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Abstract. This paper describes a stable and robust finite element solver
for physically-based texture synthesis over arbitrary manifold surfaces.
Our approach solves the reaction-diffusion equation coupled with an
anisotropic diffusion equation over surfaces, using a Galerkin based finite
element method (FEM). This method avoids distortions and discontinu-
ities often caused by traditional texture mapping techniques, especially
for arbitrary manifold surfaces. Several varieties of textures are obtained
by selecting different values of control parameters in the governing dif-
ferential equations, and furthermore enhanced quality textures are gen-
erated by fairing out noise in input surface meshes.

Key words: texture synthesis, finite element method, reaction-diffusion
equation, anisotropic diffusion.

1 Introduction

Texture mapping is an essential technique to map textures onto computer mod-
els, but it usually introduces distortions or discontinuities. An alternate approach
is to synthesize a texture directly on the surface of objects. The finite difference
method (FDM) has been extended to generate patterns over surfaces, but the
problem of distortions or discontinuities still exist, and the results can be often
divergent if non-suitable time steps or incorrect initial conditions are chosen.
Here we use the finite element method (FEM) for the stable and robust solution
of reaction-diffusion partial differential equations (PDEs). These FEM solutions
allow for smooth and distortion free textures to be directly synthesized and
visualized on arbitrary surface manifolds.

However when the input surface meshes are noisy, the textures synthesized
by FEM solutions are often equally noisy, and as shown in Figure 1. To correct
this, we couple an anisotropic diffusion PDE with the reaction-diffusion PDE’s to
remove noise on the surface while preserving geometric features, and synthesizing
smooth textures at the same time. Enhanced and distortion-free textures are
generated by using this coupled PDE system.

The main steps of our finite element texture synthesis approach are as follows:
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Fig. 1. Physically-based textures synthesized on the manifold foot surface. (a) - the
noisy surface; (b) - anisotropic diffusion is applied on (a) to remove noise while preserv-
ing geometric features; (c) - reaction-diffusion is applied on (a) to synthesize textures;
(d) - coupled reaction-diffusion and anisotropic diffusion are used to synthesize en-
hanced quality textures.

– Variational formulation
– Discretize in the time domain
– Discretize in the spatial domain
– Refine finite elements and basis functions
– Construct and solve the resulting linear system

The finite element solution based on Galerkin discretization, use a variational
approach to first generate a weak integral formulation, and then a discretization
into a linear system.. For time-varying systems, the time domain is discretized
using a semi-implicit backward Euler method. Recursive subdivision techniques
are adopted to refine finite elements and basis functions. The mass matrix, the
stiffness matrix, and the force vectors are constructed after evaluating each finite
element. Finally textures are generated by constructing and solving a linear
system.

Various textures can be synthesized by choosing different values of the pa-
rameters in the governing equations. In this paper, reaction-diffusion is used to
form stable patterns such as spots and stripes when two or more chemicals dif-
fuse at different rates and react with one another, and different coefficients in the
PDEs will influence the formation of textures. Anisotropic diffusion is coupled
with reaction-diffusion equations to smooth the noise of the input surface mesh,
and thereby toncrease the accuracy/quality of texture synthesis.
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The remainder of this paper is organized as follows: Section 2 summarizes pre-
vious work related to texture synthesis, and finite element simulations; Section 3
explains the algorithm of Galerkin based finite element method solutions; Section
4 discusses the two coupled physical systems, reaction-diffusion and anisotropic
diffusion; The final section presents our conclusion and future work.

2 Previous Work

Previous work on texture synthesis with high visual or numerical accuracy fo-
cuses on pattern generation and texture mapping, including statistical, non-
parametric, as well as optimization-based techniques. In recent years, many tex-
ture synthesis techniques have been developed.

Reaction-diffusion: The reaction-diffusion equations were proposed as a
model of biological pattern formation for texture synthesis. The traditional
reaction-diffusion systems are extended by allowing anisotropic and spatially
non-uniform diffusion, as well as multiple competing directions of diffusion [4].
There have been some attempts searching for different ways to generate textures
on arbitrary surfaces based on FDM. Reaction-diffusion textures are generated
to match the geometry of an arbitrary polyhedral surface by creating a mesh
over a given surface and simulating the reaction-diffusion process directly on this
mesh [5].

Texture Synthesis: During the past decade, many example-based texture
synthesis methods have been proposed, including parametric methods [12, 19, 6,
7], non-parametric methods [13, 14, 20, 27, 28], optimization-based methods [15,
10], and appearance-space texture synthesis [16]. In order to synthesize textures
over surfaces based on a given texture example, parametric methods attempt to
construct a parametric model of the texture. Differently, non-parametric meth-
ods grows the texture one pixel/patch at a time. Optimization-based methods
evolve the texture as a whole and improve the quality of the results. Besides
texture synthesis on surfaces, various techniques have also been developed for
solid texture synthesis [17, 18].

Anisotropic Diffusion: The isotropic diffusion method can remove noise,
but blurs features such as edges and corners. In order to preserve features dur-
ing the process of noise smoothing, anisotropic diffusion [22] was proposed by
introducing a diffusion tensor. Generally, a Gaussian filter is used to calculate
the anisotropic diffusion tensor before smoothing, but it also blurs features. Bi-
lateral filtering [23], a nonlinear filter combining domain and range filtering, was
introduced to solve this problem. Anisotropic diffusion can be used for fairing
out noise both in surface meshes and functions defined on the surface [1, 24].

Simulation Using FEM: FEM has been used extensively in solving physi-
cally based problems. A finite element solver, CHARMS (conforming, hierarchi-
cal, adaptive refinement methods), constructs a framework for adaptive simula-
tion by refining basis functions instead of refining elements [2]. An automated
procedure [3] to generate a 3D finite element model of an individual patient’s
mandible with dental implants inserted was presented. Various methods of im-
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age processing, geometric modeling and finite element analysis were combined
and extended. The deformation field between 3D images was computed by locally
minimizing the sum of the squared differences between the images to be matched
[11]. Nonlinear FEM using mass lumping was applied to produce a diagonal mass
matrix that allows real time computation, and dynamic progressive meshes were
generated to provide detailed information while minimizing computation [21].

3 Galerkin Based Finite Element Method

Textures can be generated by simulating physical phenomena, which are sim-
plified into mathematical models represented by PDEs. Although FDM and its
variants have been used extensively to solve PDEs, it is still challenging to syn-
thesize textures directly over surfaces. FEM is a more stable and robust method
in solving PDEs over arbitrary manifold surfaces.

Given PDEs with the required property parameters and the corresponding
boundary and initial conditions, FEM tends to solve the weak form of these
governing equations. The trial space and the test space are introduced. After the
spatial and temporal discretization, each element is analyzed, and the recursive
subdivision is used to refine the elements and basis functions. In the Galerkin
method, the same format is adopted to construct the trial function and the test
function. The variational formulations are rewritten by plugging the trial and test
functions into the weak form, and are modified with the boundary conditions.
In the end, a simplified linear system is built by uniting all the finite elements,

Kx = b (1)

where x is the unknown vector. The matrix K and the vector b are calculated over
the surface domain, which is discretized into small elements such as triangles. The
trial and test functions are defined in the same format as a linear combination
of basis functions, whose weights are elements of the unknown vector x. As a
result, textures are generated by solving the linear system.

3.1 Variational Formulation

A generalized PDE over surface Ω ⊂ R3 is shown in Equation (2), which can
represent different physical phenomena by choosing corresponding variables and
coefficients, such as the reaction-diffusion and the anisotropic diffusion.

∂u

∂t
= C0div(C1∇u) + C2u + C3 (2)

where div and ∇ are the divergence and the gradient operator over surface Ω
(see [26] for their definitions), u represents different variables for various physical
problems. u can be a scalar, for example, u is the concentration of a chemical
in the reaction-diffusion equations. u can also be a vector in R3 such as the
geometric position or function vectors at each vertex on Ω in the anisotropic
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diffusion equation. C0, C1, C2, and C3 are coefficients which can be functions of
u, or just constants. C1 could be a scalar or a 3× 3 matrix.

Suppose u, ν are selected from the trail space and the test space respectively,
the inner product of u and ν is defined as follows,

(u, ν) =
∫

Ω

uνdx. (3)

By using the Divergence Theorem and the Partial Integration Rule, Equation
(2) can be written in a variational form as in Equation (4),(

C−1
0

∂u

∂t
, ν

)
= −(C1∇u,∇ν) + (C−1

0 C2u, ν)

+ (C−1
0 C3, ν). (4)

The variational form is the starting point for the following spatial and temporal
discretizations.

3.2 Discretization

For time-varying systems, the variational form needs to be discretized in the
temporal space as well as in the spatial space. A semi-implicit backward Euler
method is used for temporal discretization. For the spatial discretization, func-
tions over the integration domain can be refined using the recursive subdivision
schemes [1].

Spatial Discretization: The variational problem in Equation (4) is dis-
cretized in a function space which is defined by the limit of Loop’s recursive
subdivision. The function is locally parameterized in our finite element space,
which is spanned by C1 smooth quartic box spline basis functions.

Temporal Discretization: For time-varying systems, we have to discretize
Equation (4) in the temporal space. Two issues need to be addressed for the
temporal discretization: the choice of the time step, and the decision of which
term needs to analyzed implicitly and which term needs to be handled explicitly.
Here a semi-implicit backward Euler discretization is chosen,

(un+1 − un

C0τ
, ν

)
= −(C1∇un+1,∇ν)

+ (C−1
0 C2u

n+1, ν) + (C−1
0 C3, ν), (5)

where τ is the time step, u at t = (n+1)τ is derived from u at t = nτ . Equation
(5) is rewritten as follows,

(C−1
0 un+1, ν) + [(C1∇un+1,∇ν)− (C−1

0 C2u
n+1, ν)]τ

= (C−1
0 un, ν) + τ(C−1

0 C3, ν). (6)
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3.3 Element and Basis Refinement

For each vertex of a control mesh, its basis function is defined by the limit of the
Loop’s subdivision for the zero control values everywhere except at itself where
it is one [1]. The recursive subdivision schemes are used to refine elements and
basis functions, and smooth surfaces are generated via a limit procedure of an
iterative refinement. Here, an approximating algorithm proposed by Loop [8] is
adopted. C2 limit surfaces are generated except for some extraordinary points
at where C1 continuity is achieved.

If all the vertices of a triangle have a valence of 6, then the triangle is called
regular, otherwise it is irregular. A regular patch is controlled by twelve basis
functions with explicit polynomial representations. For an irregular patch, the
mesh needs to be subdivided repeatedly until the parameter values of interest
are inside a regular one [9].

The basis functions are defined by the same recursive scheme. For each vertex
of a control mesh, we associate it with a basis function, which is defined as
the limit of the Loop’s subdivision from control value one at the vertex and
control value zero at every other vertices. Each triangle patch is defined locally
by only a few related basis functions. Triangles can be grouped according to
their vertex valences. All triangles with the same vertex valences have the same
set of related basis functions, which only need to be calculated once. Therefore,
the computation costs in the numerical integration can be reduced.

3.4 Linear System Construction

The Galerkin approximation is applied to our variational formulation. The trial
and test functions are defined in the same format - a linear combination of basis
functions,

u =
N∑

i=1

uiφi, ν =
N∑

i=1

νiφi. (7)

Substitute Equation (7) into Equation (6), and rewrite it for each νj , we obtain

(M + τL)un+1 = Mun + τF, (8)

where the mass matrix M , the stiffness matrix L, and the force vector F can be
calculated as follows,

Mij = (C−1
0 φi, φj), (9)

Lij = (C1∇φi,∇φj)− (C−1
0 C2φi, φj), (10)

Fj = (C−1
0 C3, φj). (11)

The resulting linear system arising in each time step τ can be solved by a pre-
conditioned conjugate gradient method. After each ui (i = 1, ..., N) is calculated,
we can obtain u by substituting them back into Equation (7).
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4 A Coupled System of Reaction-Diffusion and
Anisotropic Diffusion

As shown in Figure 2, our finite element solver can be applied to solve mul-
tiply finite element problems over arbitrary manifold surfaces when we choose
different coefficients C0, C1, C2, C3 and u in Equation (2). Different systems
are simulated using our solver, such as texture synthesis directly on surfaces
by solving reaction-diffusion equations. The anisotropic diffusion is coupled to
the reaction-diffusion equations in order to generate better quality textures by
smoothing the integral domain.

Physical Problems Equations
Coefficients in the generalized PDEs, Equation (2)

(C0) (C1) (C2) (C3)

Reaction-Diffusion Eqn.(12) Da 1 -sb 16s
Reaction-Diffusion Eqn.(13) Db 1 s(a− 1) −sβ
Reaction-Diffusion Eqn.(16) 1 1 (1 + Γcosωf t)uv − d c + β
Reaction-Diffusion Eqn.(17) δ 1 −u2 du

Anisotropic Diffusion Eqn.(18) a(x)µ a(x)1−µD(x) 0 0

Fig. 2. Coefficients in the generalized PDEs for different physical problems, reaction-
diffusion and anisotropic diffusion.

When we construct the linear system for each application system, we do not
need to calculate each term since some coefficients are zero. There are a common
inner product term (φi, φj) in the mass and stiffness matrices if C2 = constant.
This term only needs to be calculated once for each element. For our time-varying
systems, we do not update each entry at each time step. In order to speed up the
whole process, we take the value from the previous time step for some entries
instead of recalculating all of them.

4.1 Reaction-Diffusion

As a biologically motivated method of texture synthesis, the reaction-diffusion
is a process in which two or more chemicals diffuse and react with each other to
form stable patterns. For a two chemical (a and b) reaction-diffusion system [5],

∂a

∂t
= F (a, b) + Da∆a, (12)

∂b

∂t
= G(a, b) + Db∆b, (13)

where F (a, b) = s(16−ab), G(a, b) = s(ab−b−β), a and b are concentrations, Da

and Db are diffusion constants, β is the simulation random seed, s is a constant,
and t is time.
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In this paper, FEM is adopted to solve the PDEs. System (12-13) is weakened
by using the divergence theorem and the partial integration, then both trial
functions (a and b) and the test function (ν) are discretized in the same format.
The reformulated variational form can be written as,

(an+1, ν) + (sτbnan+1, ν) + (Daτ∇an+1,∇ν)
= (an, ν) + (16sτ, ν), (14)

(bn+1, ν) − (sτanbn+1, ν) + (Dbτ∇bn+1,∇ν)
+ (sτbn+1, ν) = (bn, ν)− (sβτ, ν), (15)

where τ is the time step, and an is the concentration at time t = nτ . Equation
(14-15) can be rewritten into a linear system in Equation (8). The mass matrix,
the stiffness matrix and the force vector of Equation (14) are as follows,

Mij = (D−1
a φi, φj),

Lij = (∇φi,∇φj)− (sbD−1
a φi, φj),

Fj = (16sD−1
a , φj).

Similarly, the mass matrix, the stiffness matrix and the force vector of Equation
(15) are as follows,

Mij = (D−1
b φi, φj),

Lij = (∇φi,∇φj) + (saD−1
b φi, φj)− (sD−1

b φi, φj),
Fj = −(sβD−1

b , φj).

Given the initial values a = b = 4.0, the concentrations of chemical a and b can
be obtained at each time step iteratively. Specifically, for each temporal step,
the system consisting of equations (14)-(15) is solved iteratively, until a and b
achieve their stable states. Figure 3 and 4 show different patterns generated over
a sphere surface. Spot and stripe patterns can be controlled by selecting different
values of the parameters.

Additionally as shown in Figure 5, we used the same variational algorithm
to solve another reaction-diffusion equations,

∂u

∂t
= c + β − du + (1 + Γcosωf t)u2v + ∆u, (16)

∂v

∂t
= du− u2v + δ∆v. (17)

Figure 6 shows more textures generated by choosing different parameters in
the physical phenomena of reaction-diffusion, Equation (12-13) or (16-17).

4.2 Anisotropic Diffusion

If F (a, b) = 0, then Equations (12) turns into an isotropic diffusion equation.
Another kind of diffusion problem is anisotropic diffusion, which usually couples
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Fig. 3. Textures generated over sphere surfaces using Equation (12-13), where F (a, b) =
s(16− ab), and G(a, b) = s(ab− b− β). β = 12.0+/-0.1, Da = 0.125, Db = 0.03125. s
= 0.025 in (a), s = 0.0375 in (b), and s = 0.05 in (c).

Fig. 4. Textures generated over sphere surfaces using Equation (12-13), where F (a, b) =
a− a3 − b, and G(a, b) = s(a− s1b− s0). β = 12.0+/-0.1, Da = 0.125, Db = 0.03125.
s = 0.025 in (a), s = 0.0375 in (b), and s = 0.05 in (c).

Fig. 5. Textures generated over sphere surfaces using Equations (16-17). β = +/-0.1,
c = 0.5, d = 1.5, ωf = 1.69. δ = 0.0 in (a), δ = 1.0 in (b), and δ = 5.0 in (c).
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Fig. 6. More textures are generated over sphere surfaces by simulating the physical
phenomia of reaction-diffusion.

with the above reaction-diffusion system to generate better textures by smooth-
ing noticeable size variances existing in the surface meshes. In order to remove
those artifacts, an anisotropic diffusion tensor is introduced in the governing
equation, and the Loop’s subdivision techniques are combined with the diffusion
model,

∂x(t)
∂t

− a(x)µ div[(a(x)1−µD(x)∇x(t))] = 0, (18)

where x is the geometric position vector of a point on the surface, t is time, D(x)
is a diffusion tensor to enhance sharp features, a(x) is a smooth function which
is adaptive to the mesh density, and µ ∈ [0, 1] is a parameter which changes the
smoothing behavior of the equation. a(x) and D(x) are defined in [1]. Let k1, k2

be the two principal curvatures, and e1(x), e2(x) be the principal directions of
the surface at point x(t). Then the diffusion tensor is defined as

Dz = αg(k1)e1(x) + βg(k)2)e2(x) + N(x), (19)

where N(x) is the normal component of z, and g(s) is

g(s) =

{
1, |s| ≤ λ,

(1 + (s−λ)2

λ2 )−1, |s| > λ,
(20)
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λ is a given parameter which detects sharp features. After the spatial and time
discretization of the weak form, Equation (18) can be rewritten as follows,

(a(xn)−µxn+1, ν) + τ(a(xn)1−µD(xn)∇xn+1,∇ν)
= (a(xn)−µxn, ν), (21)

where ν is the test function, τ is the time step, and n is the step number. The
mass matrix, the stiffness matrix and the force vector are as follow,

Mij = (a(x)−µφi, φj),
Lij = (a(x)1−µD(x)∇φi,∇φj),
Fj = 0.

Our finite element solver can smooth both geometric positions and function
values of each vertex on the surface. Anisotropic diffusion is used to improve
the quality of the synthesized textures by denoising the surface meshes while
preserving geometric features. Figure 1(a-b) show one example.

4.3 A Coupled System

Sometimes noise exists on the geometric surface, therefore in order to generate
good quality textures on it, we need to remove the noise. Anisotropic diffusion
is a good method for surface fairing because it enhances curve features on the
surface by the careful choice of an anisotropic diffusion tensor. In our system,
we couple the anisotropic diffusion with the reaction-diffusion together. In other
words, the surface is smoothed at the same time when the texture is synthesized.

Figure 7 shows two examples with sharp features, the fandisk model and the
mechanical part. The input mesh has some noises on the surface. After applying
our coupled system, the surface is smoothed with sharp features preserved and
good quality textures are generated as well. Figure 8, 9, and 10 show more results.
It is obvious that the noise on the input surface is removed with the preservation
of geometric features, and good quality textures are synthesized over the skull,
venus and bunny surfaces.

5 Conclusion and Future Work

We have described a stable and robust finite element solver over arbitrary man-
ifold surfaces for a generalized PDE in the format of equation (2). This is used
to simulate reaction-diffusion equations coupled with anisotropic diffusion for
the synthesis of stable and continuous surface textures without distortions. Dif-
ferent control coefficients of the reaction-diffusion equations are used for the
formation of different textures. Additionally, the anisotropic diffusion helps to
generate better textures on surfaces by reducing noise in input surface meshes
while preserving the surface’s geometric features.

There are several directions for future work. Our finite element solvers also
work for 3D domain, therefore in the near future we would like to solve the
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Fig. 7. Textures generated on isosurfaces with sharp feature preservation. (a) - the
input surface model of the fandisk; (b) - the texture generated on (a); (c) - the input
surface of the mechanical part; (d) - the texture generated on (c).

Fig. 8. Textures generated over the skull model by solving the reaction-diffusion gov-
erning equations, and the anisotropic diffusion equation is used to smooth noise in the
surface mesh (the leftmost picture).

coupled texture synthesis system over a volumetric domain to generate 3D tex-
tures directly. Another problem is to tradeoff efficiency vs complexity of pattern
generation. In other words, we would like to study if we can solve the PDEs
approximately by not updating the matrix for a large number of time steps.
Similarly we may not need a semi-implicit time discretization, but perhaps an
approximate explicit time discretization to see if we can generate a wide range
of patterns or not.
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Fig. 9. Textures generated over the venus model by solving the reaction-diffusion gov-
erning equations, and the anisotropic diffusion equation is used to smooth noise in the
surface mesh (the leftmost picture).
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