixed boundaries. For a open surface with fix boundary,
umeV (t) could be defined as the directional volume betweenM(0) andM(t). It is easy to see tha
the volume preserving property for the averaged mean curvature flow is still valid. But for the
order flow (2.8) (k � 1), this property is no longer valid, because a term related to the boundary do
vanish when Green’s formula is used. For our modelling problems, volume preservation is not a d
property (see Figs. 1 and 4).

Remark 2.2. In (Schneider and Kobbelt, 2001), Schneider and Kobbelt use elliptic equationN(p)�H(p)

= 0, while we use several time dependent parabolic type equations. In our approach, we have a
sive process starting from an initial value, so that a family of solutions is obtained. Such an appr
very desirable if the initial value is an approximation of the required solution.

2.2. Quasi geometric partial differential equations

Now we generalize the heat equation on a surface to the following higher order flows:

∂p = (−1)k+1�kp, M(0) = M0, k > 0. (2.9)

∂t
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Since�p = −2H(x)N(p), it is easy to see that (2.9) is the mean curvature flow whenk = 1 (up to a
factor 2). But since(�kH)N �= �k(HN) in general, (2.9) is different from the flow (2.8). To distingu
the difference between (2.8) and (2.9), we call (2.9) as a quasi geometric PDE.

The experiments conducted in this paper show that flows (2.9) sometimes behave better than
metric flows mentioned above for our geometry modelling problems. However, the theoretical a
on the existence and stability of their solutions is currently unavailable.

3. Solution of the PDEs

There are basically two classes of approaches for solving a PDE on any domain. One approach
on finite divided differences, the other is based on finite elements (see (Bajaj and Xu, 2003; C
et al., 2004; Deckelnick and Dziuk, 2002)). The approach we adopt in this paper is based o
divided differences. Since we are dealing with differential equations over 2-manifolds inR

3, the classica
finite divided differences will be replaced by discretized differential geometric operators over su
Section 3.1 deals with discretized geometric differential operators. Next in Section 3.2 we detail h
boundary conditions are respected. Discretizations of the PDEs in the spatial direction are desc
Sections 3.3 and 3.4. Semi-implicit discretization in the time domain is considered in Section 3.5
issues, such as mesh regularization and initial mesh construction, are addressed in Section 3.6.

3.1. Discretized Laplace–Beltrami operator

One of the fundamental problems in solving our PDEs is the discretization of the Laplace–Be
operator. On a triangular surface mesh, several discretized approximations of the operator ha
proposed (see (Desbrun et al., 1999; Guskov et al., 1999; Taubin, 2000; Xu, 2004b)). In this pa
adopt the discretization developed by Meyer et al. in (Meyer et al., 2002). A comparative researc
the various discretized Laplace–Beltrami operators is conducted in (Xu, 2004a). It has been sho
the scheme of Meyer et al.’s is better for discretizing our PDEs. Letf be a smooth function on a surfac
then�f is approximated over a triangular meshM by

�f (pi) ≈ 1

AM(pi)

∑
j∈N1(i)

cotαij + cotβij

2

[
f (pj ) − f (pi)

]
, (3.1)

whereN1(i) is the index set of 1-ring of neighbor vertices of vertexpi , αij and βij are the triangle
angles shown in Fig. 2 (left).AM(pi) is the area for vertexpi as shown in Fig. 2 (right), whereqj is the
circumcenter point for the triangle[pj−1pjpi] if the triangle is non-obtuse. If the triangle is obtuse,qj

is chosen to be the midpoint of the edge opposite to the obtuse angle. Since�p = −2H(p)N(p) (see
(Willmore, 1993, p. 151)), we have

(�p)p=pi
= −2H(pi)N(pi) ≈ 1

AM(pi)

∑
j∈N1(i)

cotαij + cotβij

2
(pj − pi). (3.2)

This gives an approximation of the mean curvature normal (see (Meyer et al., 2002)). The highe
Laplace–Beltrami operators are discretized recursively as

�kf (pi) = �(�k−1f )(pi) = 1

AM(pi)

∑ cotαij + cotβij

2

[
�k−1f (pj ) − �k−1f (pi)

]
(3.3)
j∈N1(i)
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Fig. 2. Left: The definition of the anglesαij andβij . Right: The definition of the areaAM(pi).

Fig. 3. Left: The involved vertices of the “outer” mesh for aG0 boundary condition. The “outer” mesh is just the boundary
the hole. Middle: The involved vertices of the “outer” mesh for aG1 boundary condition. Right: The involved vertices of t
“outer” mesh for aG2 boundary condition.

with �0f (pi) = f (pi). Note that�kf (pi) involves function values on ak-ring of neighboring vertices
of pi .

3.2. Handling of boundary conditions

3.2.1. Natural boundary conditions for blending and hole filling
By the natural boundary conditions, we mean that no continuity conditions are specified at the

ary points, but the continuity is implied by the “outer” mesh incident to the boundary of the hole
Fig. 3). Such a treatment for boundary condition is suitable for both the blending problem and theN -sided
hole filling problem, since the “outer” mesh always exists in such problems.

Let gi be the order of continuity at a boundary pointpi , g = maxgi . Then we can use the order 2g

flow ∂p

∂t
= (−1)g+1�gH(p)N(p) for constructing the triangular surface patch withGgi continuity at

the boundary vertexpi . �gH is discretized recursively:�gH = �(�g−1H). At a boundary vertexpi ,
�kH(pi) is evaluated according to the following rule:

Evaluation rule at boundary. �kH(pi) is evaluated recursively by formulas (3.6) and (3.7) if k � gi ,
otherwise �kH(pi) is set to zero and the recursion stops.
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Note that even for an inner vertexpj , the recursive definition may make�kH(pj ) involve the evalua-
tion of a lower order Laplace–Beltrami operator on the boundary. In general, the recursive evalua
�kH(pi) at pi (for pi either being an inner or an outer vertex) involves(k + 1)-ring neighbor vertices
of pi . Some of them may be inner vertices, and the remaining are outer vertices. The inner vert
treated as unknowns in the discretized equations and the outers are incorporated into the right-h

3.2.2. Natural boundary conditions for free-form surface filling
In the free-form surface filling problem, we are given a wireframe of curves (edges) and we w

flesh the wireframe with surface patches that contain the curves as boundary with pre-specifie
of continuity. At each of the intersection points of the patches, an order of continuity is pre-sp
and the evaluation rule mentioned above is applied. For each inner point, a discretized linear equ
generated using the operator discretization (3.7). These linear equations for different patches are
together and solved simultaneously. Note that one linear equation may involve inner vertices of
patches. However, if the continuity order at each boundary point is zero, any equation correspon
an inner vertex does not involve inner vertices of other patches.

Remark 3.1. Schneider and Kobbelt (2001) use Moreton and Sequin’s least square fitting of the
fundamental form relative to a local parameterization to estimate the required data on the boundar
estimations of the boundary derivative data are based on incomplete information. Hence, the e
data maybe not reliable. Our approach is based on the identity�Mp = −2H(p)N(p). Hence, we do
not need to estimate boundary derivative data, such as normals, tangents or curvatures. Further
boundary conditions are treated in the same way for equations with different orders.

3.3. Spatial discretization of quasi geometric flows

Let us consider first the discretization of (2.9) in the spatial direction fork = 1,2,3. Let P =
[p1, . . . , pm]T ∈ R

m×3, �P = [�p1, . . . ,�pm]T ∈ R
m×3, wherep1, . . . , pm are all the unknown vertice

to be determined in each of our modelling problems. Then (3.2) could be written in matrix form:

�P = −(DW)P + B(1), (3.4)

whereD = diag[ 1
2A(p1)

, . . . , 1
2A(pm)

] is a diagonal matrix,W = {wij }mi,j=1 with

wij =



∑
k∈N1(i)

cotαik + cotβik, i = j,

−(cotαij + cotβij ), i �= j, i ∈ N1(j), j ∈ N1(i),

0, otherwise.

Furthermore,W is a sparse, symmetric and positive definite matrix (see (Schneider and Kobbelt, 2
The constant termB(1) ∈ R

m×3 is obtained from the boundary conditions. It follows from (3.4) that

�2P = (DWDW)P + B(2), (3.5)

whereB(2) ∈ R
m×3 is obtained from the boundary conditions. Again,WDW is a sparse, symmetric an

positive definite matrix. In general,

�kP = (−1)k(DW)kP + B(k),

and the matrix forD−1(DW)k is also sparse, symmetric and positive definite.
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i-
3.4. Spatial direction discretization of geometric flows

Let

ωij =




∑
k∈N1(i)

cotαik+cotβik

2AM(pi)
, i = j,

− cotαij +cotβij

2AM(pi)
, i �= j, i ∈ N1(j), j ∈ N1(i),

0, otherwise,

andN(i) = N1(i) ∪ {i}. Then we have

N(pi)H(pi) ≈ 1

2

∑
j∈N(i)

ωijpj . (3.6)

The higher order Laplace–Beltrami operators acting onH are discretized recursively as

�kH(pi) = �(�k−1H)(pi) ≈ −
∑

j∈N(i)

ωij�
k−1H(pj) (3.7)

with

�0H(pi) = H(pi) ≈ 1

2

∑
j∈N(i)

ωijN(pi)
T pj . (3.8)

Note that�kH(pi) involves values of the mean curvature on ak-ring of neighboring vertices ofpi .
Using (3.6)–(3.8) and the evaluation rule at the boundary, we can writeN(pi)�

kH(pi) as the follow-
ing form:

N(pi)�
kH(pi) ≈ (−1)k

∑
j∈J0

ω
(k)
ij pj + B

(k)
i , ω

(k)
ij ∈ R

3×3, B
(k)
i ∈ R

3,

whereJ0 is the index set of the (unknown) vertices to be determined,B
(k)
i comes from boundary cond

tion. To be more specific, letJ denote the index set of the meshM , Jk be the union ofJ0 and the index
set of the boundary vertices whereCk condition is specified. Then

N(pi)H(pi) ≈ 1

2

∑
j∈N(i)

ωijpj = 1

2

∑
j∈N(i)∩J0

ωijpj + 1

2

∑
j∈N(i)∩{J\J0}

ωijpj

=
∑
j∈J0

ω
(0)
ij pj + B

(0)
i , (3.9)

whereω
(0)
ij = 1

2ωij I3 for j ∈ N(i) ∩ J0, ω
(0)
ij = 0 otherwise,B(0)

i = 1
2

∑
j∈N(i)∩{J\J0} ωijpj . Similarly,

N(pi)�H(pi) ≈ −N(pi)
∑

j∈N(i)

ωijH(pj ) = −N(pi)
∑

j∈N(i)∩J1

ωijH(pj )

= −N(pi)
∑

j∈N(i)∩J1

ωijN(pj )
T N(pj )H(pj )

≈ −
∑

ωijN(pi)N(pj )
T

[∑
m

(0)
jk pk + B

(0)
j

]

j∈N(i)∩J1 k∈J0
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= −
∑
j∈J0

ω
(1)
ij pj + B

(1)
i , (3.10)

N(pi)�
2H(pi) ≈ −N(pi)

∑
j∈N(i)

ωij�H(pj ) = −N(pi)
∑

j∈N(i)∩J2

ωij�H(pj )

≈ N(pi)
∑

j∈N(i)∩J2

ωij

∑
k∈N(j)∩J1

ωjkH(pk)

≈
∑

j∈N(i)∩J2

∑
k∈N(j)∩J1

ωijωjkN(pi)N(pk)
T

[∑
l∈J0

m
(0)
kl pl + B

(0)
k

]

=
∑
j∈J0

ω
(2)
ij pj + B

(2)
i . (3.11)

(3.9)–(3.11) are used to discretize the right-handed side of (2.8) fork = 0,1,2. The discretization o
N(pi)�

kH(pi) for k > 2 is recursively calculated using (3.7) and boundary conditions.

3.5. Time discretization

Given an approximate solution{p(n)
i }mi=1 of the order 2k PDE attn for all the inner vertices, we con

struct an approximate solution{p(n+1)
i }mi=1 for the next time steptn+1 = tn + τ (n) by using a semi-implicit

Euler scheme. That is, we replace the derivative∂p

∂t
with [p(tn+1) − p(tn)]/τ (n), and the quantitie

wij in (3.4), ωij and N(pi) in (3.6)–(3.8),h(t) in (2.5) are computed using the previous resul
tn. NormalsN(pi) are computed from Loop’s subdivision surface (see (Bajaj and Xu, 2003) fo
tail). Such a treatment yields a linear system of equations with the inner vertices as unknow
P (n+1) = [(p(n+1)

1 )T , . . . , (p(n+1)
m )T ]T ∈ R

3m. The linear system for the geometric flows can be writte
the matrix form[

I + τ (n)W (k)
]
P (n+1) = B(k), W (k) = {

ω
(k)
ij

}
, B(k) ∈ R

3m. (3.12)

The matrixW (k) ∈ R
3m×3m is highly sparse, hence an iterative method for solving such a linear sy

is desirable. We use Saad’s iterative method (Saad, 2000), named GMRES, to solve the syst
experiment shows that this iterative method works very well.

Let P (n+1) = [p(n+1)

1 , . . . , p(n+1)
m ]T ∈ R

m×3. The linear system for the flows (2.9) can be written as
matrix form[

I + τ (n)(DW)k+1
]
P (n+1) = B(k), or W(k)P (n+1) = D−1B(k) (3.13)

whereB(k) ∈ R
m×3, W(k) = D−1 + τ (n)W(DW)k ∈ R

m×m is a highly sparse, symmetric and posit
definite matrix, and hence we use a conjugate gradient iterative method with diagonal preconditio
solve the system.

Note that for the same size problem, the size of coefficient matrix in (3.12) is three times larg
that of coefficient matrix in (3.13). Furthermore, the matrixW(k) in (3.13) is symmetric and positiv
definite. The matrix in (3.12) is not. We also note that the discretization of (2.9) does not invol
computation of the surface normals.

Remark 3.2. It is well known that the condition of the linear system arising from the proposed s
implicit discretization behaves like O(1 + τ (n)h−2k), whereh is the minimal edge length of the mes
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Hence, if the mesh to be evolved is very irregular, the resulting system will be ill-conditioned. In s
case, a small time step size is required to make an iterative solver converge. Such a problem is re
the mesh regularization treatment (see Section 3.6). On the other hand, more advanced iterative
such as multi-grid techniques based on a hierarchical mesh representation (see (Lang, 2001)) or
multi-grid techniques, could be used to accelerate the iteration process. In the current impleme
these techniques are not incorporated.

Upper-bound of time step. It is known that several surface evolutions (e.g., the mean curvature
(see (Dziuk, 1991; White, 2002)) and the surface diffusion flow (see (Bansch et al., 2002))) may d
singularities. For our geometric modelling problems, suppose we have a topologically correct
surface mesh construction and we look for solutions that have the same topology as the initia
Hence, we require that our solution is within the time period in that no singularity occurs. Therefo
shall determine the time stepτ (n) so thattn should not go beyond the time moment when the singula
occurs. LetL(p

(n)
i ,M(tn)) be the spatial discretization ofV (p, t) at vertexp

(n)
i over the meshM(tn).

Then from the approximate equality∥∥p
(n+1)
i − p

(n)
i

∥∥ = τ (n)
∥∥L(p

(n)
i ,M(tn))

∥∥
and the requirement

∥∥p
(n+1)
i − p

(n)
i

∥∥ � 1

2
min

j∈N1(i)

∥∥p
(n)
j − p

(n)
i

∥∥ (3.14)

we determine an upper-bound forτ (n) as follows

τ (n) � Bn := 1

2
min

1�i�m

{
minj∈N1(i) ‖p(n)

j − p
(n)
i ‖

‖L(p
(n)
i ,M(tn))‖

}
.

Requirement (3.14) guarantees that no vertex-collision happens. When the singularity is nearly t
the upper-boundBn will approach to zero. Hence the evolution cannot move beyond the singular
for time.

Remark 3.3. When the singularity is nearly to occur, the upper-boundBn will approach to zero. This
will be a very low efficiency process. So a threshold valueε0 should be put on the minimalBn. If the
determinedBn is smaller than the threshold value, we terminate the evolution process (see (3.17)–

3.6. Other important issues

3.6.1. Mesh regularization
The surface motion by the geometric PDEs described in Section 2 may cause a very irregular (

form) distribution of the mesh vertices. Hence, introducing a regularization mechanism in the ev
process is necessary. Sincethe tangential displacement does not influence the geometry of the deforma-
tion, just its parameterization (see (Epstein and Gage, 1987)), we also add a tangential displacem
the motion. Hence, the general form of our geometric evolution problem could be written as

∂p = V (p, t) + Vt(p)T (p), M(0) = M0, (3.15)

∂t
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whereT (p) is a tangent direction at the surface pointp, Vt(p) is the tangential velocity. In the proce
of numerical solution of Eq. (3.15),Vt(p)T (p) is chosen as

U0(p
(n)
i ) − (

U0(p
(n)
i ),N(p

(n)
i )

)
N(p

(n)
i ) (3.16)

whereU0(p
(n)
i ) = 1

card(N1(i))

∑
j∈N1(i)

(p
(n)
j − p

(n)
i ), N is the surface normal computed from the limit s

face of Loop’s subdivision. This discretization ofVt(p)T (p) is very similar to the one given by Ohtak
et al. (2000), which isU0(p

(n)
i ) − (U0(p

(n)
i ),N(p

(n)
i ))U0(p

(n)
i ). The difference is that our displacemen

in the tangent plane. In (3.16),U0(p
(n)
i ) could be replaced byU0(p

(n+1)
i ) to use as many of the new valu

as possible, and still yield a linear system. However, such a treatment destroys the symmetric pro
the coefficient matrix. The tangential motion (3.16) is also used by Wood et al. (2000) and Ohtak
(2001).

3.6.2. Stopping criteria
We need to determine the minimal iteration numbern, so that the evolution procedure stops att = tn.

The following two criteria are used∥∥M(tn) − M(0)
∥∥ � ε1 or Bn < ε0 (3.17)∥∥M(tn+1) − M(tn)

∥∥/τ (n) � ε2 or Bn < ε0 (3.18)

whereεi are given control constants,Bn is the determined upper-bound forτ (n). Criterion (3.17) is for
short time evolution, where we requireM(nτ (n)) nearM(0). Criterion (3.18) is for long time evolution
where we are looking for a stable status of the solution. ConditionBn < ε0 is imposed for avoiding
dead-loop around the singular point of time.

3.6.3. Construction of initial surface mesh
To provide an initial solution to the geometric evolution problem, we need to construct an

triangular surface mesh (“filler”) for each opening using any of a number of automatic or semi-aut
free-form surface construction techniques (Bajaj and Ihm, 1992; Bajaj et al., 1993; Davis et al.
Greiner, 1994; Peters and Wittman, 1996; Xu et al., 2001). One can also interactively edit this “fi
meet the weak assumptions for an initial solution shape.

Since the opening to be filled could be topologically complicated, we solve the problem in two
In the first step we fit each opening by an implicit algebraic surface or spline which interpola
approximates the boundary data (Bajaj et al., 1993; Bajaj and Xu, 1994; Peters and Wittman, 199
approach we used is the one developed by Bajaj et al. (1992, 1993, 1994). In this approach, the d
interpolated or approximated could be points or curves (even with normals). For ours, the bounda
are always points. Of course, this approach may not guarantee to produce topologically correct s
If this happens, we break the opening into several parts by inserting a few curves (polygons) a
repeat the surface fitting for each part until we achieve a reasonable shape for the “filler”.

After the algebraic surface is obtained, a triangulation step is employed. Since this triangulation
be consistent with the boundary polygon of the opening, we adopted the expansion technique de
in (Bajaj and Xu, 1994). Using this approach, we triangulate the surfaces starting from the boun
the opening.

Remark 3.4. Comparing with finite element approach, the finite difference approach described
is easy to implement and it treats the equations with different orders in a uniform fashion. In the
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element approach, one has to make efforts to derive a variational form for each of the PDEs. Fo
order flows, hybrid method is used in general, such an approach will introduce much more unk
and therefore the resulted linear system is much larger. For example, in order to use finite elemen
(linear element) for the surface diffusion flow, Bänsch et al. (2002) split the PDE into a system o
equations.

4. Comparative examples

In this section, we give several examples to show how the PDEs are used to solve different pr
in a uniform fashion. We also compare the effects of flows (2.8) and (2.9). All the figures produc
the fourth and sixth flows are generated using (2.9), except for the figures of the second row o
and third row of Fig. 6. These figures are produced using the flow (2.8). When we compare the
of (2.8) and (2.9), we use the same number of iterations but double time step size for (2.8) beca
factor 2 in the relation�p = −2HN .

4.1. Comparison of the flows

The first three figures of the first row of Fig. 4 show the long time evolution solutions of the
curvature flow, the fourth order flow, and the sixth order flow (2.9) for the input semi-sphere w
initial construction of the opening, a triangulated disk. The mean curvature flow does not chan
disk. (b) and (c) are the results after 10 iterations withτ (n) = 0.1 andτ (n) = 0.001, respectively. Furthe
iterations do not have a significant change on the shape of the solution surface. The fourth and six
flows yield convex surfaces and the smoothness is clearly observed. Also notice that the sixth or

Fig. 4. The first and second row show the results of (2.9) and (2.8), respectively. (a) (same as (g)) The input semi-sp
part) with an initial planar triangulation of the disk opening. The mean curvature flow does not change the disk (initia
(b) The result of fourth order flow after 10 iteration withτ (n) = 0.1. (c) The result of the sixth order flow after 10 iterati
with τ (n) = 0.01. (d), (e) and (f) show three intermediate results of the sixth order flow withτ (n) = 0.001, and 1, 6 and 10
iterations, respectively. (h) The result of the surface diffusion flow after 10 iteration withτ (n) = 0.2. (i) The result of the sixth
order flow (2.8) after 10 iteration withτ (n) = 0.02. (j), (k) and (l) show three intermediate results of the sixth order flow (
with τ (n) = 0.002, and 1, 6 and 10 iterations, respectively.
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Fig. 5. Comparison of different flows.�k represents 2k order flow (2.9) is used.AM denote the averaged mean curvature fl
The time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025, and 0.0000625, respec
(e), (g) are the faired interpolating surface meshes after 6 iterations, where the continuities at the boundary curves ar
2 and 0, respectively. (d), (f), (h) are the mean curvature (MC) plots of (c), (e), (g), respectively.

recovers the sphere accurately. The last three figures show three intermediate results of the si
flow. The second and third figures of the second row of Fig. 4 show the evolution solutions of the s
diffusion flow and sixth order flows (2.8) for the input semi-sphere with an initial construction o
opening. (h) and (i) are produced using the same number of iterations as (b) and (c), respectiv
double time step sizes. Again, the last three figures show three intermediate results of the six
flow. Comparing with the figures of the first row, the geometric flows change the surface shape in
slower rate.

Remark 4.1. We have pointed that the geometric flows (2.8) have volume preserving properties
closed surface. However, for an open surface with fixed boundary, the volume preserving prope
not guaranteed. (h) and (i) show that the volume preserving property is not valid.

Fig. 5 shows the combined use of different flows. The aim of this toy example is to illustra
difference of these flows, especially the continuity on the patch boundaries. (a) shows four circle
interpolated. Two of the circles are in thexz-plane, the other two are in theyz-plane. (b) shows an initia
G0 surface mesh constructed using (Bajaj and Ihm, 1992) with some additional noise added. (c),
(g) are the faired interpolating surfaces after 6 iterations using different combinations of the flow
time step sizes for the second, fourth and sixth order flows are chosen to be 0.1, 0.0025, and 0.0
respectively. Since the higher order flows evolve faster than the lower order flows, we use smal
step sizes for higher order flows to obtain nearly the same surface evolution speed. Each of the
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consists of four surface patches. The left two patches are in the regionsR−+ := {(x, y, z): x � 0, y � 0}
andR−− := {(x, y, z): x � 0, y � 0}, respectively, and generated by one type of flow. The right
patches are in the regionsR++ := {(x, y, z): x � 0, y � 0} and R+− := {(x, y, z): x � 0, y � 0},
respectively, and generated by a different flow. (d), (f) and (h) are the mean curvature plots of (c),
(g), respectively. The mean curvature at each vertex is computed by (3.2).

The aim of (c) is to show the difference between the mean curvature flow and the average
curvature flow, where the left part is generated by the averaged mean curvature flow and the ri
is produced by the mean curvature flow. The mean curvature flow shrinks the surface very fas
the averaged mean curvature flow does not. Further evolution using the mean curvature flow w
a pinch-off of the surface. Therefore, if we model a surface patch using second order flows wG0

boundary condition, the averaged mean curvature flow is more desirable than the mean curvatur
The patches inR−+ andR−− of (e) are produced by the sixth order flow (2.9) (withk = 3), while

the patches inR++ andR+− are produced by the fourth order flow (2.9). As a whole, the surface l
smooth, our curvature plot reveals the smoothness difference at the intersection curves, the six
flow gives a smoother result than the fourth order flow.

(g) is produced as (e), but the continuity order at the four circles are set to zero. HenceG0 continuity
is achieved there.

4.2. Surface blending

Given a collection surface mesh with boundaries, we construct a fair surface to blend the
at the boundaries with specified geometric continuity. Fig. 6 shows the case, where three cylinde
blended are given (a) with an initialG0 construction (b) using (Bajaj and Ihm, 1992) with some additio
noise added. The blending surfaces (c), (e) and (g) are the faired blending meshes generated
flow (2.9) with k = 1,2,3, respectively. These figures show the results after 32, 32 and 60 iter
with time step sizes 0.01, 0.001, and 0.0001, respectively. (d), (f) and (h) show the mean curva
plots correspondingly. These figures clearly show the difference of smoothness achieved at b
boundaries. The mean curvature flow givesG0 continuity results. The fourth order flow produces smo
surfaces at boundaries. The sixth order flow produces even smoother surfaces as expected.

(i) and (k) are the faired blending meshes generated using the flow (2.8) withk = 1,2, respectively.
These figures show the results after 32 and 60 iterations with time step sizes 0.002 and 0.0002, respec
tively. (j) and (l) show the mean curvature plots of (i) and (k), respectively. It should be noted th
flows (2.9) generate little fatter surface than the flows (2.8).

4.3. N -sided hole filling

Given a surface mesh with a hole, we construct a fair surface to fill the hole with specified geo
continuity on the boundary. Fig. 1 shows such an example, where a head mesh with a hole in t
subregion is given as input (a). An initialG0 reconstruction of the nose is shown in (b) using (Ba
and Ihm, 1992) and then evolved with the mean curvature flow. The blending surfaces ((c) and
generated using the flow (2.9) withk = 2 and 3, respectively. It should be observed that the sixth o
flow yields a better restoration surface. The head mesh with the hole in the nose subregion is a
from http://lsec.cc.ac.cn/~xuguo/xuguo2.htm.

http://lsec.cc.ac.cn/~xuguo/xuguo2.htm
http://lsec.cc.ac.cn/~xuguo/xuguo2.htm


G. Xu et al. / Computer Aided Geometric Design 23 (2006) 125–145 141

g meshes
s with
i) and
r 32
(k),

s as in-
shows

t

me
the flow
(b)

e input
itial
Fig. 6. (a) shows three cylinders to be blended. (b) shows the initial construction. (c), (e) and (g) are the faired blendin
generated using the flow (2.9) withk = 1,2,3, respectively. These figures show the results after 32, 32 and 60 iteration
time step sizes 0.01, 0.001, and 0.0001, respectively. (d), (f) and (h) show the mean curvature plots correspondingly. (
(k) are the blending meshes generated using the flow (2.8) withk = 1,2, respectively. These figures show the results afte
and 60 iterations with time step sizes 0.002 and 0.0002, respectively. (j) and (l) show the mean curvature plots of (i) and
respectively.

4.4. Free-form surface construction

For the free-form surface fitting problem, we are given some curves, or partial patches, or point
put, and we wish to construct a fair surface mesh to interpolate this multi-dimensional data. Fig. 7
the approach of free-form surface construction, where some input curves withG0 continuity requiremen
are given to preserve the sharp edges, and also given are some surface bands with aG1 continuity require-
ment (see (a)). (b) shows an initial construction of theG0 surface mesh using the patch filling sche
(Xu et al., 2001) with added noise. (c) is the faired surfaces, after 12 iterations, generated using
(2.9) withk = 2. The time step size is chosen to be 0.001. (d), (e) and (f) are zoomed in views of (a),
and (c), respectively.

Fig. 8 shows the free-form fitting approach from an input triangular mesh, where (a) shows th
surface triangular mesh with aG1 continuity requirement at the vertices (see (a)). (b) shows an in
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Fig. 7. Interpolating curves and patches: (a) shows some input curves withG0 continuity requirement and some bands
mesh withG1 continuity requirement. (b) shows an initial construction of the surface mesh. (c) is the faired surfaces,
iterations, generated using the flow (2.9) withk = 2. The time step size is chosen to be 0.001. (d), (e) and (f) are the zoom
results of (a), (b) and (c), respectively.

construction of the surface mesh, where each input triangle is approximated with 16 sub-triangl
newly introduced vertices are treated as unknowns and the input vertices are fixed in the fairing p
(c) and (d) are the faired meshes, after 2 iterations withτ (n) = 0.01, generated using the mean curvat
flow and the averaged mean curvature flow, respectively. (e) is the faired mesh by fourth order flow
iterations withτ (n) = 0.001. (f) is the mean curvature plot of (e). The area shrinking of the mean curv
flow makes the input vertices to be interpolated become thorns (see (c)), while the area shrinking
volume preservation of the averaged mean curvature flow make some of input vertices becom
and some others become pits (see (d)). However, the fourth order flow does not suffer from this p
(see (e)). The obtained surface interpolates the input points and exhibitsG1 smoothness everywhere
well.

5. Conclusions

We have presented a general scheme for using PDEs to solve several surface modelling p
and with high order boundary continuity conditions. Our scheme has the following features: It pro
very fair and desirable solution surfaces. It is simple and easy to implement. Specifically, it solv
free-form blending problem, theN -sided hole filling problem and free-form surface fitting problem
a uniform fashion, and solves the high order boundary continuity problem in an easy and natu
and avoids prior estimation of normals or derivative jets on the boundaries. The implementation
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Fig. 8. Interpolating points: (a) shows some input points and their triangulation. (b) shows an initial construction of the
mesh. (c) and (d) are the faired surfaces, after 2 iterations withτ (n) = 0.01, using the mean curvature flow and the avera
mean curvature flow, respectively. (e) is faired surfaces, after 2 iterations withτ (n) = 0.001, using the fourth order flow (2.9
(f) is the mean curvature plot of (e).

show that our solution works well for a wide range of surface models. Note that theC1 or higher order
continuity interpolatory surface blending solution produced by, e.g., (Bajaj and Ihm, 1992; Pete
Wittman, 1996) for complicated corners, or holes with many boundary curve segments, are us
very high algebraic degree and thereby prone to be with unsuitable for certain applications. The
solution of starting withG0 low degree blends, coupled with higher order flow evolution, yields in gen
a much better alternative for very smooth surface solutions.

Both the geometric flows and quasi geometric flows yield smooth surfaces at the boundaries. H
quasi geometric flows (2.9) have some attractive features, including ease of implementation, sma
better behaved coefficient matrices and no requirement of derivatives (normal) estimation.
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