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Abstract 

The energy functional used in digitalized total variation method is 
expanded to a general form and a generalized digitized total variation 
(GDTV) denoising method is obtained. We further expand this method 
from 2-dimensional (2D) image to 3-dimensional (3D) image processing 
field. Cryo-electron microscopy (cryo EM) and single particle 
reconstruction are becoming part of standard collection of structural 
techniques used for studying macromolecular assemblies. Howerver, the 
3D data obtained suffers greatly from noise and degradation for the low 
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dose electron radiation. Thus, image enhancement and noise reduction 
are   theoretically necessary to improve the data for the subsequent 
segmentation and/or structure skeletonization. Although there are several 
methods to tackle this problem, we are pleased to find that GDTV method 
is very efficient and can achieve better performance. Comparative 
experiments are carried out to verify the enhancement achieved by the 
GDTV method. 

1. Introduction 

As an emerging technology, Cryo-electron microscopy (cryoEM) has shown to 
be powerful in solving the 3D structure of large macromolecular assemblies and 
cellular complexes [3, 14], which are always beyond the capability of x-ray 
crystallography and NMR spectroscopy techniques by today. Since some of the 
biological molecules are sensitive to high energy electron radiations, imaging must 
be conducted using low dose conditions [15] to keep the sampling species in an in 
vivo status. Therefore, the images obtained by cryoEM technique are extremely 
noisy compared to other imaging techniques. Before putting the volume data into 
Electron Microscopy Data Bank (EMDB) (http://www.ebi.ac.uk/msd/emdb/), the 
modeling and computational errors of different techniques of transferring 2D image 
data into volume data also contribute extra levels of noise. Therefore, noise 
reduction and image enhancement are desirable for 3D reconstruction, segmentation 
and/or structural analysis, such as skeletonization. 

A large number of image filters have been developed to decrease the noise, 
such  as [16] low pass filter, wavelet transforms, median filters, and so on. What 
makes denoising so challenging is that a successful approach must also preserve 
characteristic singular features of images such as edges. In the past decades, 
deterministic and stochastic models were proposed to solve this problem. In many 
monographs, such as [1, 9], image denoising is almost the most important topic. In 
[18], bilateral filter is applied to denoise the cryoEM data. During our experiments, 
bilateral filtering sometimes oversmooths the cryoEM data and is very time 
consuming. As two tightly linked methods, variational methods and Partial 
Differential Equation (PDE) methods have been successful tools in image processing 
in recent years. For a given image, one can define an energy functional which 
characterizes the smoothness and the features in continuous setting, then compute 
the variation for the functional to gain an Euler-Lagrange equation. Thus, a steady 
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state equation or an evolution equation can be solved to get the minimizer which is 
regarded as the improved version of the image. On the other hand, many PDEs 
used in image processing can be deduced from energy functionals. We assume that 

RR →⊂Ω 3:u  is an original image, and 0u  is the observed image, which is 
always treated as a degraded version of u. The process is usually modeled as 

nRuu +=0  with n as noise part and R a blurring operator. In this paper, R is 
selected as I operator since we focus merely on denoising problem other than 
deblurring problem. According to the well-posedness theory of Hadamard, image 
denoising problem, as an inverse problem, is always ill-posed. Based on the theory 
of Tikhonov regularization, a widely adapted technique to circumvent this ill-
posedness difficulty, is to minimize the following regularized minimization problem, 

( ) ( ) ( )∫ ∫Ω Ω
−λ+∇φ= ,2

20 dxuudxuuE  (1) 

where the first term is used as a regular term to represent the smoothness of the 
image and the second term measures the fidelity to the original data. And positive 
parameter λ weighs these two parts and is always user-defined. Function φ is selected 

to depict the strength of the smoothness and is usually chosen as ( ) 2xx =φφ  (the 

corresponding energy of the first term is Dirichlet energy) and ( ) xx =φ  (the 

corresponding energy of the first term is usually named as total variation), which are 

actually 2L  and 1L  normal of functions. 

The differential equations (either the steady status equation or the evolution 
equation) from the energy functional (1) are discretized numerically on a rectangular 
grid. A large number of publications have appeared (see, for example, [21, 26, 27]) 
in the past decades. Since the Euler-Lagrange equation associated with (1) is usually 
a nonlinear PDE, when applying it to a digital image, one has to carefully choose 
numerical schemes to take care of the nonlinearity. Later, Osher and Shen [23] 
established a self-contained “digital” theory for the PDE method, in which 
knowledge of PDEs and numerical approximations is not required. The “digital” 
method does not mean the discrete numerical implementation of the existing 
differential equations. Instead, the method starts directly with the discrete variational 
problem, from which algebraic equilibrium equations analogous to the PDEs are 
established. It is unnecessary to search for the meaning of these algebraic equations 
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from their PDE counterparts. Remarkably, the underlying domain can fairly be 
irregular. Motivated by the theory of [23], in [28, 31], we proposed to digitalize the 
energy (1) to obtain a general formulation for image denoising. An ideal graph 
model is considered and regularization operation for the local variation is avoided. 
This formulation is implemented by a local iterative scheme which is more efficient 
than usual PDE methods since there is no necessity to solve a linear system. The 
method is named as generalized digitized total variation method (GDTV for short 
abbreviation). In [4, 5], Bougleux et al. proposed one discrete regularization 
framework on weighted graphs of arbitrary topology for image and mesh filtering, 
where the regularization term comes from a special integral in (1). 

In this paper, we expand the proposed GDTV method to 3D cryoEM data. 
Numerical experiments are carried out and comparative examples are presented to 
show the performance of GDTV method. We also integrated into our in-house 
software VolRover http://cvcweb.ices.utexas.edu/software/#VolRover for volume 
image processing. 

The remainder of the paper is organized as follows. In Section 2, the graph 
model, energy functional and denoising equation are expanded to 3D case. The 
algorithm is sketched in Section 3. Large number of numerical experiments and 
comparative examples are presented in Section 4. Section 5 concludes the paper. 

2. Graph Model, Energy Functional and Denoising Equation 

2.1. Basic definitions for a graph 

For a 3D digital image ,: R→Ωu  let [ ]G,Ω  denote an undirected graph with 

a finite set Ω of voxels (or nodes) and a dictionary G of edges. The graph is assumed 
to have no self-loops and general vertices are denoted by ,, βα  (cf. Figure 1). If 

α and β are linked by an edge with length r, then we write .~ βα r  We use 

{ },~; 1
1 αβΩ∈β=N  

{ },~;
2

2 αγΩ∈γ=N  

{ }αδΩ∈δ=
3

3 ~;N  

to denote the 1, 2  and 3 -neighbors of α, respectively. For each voxel α in a 3D 
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image, there are always six 1-neighbors, twelve 2 -neighbors, and eight 3 -
neighbors. The value at vertex α is denoted by .αu  Similar to the definition of 

length of gradient ,u∇  we define the local variation or strength α∇ ug  of its 

digital version at any voxel α as 

( )
( ) ( ) .32:

2 31
~ ~

22

~

2 ∑ ∑∑
αγ αδ

αδαγ

αβ

αβα
−

+
−

+−=∇
uuuu

uuug  

 

Figure 1. Vertex α and its neighborhood. 

Expanding the notations in [8], we define the edge derivative. Let e, f and h be 

the edges γαβα
21 ~,~  and ,~3

δα  respectively. Then the edge derivatives of u 

along e, f and h are correspondingly defined to be 

2
:,: αγ

α
αβ

α

−
=

∂
∂−=

∂
∂ uu

f
uuue

u   and  .
3

: αδ

α

−
=

∂
∂ uu
h
u  

We can also write 

,
222

∑ ∑ ∑
α α α ααα

α ⎥⎦
⎤

⎢⎣
⎡
∂
∂+⎥⎦

⎤
⎢⎣
⎡
∂
∂+⎥⎦

⎤
⎢⎣
⎡
∂
∂=∇

  e f h
g h

u
f
u

e
uu  

where αα  fe ,  and αh  represent that α is a 1-node of e, a 2 -node of f 

and a 3 -node of h. 
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2.2. Digitalized energy and equations 

Similar to [31], the fitted digitalized version for energy functional (1) is 

( ) ( ) ( )∑ ∑
Ω∈α Ω∈α

ααα −λ+∇φ= ,2: 20uuuu gE  (2) 

where function ( )xφ  is simply chosen as Kim and Lim in [19] as ( ) ≤=φ − 0,2 qxx  

.2<q  Obviously, ( )xφ  can be selected as other forms, such as listed in [1, p. 83] 

( ) ( ) ,212,1log,
1

22
2

2
−++

+
=φ xx

x
xx  etc. 

Theorem 1. With respect to digitalized energy (2), the denoising equation is 

( )
( ) ( )∑

∈β β

β

α

α
βα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇
∇φ′

+
∇
∇φ′

−=
1

0
N g

g

g

g
u
u

u
u

uu  

( ) ( )∑
∈γ γ

γ

α

αγα
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇φ′

+
∇
∇φ′−

+

2
2

N g

g

g

g
u
u

u
uuu

 

( ) ( )
( ) .,3

3

0 Ω∈α−λ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇φ′

+
∇
∇φ′−

+ ∑
∈δ

αα
δ

δ

α

αδα

N g

g

g

g uuu
u

u
uuu  (3) 

We omit the proof of this theorem, the interested reader can write it out 
according to the idea of [31]. 

Corollary 1. If ( ) ,20,2 <≤=φ − qxx q  then (3) turns out to be 

( ) ( ) ( )⎜
⎜

⎝

⎛
∇+∇−−= ∑

∈β

−
β

−
αβα

1

20
N

q
g

q
g uuuuq  

( )∑
∈γ

−
γ

−
α

γα ∇+∇
−

+

2
2

N

q
g

q
g uu

uu
 

( ) ( ) .,3
0

3

Ω∈α−λ+
⎟⎟
⎟

⎠

⎞
∇+∇

−
+ αα

∈δ

−
δ

−
α

δα∑ uuuuuu

N

q
g

q
g  (4) 
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In the following experiments, we only select ( ) .20,2 <≤=φ − qxx q  

Corollary 2. Equation (3) is the digital version of 

( ) ( ) ,0div 0 =−λ+⎟
⎠
⎞

⎜
⎝
⎛

∇
∇∇φ′ uuu

uu  (5) 

which is the Euler-Lagrange equation of (1). 

We also omit the proof for the similarity to the proof in [31]. 

3. Detailed Denoising Algorithm 

For a voxel α being dealt with, if 0,0,0 ≠∇≠∇≠∇ γβα uuu ggg  and 

,0≠∇ δug  we define weight functions 

( )
( ) ( )

,
β

β

α

α
αβ ∇

∇φ′
+

∇
∇φ′

=ω u
u

u
u

u
g

g

g

g  (6) 

( )
( ) ( )

,22 γ

γ

α

α
αγ ∇

∇φ′
+

∇
∇φ′

=ω u
u

u
u

u
g

g

g

g  (7) 

( )
( ) ( )

.33 δ

δ

α

α
αδ ∇

∇φ′
+

∇
∇φ′

=ω u
u

u
u

u
g

g

g

g  (8) 

If ,0=∇ αug  then we define ( ) ( ) ( ) .0=ω=ω=ω αδαγαβ uuu  If 0≠∇ αug  

and ,, γβ ∇∇ uu gg  or δ∇ ug  vanishes, we first prescribe ,, γβ ∇∇ uu gg  or 

δ∇ ug  is a small positive number a (e.g., ),10 4−  and then define weight function 

according to (6), (7) and (8). 

Then equation (3) becomes 

( ) ( ) ( ) α
∈β ∈γ ∈δ

αδαγαβ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
ω+ω+ω+λ ∑ ∑ ∑ uuuu

N N N1 2 3

 

( ) ( ) ( )∑ ∑ ∑
∈β ∈γ ∈δ

αδαδγαγβαβ λ=ω−ω−ω−
1 2 3

,0

N N N
uuuuuuu  (9) 
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for all .Ω∈α  This is usually a system of nonlinear equations. For simplicity, we 
further define 

( )
( )

( ) ( ) ( )
,

1 2 3

∑ ∑ ∑
∈β ∈γ ∈δ

αδαγαβ

αβ
αβ

ω+ω+ω+λ

ω
=

N N N
uuu

u
uh  (10a) 

( )
( )

( ) ( ) ( )
,

1 2 3

∑ ∑ ∑
∈β ∈γ ∈δ

αδαγαβ

αγ
αγ

ω+ω+ω+λ

ω
=

N N N
uuu

u
uh  (10b) 

( ) ( )
( ) ( ) ( )

,

1 2 3

∑ ∑ ∑
∈β ∈γ ∈δ

αδαγαβ

αδ
αδ

ω+ω+ω+λ

ω
=

N N N
uuu

uuh  (10c) 

( )
( ) ( ) ( )

.

1 2 3

∑ ∑ ∑
∈β ∈γ ∈δ

αδαγαβ
αα

ω+ω+ω+λ
λ=

N N N
uuu

uh  (10d) 

One can easily check that .1=+++ αδαγαβαα hhhh  

To solve the system of equations (9), the simplest local iteration is the Gauss-
Jacobi method 

( ) ( )∑ ∑
∈β ∈γ

γαγβαβ
+

α +=
1 2

1

N N

kkkkk uuhuuhu  

( ) ( )∑
∈δ

αααδαδ ++

3

0

N

kkk uuhuuh  (11) 

for all ,Ω∈α  where k denotes the iteration step. This process can be independently 

explained as a forced local low-pass digital filter. The update αu  is a weighted 

average of the existing βu  on its 1-neighborhood and γu  on its 2 -neighborhood 

and δu  on its 3 -neighborhood and the raw data at α. The raw data serves as an 

attracting force preventing u from wandering too far. 

Another possible scheme for (9) is Gauss-Seidel method. We omit this here for 
saving space. The interested reader can write it out according to the schemes in [23]. 
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From the iterative scheme (11), the algorithm can be given as follows. 

Filtering algorithm 

(1) Assign a linear order to all voxels: .21 Ωα<<α<α  Set .0=k  

(2) .1+= kk  For each voxel α, calculate local variation .α∇ ug  

(3) For each voxel α and all its 1-neighbors β, 2 -neighbors γ and 3 -

neighbors δ, calculate the weighted functions ( ),kuαβω  ( )kuαγω  and ( )kuαδω  

according to (6), (7) and (8), respectively. 

(4) For each voxel α, compute ( ) ( ) ( ) ( )uhuhuhuh αααδαγαβ ,,,  according to 

(10). 

(5) For each voxel α, compute 1+
α
ku  according to (11). 

(6) If Nk >  (a prescribed iteration step) or other termination condition is 
satisfied, stop. Otherwise, go to (2). 

4. Numerical Experiments and Comparative Results 

Numerical experiments and comparative results are presented in this section. All 
the experiments are carried out on a Sun computer with Ubuntu 8.04 operating 
system. Before we present numerical experiments and comparative results, some 
preliminary introduction of 3D cryoEM and our test sample GroEL is provided. 

Three-dimensional EM imaging plays a unique role in structural biology for its 
capability of revealing the three dimensional structures of biological units. The 
major difficulty with EM images is due to the extremely low signal-to-noise ratio 
(SNR). This is true partially because the electron does use in EM imaging has to be 

kept in a very low level (approximately )Å4~5.0 2e  in order to reduce the 

radiation damage of electrons in the specimen. The flash cooling technique, known 
as Cryo-EM, is to quickly cool the samples to liquid nitrogen temperature (about 
77K or less) such that the surrounding water does not form crystalline ice. This 
technique proved to be very successful in preserving the native structures of 
specimen while reducing the radiation damages [11]. 
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GroE is the prototypical type I chaperonin, required for proper folding of a wide 
range of substrate proteins [12, 22]. It acts as an Anfinsen cage [13] to facilitate 
substrate folding by providing an appropriate chemical environment and can induce 
partial substrate unfolding during encapsulation [17]. GroE consists of two proteins, 
GroEL and GroES, with 14 monomers of GroEL forming two back-to-back, seven-
membered rings [7]. The structure of GroEL has been studied by X-ray 
crystallography and Cryo-EM, resulting in nearly two dozen structural models in a 
variety of chemical conditions and functional states [6, 10, 25, 29]. These structural 
studies have provided “snapshots” of the GroE in different conformations, from 
which mechanistic models have been proposed. In the following experiments, all 
original data comes from EMDB. For 4.2Å GroEL data EMDB ID is 5001 and 6Å 
GroEL data EMDB ID is 1081. 

Since the focus of this paper is to denoise 3D EM data, we will not mention the 
important topics, such as the effects of the convex and concave properties of 
function φ, pepper and salt noise removal, color image denoising by GDTV and time 
consuming of GDTV vs PDE methods. The interested reader is referred to [31] for 
details. We take only GroEL for testing the GDTV method and do comparisons. 

4.1. Comparison between denoising with GDTV vs non-denoising 

In this subsection, we compare the segmentation results of 3D GroEL data at 
4.2Å resolution with GDTV denoising and without denoising. In [20], Ludtke et al. 
presented the structure reconstruction of GroEL with D7 symmetry. In Figure 2, we 
show the initial GroEL EM data in (a), (b) show the result of Ludtke et al. published 
in [20]. In Figure (c), our result is shown. We obtain the result according to the 
following several steps. (1) We use digitized total variation (DTV, that is 0.1=q  in 

4) method to denoise the initial volumetric data of (a), the parameters .0.1=q  

0001.0=λ  in (4), iteration step is 1. We use 1-neighborhood for simplicity. (2) 

Using the segmentation method of [2], we segment the en bloc data into 14 subunits. 
(3) Use GDTV to denoise each subunit. Here we use parameters ,8.0=q ,0001.0=λ  

iteration step is 3 and use 1-neighborhood for simplicity. From these figures, we can 
see that our result is smoother and more features can be discerned, especially in the 
top and the bottom parts. 
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                        (a)                                      (b)                                       (c) 

Figure 2. Comparative results between GDTV denoising and non-denoising. (a) 
shows the original density map. (b) shows the structure reconstruction result in 
Figure 1.B of [20]. (c) shows our structure reconstruction. 

For 6Å GroEL density map, we show a similar example. In Figure 3(a), the 
original density map is shown. (b) shows the result of structure reconstruction after 
segmentation [2]. (c) shows the result of structure reconstruction after denoising 
each segmented subunit with GDTV. Our result is obviously better than the result 
shown in (b). 

4.2. Comparison between DTV with GDTV 

The difference between DTV with our GDTV method is compared in this 
subsection. We carry out this experiment as follows. First use DTV to denoise the 
original volume density map. Then use the segmentation methods as above to obtain 
14 subunits. Next for each subunit, we use different parameters to do comparisons. 
In Figure 4, (a) shows the result after denoising the original density map (2 (a)) with 
GDTV method, parameters are the same as the above example. (b) shows the result 
after denoising each subunit by DTV method. The parameters ,0.1=q  ,0001.0=λ  

iteration step is 1. We use 1-neighborhood for simplicity. (c) shows the result after 
denoising each subunit by GDTV method. We use parameters ,0001.0,8.0=q  

iteration step is 3 and use 1-neighborhood for simplicity. In Figure 5, we show one 
subunit for comparison, where (a), (b) and (c) show one subunit of (a), (b) and (c) of 
Figure 4, separately. From these figures, we can see that the difference is not very 
big. But we think more iteration will yield big difference. 
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                          (a)                                  (b)                                  (c) 

Figure 3. Comparative results between GDTV denoising and non-denoising. (a) 
shows the original density map of GroEL at 6Å resolution. (b) shows the result 
without denoising. (c) shows the structure reconstruction result after denoising each 
subunit with GDTV. 

 
                         (a)                                    (b)                                  (c) 

Figure 4. Comparative results between DTV and GDTV. (a) shows result after 
denoising the original density map with DTV. (b) shows the structure reconstruction 
result after denoising each subunit with DTV. (c) shows the structure reconstruction 
result after denoising each subunit with GDTV. 

 
                            (a)                                  (b)                                       (c) 

Figure 5. Comparative results between DTV and GDTV. (a), (b) and (c) show one 
subunit of (a), (b) and (c) of Figure 4. 
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4.3. Comparison between bilateral filtering and GDTV 

In [18], Jiang et al. used bilateral filtering to denoise 3D EM data. During our 
using their code to do smoothing, we find that in some cases bilateral filtering 
oversmoothes the density map that the obtained result is not desirable. In this 
subsection, we compare the results of GDTV method with bilateral filtering. The 
experiment is carried out as follows. In Figure 6(a) we show the initial data. In 
Figure (b), we show the result of bilateral filtering with default parameters. For more 
details on the parameters, the interested reader is referred to [18]. In Figure (c), we 
show the result of GDTV with default parameters. In Figure 7, one subunit of (a), (b) 
and (c) of Figure 6 is shown, respectively. 

In Figure 8, we show another example on the difference of bilateral filtering and 
GDTV. For 6Å GroEL data, we use one subunit of the result of [2, 30] as test. One 
subunit of segmentation result is shown in Figure (a). It is obvious that the noise is 
heavy. In Figure (b), we show the result of bilateral filtering. We can find that 
oversmoothing phenomenon occurs. The result is too smooth to discern features. Our 
result by GDTV is shown in Figure (c). We can discern features of the subunit while 
smooth it. 

 
                      (a)                                       (b)                                        (c) 

Figure 6. Comparative results between bilateral filtering and GDTV. (a) shows the 
original density map. (b) shows the structure reconstruction result after denoising 
each subunit with bilateral filtering. (c) shows the structure reconstruction result 
after denoising each subunit with GDTV. 
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                           (a)                                      (b)                                      (c) 

Figure 7. Comparative results between bilateral filtering and GDTV. (a), (b) and (c) 
show one subunit of (a), (b) and (c) of Figure 6. 

 
                         (a)                                      (b)                                       (c) 

Figure 8. Comparative results between bilateral filtering and GDTV for 6Å GroEL 
density map. (a) shows one subunit segmented by the approach in [2, 30]. (b) shows 
the bilateral filtering result. (c) shows the result of GDTV. 

5. Conclusion 

A general formulation of image denoising method based on the variation of 
digitalized energy functional is presented. We generalize the generalized digitalized 
total variation method to 3D image. From the general energy functional, we derive 
the explicit iterative scheme. Large number of comparison experiments are carried 
out to verify the effectiveness of the proposed method. Our method is efficient, 
which is important because the 3D data quantity is always huge. 
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