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ABSTRACT
Electrostatic interactions play a significant role in determin-
ing the binding affinity of molecules and drugs. While signif-
icant effort has been devoted to the accurate computation
of biomolecular electrostatics based on an all-atomic solu-
tion of the Poisson-Boltzmann (PB) equation for smaller
proteins and nucleic acids, relatively little has been done to
optimize the efficiency of electrostatic energetics and force
computations of macromolecules at varying resolutions (also
called coarse-graining). We have developed an efficient and
comprehensive framework for computing coarse-grained PB
electrostatic potentials, polarization energetics and forces for
smooth multi-resolution representations of almost all molec-
ular structures, available in the PDB. Important aspects of
our framework include the use of variational methods for
generating C2-smooth and multi-resolution molecular sur-
faces (as dielectric interfaces), a parameterization and dis-
cretization of the PB equation using an algebraic spline
boundary element method, and the rapid estimation of the
electrostatic energetics and forces using a kernel independent
fast multipole method. We present details of our implemen-
tation, as well as several performance results on a number
of examples.

1. INTRODUCTION
Atomistic simulation of bio-molecules is known to play

a critical role in various biological activities such as drug
design or molecular trajectory simulation. Given the com-
plexity of large-scale data computation, developing an ac-
curate and effective approach for the simulation has drawn
great attention from recent computational biology studies.
In particular, one important technique of atomistic simula-
tions of bio-molecules can be carried out based on the nu-
merical solutions of solvation energy and forces. Consider-
able research effort has been devoted to calculating solvation
energy and forces in the past two decades. One important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIAM/ACM Joint Conference on Geometric and Physical Modeling ’09 San
Francisco, California USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

solution, called the implicit solvent model, treats the sol-
vent as a featureless dielectric material. The effects of the
solvent are modeled in terms of dielectric and ionic physical
properties instead of the micro elements such as ions used in
explicit solvent models. Poisson-Boltzmann (PB) equation
are widely used to obtain good electrostatic approximations
in implicit solvent models.

The interface between the atomic-level solute and con-
tinuum solvent is key to an implicit solvent model. This
interface is also called the solvent-excluded surface (SES)
or simply molecular surface [13]. Since the molecular sur-
face also acts as a dielectric interface for electrostatic and
polarization energy and force computations, the molecular
surface should be at least C1 smooth and not too inflated
or deflated. In our computational framework, we use the C2

smooth level set of a tri-cubic B-spline function to model a
minimal area molecular surface [5].

Because a macromolecule is composed of thousands to mil-
lions of atoms, it makes the simulation computation costly.
A lot of important efforts have been devoted to develop lower
resolution coarse-grained (CG) models for proteins with rea-
sonable accuracy. One of the earliest and simplest models
is the Gō model which represents the polypeptide chain as
a chain of Cα atoms [20]. In [3] this model has been im-
proved by adding one more bead on each side chain (SC).
In the Cα-SC-Pep model [12], an additional interaction cen-
ter (Pep) is added on the backbone in the middle of the
C-N peptide bond which strongly improves the orientation-
dependent potentials. In [8] extended side chains (such as
Arg, Lys, etc.) are represented by two beads in order to
have CG beads of about the same size. A four-bead model
is given in [18] in which each residue is explicitly represented
by three heavy atoms on the backbone and one bead on the
side chain. A multi-resolution CG model is developed in
[2] which allows different resolution in different parts of the
molecule and therefore fixes the deficiency of assigning each
CG bead to the same number of atoms. In this short paper,
we briefly present a hierarchical CG clustering scheme which
can flexibly generate a CG molecular model for electrostatic
potential, polarization energetics and forces. Details can be
found in [7].

After the molecular model and the molecular interface of
a molecule are defined and constructed, the boundary el-
ement method (BEM), one of the most common numerical
methods, is applied for solving molecular electrostatics prob-
lems in this paper. BEM relies on the molecular interface
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Figure 1: Molecular model of a protein(1CGI); (a),(f) The van der Waals surface of the all-atomic (AA)
and coarse-grained (CG) structures (852 atoms and 157 beads) ; (b),(g) The surface generated using Gauss
density function from AA and CG structures; (c),(h) The solvent excluded surfaces (SES) from AA and
CG structures which are much close to the surface; (d),(i) The decimated triangulation of SESs; (e),(j) The
piecewise algebraic surfaces patches generated from the decimated triangulation of SESs. The visual error
between SESs generated from AA and CG models is small.

to discretize the implicit continuum electrostatics problems.
Since Zauhar and Morgan introduced a BEM paper on con-
tinuum electrostatic of biological systems [23], in the past
two decades, scientists have made contributions to improve
and extend BEM solutions and performances and proved
that BEM is one of the most accurate and efficient solutions
for molecular electrostatics problems [9, 11]. Based on the
electrostatic solution of BEM, electrostatic force can also
be evaluated, and thereby different numerical treatments of
electrostatic force are also described [14, 10, 15]. In this pa-
per, we will introduce a algebraic spline boundary element
method for numerically solving PB electrostatic problem.

The rest of the paper will be organized by the steps of
pipeline. In section 2, the details of construction of our hi-
erarchial molecular models are given, followed by C2 smooth
spline discretization of molecular interfaces in section 3. In
section 4, an implicit continuum model and boundary ele-
ment solution for PB electrostatics are introduced. In sec-
tion 5, we present our numerical implementation and ana-
lyze experimental results in details. We conclude the paper
in section 6.

2. PROTEIN MOLECULAR MODELS
The 3-D structure data of the protein molecules are ob-

tained from the RCSB protein data bank (PDB). We con-
struct a CG model in three steps. First we build a hierar-
chical clustering of the atoms according to the hierarchy of
the protein structure. In this hierarchy, from top to bot-
tom, they are the tertiary structures, secondary structures,
residues, backbone and side chains, functional groups, and
atoms. All the atoms in one of the groups can be repre-
sented as one CG bead. Since at the top levels, too much
detail of the protein is lost, the coarsest CG model we start
at in our current work is to group the atoms in an amino
acid into one bead.

In the second step, we compute the new locations and

sizes of the CG beads. Our goal is to let the new molec-
ular surface of the CG model be as close to the surface of
the AA model as possible, where the molecular surface is
modeled as the level set of the Gaussian density function.
For the purpose of accuracy, we individually find the cen-
ter (~x′k) and the radius (r′k) for each CG bead such that

the Gaussian density function %(~x) = e−Ci(‖~x−~x
′
k‖

2−(r′k)2),
where Ci is a Gaussian decay rate, agrees with the den-

sity function Gi(~x) =
iMi∑
k=i1

e−Ck(‖~x−~xk‖2−r2k), where atoms

i1 . . . iMi are grouped into bead i. This is done by solving
the least squares problem

min
1

2

n∑
j=1

[%(~xj)−Gi(~xj)]2 ,

where ~xj are sample points on the level set {~x : Gi(~x) = 1}.
In the third step, we assign charges to the CG beads such

that the electrostatic solvation energy of the CG model re-
produces that of the atomic model. We use the Gener-
alized Born energy function [19] as the objective function
and the optimization is subject to the constraint that the
total charge of the molecule does not change. This con-
strained nonlinear optimization problem is solved by using
the Levenberg-Marquardt algorithm [16]. The details of the
CG model generation are described in [7]. In Figure 1, we
show an example of the AA and CG model and the corre-
sponding molecular surface. In the CG model, each amino
acid is split into five groups and therefore five beads, two for
the backbone and three for the side chain. The molecular
surface in (e) and the molecular surface in (j) are similar

and the Hausdorff distance between them is 1.881 Å. The
CG model also well preserves the topology of the AA model.

2.1 variational C2-smooth Molecular interface
In this section, we sketch the method to produce smooth

molecular surfaces. For details one is referred to [5]. The
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Figure 2: Molecular interface for a protein 1BUH;
(a) the Van der Waal (union of balls) model; (b)
the initial molecular surface computed using Gaus-
sian density function; (c) the molecular surface com-
puted using geometric flow evolution.

basic idea can be summarized as three steps. Step one, for
given a molecule which consists of a sequence of atoms with
centers {~xk}nck=1 and radii {rk}nck=1, we construc an initial
surface such that {~x ∈ R3|g(~x) = 0}, where

g(~x) = 1−
nc∑
k=1

e−Ck(‖~x−~xk‖2−r̃2k), r̃k = rk + rb,

where rb is the water probe sphere radius. The Gaussian
decay rate Ck > 0, is determined so that g(~x) = 0 is an
approximation of SES within a given tolerance [5].

Step two, for the obtained initial surface Γ0, we define an
energy functional on the surface Γ as

E(Γ) =

∫
Γ

g(~x)2d~x+ τ

∫
Γ

d~x, (1)

where τ ≥ 0 is a regularization coefficient and the second
term is to minimize the surface area avoiding both big in-
flation and deflation of the surface. We pursue the surface
which minimizes energy functional (1) by variational cal-
culus, which computes the first order variation to obtain a
partial differential equation (PDE) [21]. The PDE is solved
as an evolutionary equation by adding a time marching pa-
rameter t other than a stationary equation where the evolu-
tionary equation is expressed as level set formulation as

∂Φ

∂t
= (g2 + τ)div

(
∇Φ

‖∇Φ‖

)
‖∇Φ‖+ 2g(∇g)T∇Φ (2)

= H(Φ) + L(∇Φ),

where

H(Φ) = (g2+τ)div

(
∇Φ

‖∇Φ‖

)
‖∇Φ‖, L(∇Φ) = 2g(∇g)T∇Φ.

Note here the moving surface Γ is expressed as the level set of
function Φ, that is, Γ = {~x ∈ R3|Φ(~x) = 0}. This evolution
equation is solved by our higher-order level-set methods [5].
The first order term L(∇Φ) is computed using an upwind
scheme over a finer grid, and the higher order term H(Φ) is
computed using a spline presentation defined on a coarser
grid. Step three, if Φ is a signed distance function and a
steady solution of equation (2), the iso-surface Φ = −rb is
an approximation of molecular surface.

2.2 Algebraic-spline parametrization
The molecular surface constructed in the last section is

discretized into a triangulation when it is applied to the
solvation energy computation. An algebraic spline model

(ASMS) which provides a dual implicit and parametric rep-
resentation of the molecular surface is generated based on
this triangulation [24]. For each element [vi, vj , vk] in the
triangulation, points on the algebraic spline are defined as
p = b1vi(λ) + b2vj(λ) + b3vk(λ), with (b1, b2, b3) being the
barycentric coordinates of the points in vivjvk and λ satis-
fying

F (λ) =
∑

i+j+k=3

bijk(λ)B3
ijk(b1, b2, b3) = 0,

where B3
ijk are the Bernstein-Bezier (BB) basis of degree 3.

The coefficients bijk(λ) are not trivial. They are defined so
that F (λ is C1 continuous across the edges of the triangle.
We give a thorough explanation in [24], so we will not repeat
the definition here.

3. SOLVATION ELECTROSTATIC ENERGY
AND FORCE COMPUTATION

In this section, we briefly introduce the main steps the nu-
merical treatments of solving solvation electrostatic problem
for proteins. The details of the derivation and implementa-
tion are described in the manuscript we are writing [4].

Based on our definition of different protein models for pro-
teins, the continuum model of proteins in the solvent is de-
fined and used for numerical computation of solvation elec-
trostatic computation. We separated the open domain (R3)
into interior (Ω) and exterior regions (R3−Ω) by the molecu-
lar interface. The dielectric coefficient ε(~x) and ion strength
ι(~x) at position ~x depends on which region ~x belongs to,

ε(~x) =

{
εi, ~x ∈ Ω,
εe, ~x ∈ R3 − Ω.

ι(~x) =

{
0, ~x ∈ Ω,
ι, ~x ∈ R3 − Ω.

Because the simulation environment is now in a dielectric
medium, we describe the electrostatic behavior of the protein-
solvent system by the linearized PB equation.

~∇(ε(~x)~∇φ(~x)) + 4π

nc∑
k=1

qkδ(~x− ~xk) = κ̄(~x)2φ(~x),

where φ(~x) is the electrostatic potential at x. qk and ~xk are
the charge and the position of atom k, k = 1, ..., nc. The

modified Debye-Huckel parameter κ̄2(~x) is κ̄2(~x) =
8πe2cι

kBT
,

where ec is the charge of an electron. kB is the Boltz-
mann’s constant. T is the absolute temperature. ι is the
ionic strengths.

In Figure 3, we show the scenario and notations of the
PB boundary element formulations. The molecular surface
Γ is discretized into triangular elements Γi, i = 1, ..., N and
~xi represents a point on an element Γi as ~yj on Γj . Their
normal vectors are written as ~nix and ~njy. In order to obtain
the electrostatic potential φ(~x), we solve PB equation by
formulating it into the derivative boundary integral equation
by a BEM technique [1].[

εi+εe
εi

I + ∂Gκ
∂~ny
− εe

εi

∂G0
∂~ny

G0 −Gκ
∂2G0
∂~ny∂~nx

− ∂2Gκ
∂~ny∂~nx

εe+εi
2εe

I + ∂Gκ
∂~nx
− εi

εe

∂Gκ
∂~nx

][
φ
∂φ
∂~n

]
=

[ ∑nc
k=1

qk
εi
G0,k∑nc

k=1
qk
εi

∂G0,k
∂~nx

]
,

where φj and
∂φj
∂~nj

are the jth unknown electrostatic potential

and its normal derivative at the point yj on the element Γj .



Figure 3: The example of boundary element decom-
position of a four-atom molecule: ~xk are the center
of kth atom, ~xi and ~yj are the points on the element
Γi and Γj of the surface Γ and ~nix and ~njy are their
normals.

Each term in the matrix is an operator including I as an
identity operator that Iijφj = φj and the surface integral
operators given in the following expression,(

∂Gl

∂~n
j
y

)
ij

φj =
∫

Γj

∂Gl

∂~n
j
y

(~xi, ~yj)φ(~yj)d~yj

(Gl)ij
∂φj
∂~nj

=
∫

Γj
Gl(~x

i, ~yj) ∂φ(~yj)

∂~n
j
y
d~yj

G0,k = G0(~xi, ~xk)

where ~xi and ~yj are points on the element Γi and Γj . l =
0 or κ such that G0 and Gκ are the Green’s kernels, or
fundamental solutions, for linearized PB equations

G0(~x, ~y) = 1
4π|~x−~y|

∂G0(~x,~y)
∂~ny

=
−(~x−~y)·~ny
4π|~x−~y|3

Gκ(~x, ~y) = e−κ|~x−~y|

4π|~x−~y|
∂Gκ(~x,~y)
∂~ny

=
−e−κ|~x−~y|(1.0+κ|~x−~y|)(~x−~y)·~ny

4π|~x−~y|3

and ~ny is the surface normal on the point ~y.
Numerical aspects of the formulation has been historically

studied and discussed. Both equations gives rise to dense
and nonsymmetrical coefficient matrices with numerous sin-
gular and hypersingular surface integrals for a linear system
to be solved numerically by a conjugate gradient-based iter-
ative solver (GMRES) using ASMS instead of linear model
[24] and the matrix-vector product is computed using kernel-
independent fast multipole method (KiFMM) developed by
L. Ying [22].

After PB electrostatic potential is computed, we compute
PB electrostatic solvation energy as follows,

Gpol =
1

2

nc∑
k=1

qkφrf (~xk),

where the reaction field electrostatic potential φrf (~x) =
φsol(~x)− φvac(~x) is computed at the atomic center [17].

The electrostatic force formulation Fpol is composed of
three terms; the reaction field force FRF , the dielectric bound-
ary force FDB , and the ionic boundary force FIB [14]. Each
term is described in the following formulations and is com-
puted using numerical quadrature of integrals over ASMS
[6].

Fpol = FRF + FDB + FIB ,
FRF = −

∫
Ω
ρc(~x)E(~x)d~x = −4π

∑nc
k=1 qkE(~xk),

FDB =
∫

Ω
1
2
E(~x)2∇ε(~x)d~x,

FIB =
∫

Ω
kBT

∑
i[ci(e

−ziφ(~x)/kBT − 1)∇λ(~x)]d~x,

where ρc(~x) = 4π
∑nc
k=1 qkδ(~x−~xk), the electric field E(~x) =

−∇φ(~x) = (− ∂
∂x
φ(~x),− ∂

∂y
φ(~x),− ∂

∂z
φ(~x)) is the gradient of

the electrostatic potential and λ(~x) is ionic boundary func-
tion which is 1 outside Γ and 0 inside Γ.

4. EXPERIMENTAL RESULTS

(a) φ(AA) (b) φ(5-bead) (c) φ(2-bead)

(d) Fpol(AA) (e) Fpol(5-bead) (f) Fpol(2-bead)

Figure 4: The PB potential, and the inner product
of unit normal and PB forces on hierarchical molec-
ular surfaces for a protein (PDB id: 1BJ1). The
visual difference of PB potential between AA model
(a) and both CG models (b),(c) is small where the
color goes from red (φ ≥ −3.8 kbT/ec) to blue (φ
≤ +3.8 kbT/ec). The visual difference of PB forces
between AA (d) and 5-bead CG models (e) is small
but not 2-bead CG model (f) where the color goes

from blue (Fpol · ~n ≥ 7.6 kcal/mol·Å) to red (Fpol · ~n
≤ −7.6 kcal/mol·Å).

We gathered a set of proteins from RCSB protein data
bank (PDB) for evaluating our solution. Here, we con-
struct three different levels of molecular model, including
AA model, 5-bead CG model (5 beads per residue; three for
side chain and two for backbone), and 2-bead CG model (2
beads per residue; one for side chain and one for backbone),
for these proteins. These molecular models are in hierarchy.
Based on these different molecular models, we generate their
molecular surfaces and compute their PB energy, potential
and forces using our PB solver ”PB-CFMM” which can be
downloaded from our website http://cvcweb.ices.utexas.edu.
We set the temperature T to be 298.15 K, the interior and
exterior dielectric constants εi and εe to be 1 and 80 and the
ion concentration ι to be 0.05M . All experiments are done
on a linux machine with Dual Core AMD Opteron processor
280 with 4 GB memory.

First, we compute electrostatic potential of proteins using
AA, 5-bead and 2-bead CG models. We also take one of
those proteins (PDB id: 1CGI) as an example to see the
details of PB electrostatic potential results. Figure 5 (a)
shows that the reaction field electrostatic potential of each
CG beads of the protein computed using the 5-bead CG



(a) φ (5-bead,0.995) (b) Gpol (5-bead,0.995) (c) Fpol (5-bead,0.922,0.912,0.945)

(d) φ (2-bead,0.906) (e) Gpol (2-bead,0.914) (f) Fpol (2-bead,0.822,0.677,0.847)

Figure 5: The relation of per-bead PB potential (kbT/ec), energy (kcal/mol) and forces (kcal/mol·Å) between
AA molecular model and CG molecular models for the protein (PDB id: 1CGI); (a) and (d) are the relations
between PB potential computed using AA model and 5-bead and 2-bead CG models; (b) and (e) are the
relations between PB energy computed using AA model and 5-bead and 2-bead CG models; (c) and (f)
are the relations between PB forces computed using AA model and 5-bead and 2-bead CG models where
blue,pink,yellow dots indicate x,y,z-dimensional values respectively of solvation forces.

molecular model is highly related to that computed using
the AA molecular model. The correlation between them
is 0.9950. The same experiment is applied for 2-bead CG
model and its correlation is 0.9059 in Figure 5 (c).

With a good approximation of the CG molecular surface,
BEM can provide highly accurate surface electrostatic po-
tential. In Figure 4 (a), (b) and (c), the color of the surface
represents electrostatic potential on the molecular surface of
a protein (PDB id: 1BJ1), going from red (−3.8 kbT/ec) to
blue (+3.8 kbT/ec) and white is neutral potential. From our
observation, the distribution of electrostatic potential on the
molecular surfaces in different levels are highly related. The
parts of the AA molecular surface with highly positive or
negative electrostatic potential will hold in CG cases.

The relation of PB electrostatic energy between AA model
and different levels of CG models of proteins are also shown
in Table 1. The correlation of PB electrostatic energy be-
tween 5-bead CG and AA models is up to 0.9992. This
result indicates that the evaluation accuracy of the PB elec-
trostatic energy using 5-bead CG model is consistently satis-
factory, while that of using coarser 2-bead CG model is not.
The errors of PB energy computation of 2-bead CG model
are from 0.016 to 0.385 in this set of proteins.

Now, we take one of those proteins (PDB id: 1CGI) as an
example to see the details of PB energetic results. Figure 5
(b) shows that the electrostatic solvation free energy of each
CG bead of the protein computed using 5-bead CG model
is highly related to the energy computed using AA model.
The correlation of per-bead electrostatic free energy between
AA model and CG model is 0.9950. Figure 5 (e) shows the
same comparison between 2-bead CG model and AA model.
The correlation is 0.9135. Here, 5-bead CG model performs

better than 2-bead CG model.
In Figure 5 (c), we show the relation of per-bead electro-

static forces computed by AA model and 5-bead CG model
for a protein (PDB id: 1CGI). Blue, pink and yellow dots on
the chart are the value of forces at x, y, z dimensions. The
correlations between them are 0.9223, 0.9117 and 0.9448 at
x, y, z dimensions. The same experiment is done for 2-bead
CG model and shown in Figure 5 (f). The correlations at
x, y, z dimensions are 0.8224, 0.6773 and 0.8472. 5-bead CG
model is a reasonably good approximate model for electro-
static force computation but doesn’t give such high correla-
tion as the per-atom energy in Figure 5 (b). The PB force
computation looks more sensitive to the resolution of molec-
ular models than the PB energy or potential computation.

In Figure 4 (d), (e) and (f), we show the electrostatic
forces on the molecular surface of one protein (PDB id:1BJ1).
The color of the molecular surface represents the inner prod-
uct of the electrostatic force and the surface normal at the
surface point. The outward force gives the positive inner
product and negative otherwise. The color goes from blue
(≥ 7.6 kcal/mol·Å) to red (≤ −7.6 kcal/mol·Å). The distri-
bution of inward and outward forces is almost the same in
AA and 5-bead CG models but not 2-bead CG models.

All these results provide very good tradeoffs between ac-
curacy and efficiency. For example, 5-bead CG model with
radius and charge optimization is shown to be a great ap-
proximation for PB energetics.

5. CONCLUSION
In this paper, we introduce a complete framework from

producing different hierarchical-level molecular models, gen-
erating molecular surface to computing electrostatic proper-



PDB id # atoms/beads # A-patches Gpol relative error of Gpol PB-CFMM time
1AK4 (l) 2260/401/290 12829/10294/9438 -1638.17/-1560.44/-1790.65 -/0.047/0.093 682.85/446.40/417.88
1AK4 (r) 2503/440/330 11730/9562/8568 -1907.00/-1862.45/-1689.96 -/0.023/0.114 661.41/535.04/470.18

1AVX 2662/477/344 12468/10341/9547 -3349.88/-3209.52/-3220.84 -/0.041/0.039 614.96/437.93/402.25
1AY7 2875/517/370 13493/10602/9694 -3657.04/-3591.34/-3061.09 -/0.018/0.163 973.38/454.36/424.88

1AY7 (l) 1434/251/178 9049/7106/6461 -1601.60/-1576.64/-1576.64 -/0.016/0.016 438.89/303.32/204.92
1AY7 (r) 1441/266/192 10594/8548/5208 -1768.38/-1721.51/-1267.87 -/0.027/0.283 630.15/435.05/386.96

1B6C 1663/290/214 10062/8051/7411 -1342.30/-1300.59/-896.64 -/0.031/0.332 484.07/425.44/326.63
1BJ1 2986/544/376 13022/11167/10230 -3812.96/-3712.58/-3031.71 -/0.026/0.205 587.75/586.55/501.30
1BUH 1190/205/140 8996/6983/6188 -1456.83/-1510.51/-1494.61 -/0.037/0.026 675.80/438.34/244.29
1CGI 852/157/112 7277/6312/5497 -971.77/-931.69/-597.23 -/0.041/0.385 374.49/258.66/243.36

Table 1: The experimental results for a set of proteins. In each column, from left to right are the results
of the AA model/the 5-bead CG model/the 2-bead CG model; column 1 is PDB id of the protein where (l)
and (r) indicate the ligand and receptor of the complex protein; column 2 is number of atoms of AA model
and number of beads of 5-bead CG and 2-bead CG model; column 3 is the number of A-patches used in the
molecular surfaces for AA, 5-bead CG and 2-bead CG models; column 4 is the electrostatic solvation energy
Gpol (kcal/mol); column 5 is the relative error of electrostatic free energy computed using 5-bead CG and
2-bead CG models relative to Gpol for the AA model; column 6 is computation time in seconds of our curved
boundary element PB method (PB-CFMM).

ties. At each step of this framework, we identify the sources
of errors and produce and analyze the empirical results of
PB electrostatic energy, potential and force by adjusting res-
olution of the molecular model.

This paper is an initial study to realize the opportunity to
control the resolution of the molecular model with accept-
able error tolerance in molecular simulation. It is always
difficult to investigate an optimized tradeoff between com-
putational cost and accuracy. We believe that it is still pos-
sible to find out a more reliable way to control the resolution
of the molecular model according to different computational
purposes. We are going to develop a following technique to
adjust the resolution at each different parts of a molecule
for electrostatic force computation.
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